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A significant proportion of the electroencephalography (EEG) literature focuses on

differences in historically pre-defined frequency bands in the power spectrum that

are typically referred to as alpha, beta, gamma, theta and delta waves. Here, we

review 184 EEG studies that report differences in frequency bands in the resting state

condition (eyes open and closed) across a spectrum of psychiatric disorders including

depression, attention deficit-hyperactivity disorder (ADHD), autism, addiction, bipolar

disorder, anxiety, panic disorder, post-traumatic stress disorder (PTSD), obsessive

compulsive disorder (OCD) and schizophrenia to determine patterns across disorders.

Aggregating across all reported results we demonstrate that characteristic patterns

of power change within specific frequency bands are not necessarily unique to any

one disorder but show substantial overlap across disorders as well as variability

within disorders. In particular, we show that the most dominant pattern of change,

across several disorder types including ADHD, schizophrenia and OCD, is power

increases across lower frequencies (delta and theta) and decreases across higher

frequencies (alpha, beta and gamma). However, a considerable number of disorders,

such as PTSD, addiction and autism show no dominant trend for spectral change

in any direction. We report consistency and validation scores across the disorders

and conditions showing that the dominant result across all disorders is typically only

2.2 times as likely to occur in the literature as alternate results, and typically with

less than 250 study participants when summed across all studies reporting this result.

Furthermore, the magnitudes of the results were infrequently reported and were typically

small at between 20% and 30% and correlated weakly with symptom severity scores.

Finally, we discuss the many methodological challenges and limitations relating to such

frequency band analysis across the literature. These results caution any interpretation

of results from studies that consider only one disorder in isolation, and for the

overall potential of this approach for delivering valuable insights in the field of mental

health.
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depression
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INTRODUCTION

In 2001 the World Health Organization1 (WHO) reported that
about 450 million people worldwide suffer from some form of
mental disorder or brain condition, and that 1 in 4 people will
meet this criteria at some point in their life (Sayers, 2001). More
recent statistics2 suggest that globally, 300 million people are
affected by depression, 60 million people suffer from bipolar
disorder, 23 million people are affected by schizophrenia, 1 in
160 children has autism spectrum disorder3 and between 5%
and 7% of children and adolescents suffer from attention deficit-
hyperactivity disorder (ADHD; Polanczyk et al., 2007). Diagnosis
of these psychiatric disorders is typically carried out using
clinical interviews structured around the diagnosis classification
systems of DSM-5 and ICD-11. These diagnostic criteria are
based on self-reported symptom clusters, with each disorder
type having its own group of symptoms which can include
behavioral, cognitive, affective or physical disturbances. For
example, ADHD diagnosis primarily focuses on cognitive and
behavioral complaints by the child or adult, whilst diagnosis
of depressive disorders typically focuses on disruptions to an
individual’s affective and physical functioning.

However, the reliance on a subjective assessment approach
which can be prone to patient and expert bias means that
researchers have been trying to develop new ways to inform
clinical diagnosis and treatment effectiveness using objective
symptom biomarkers, with electroencephalography (EEG) being
one method of interest (McLoughlin et al., 2014; Jeste et al.,
2015; Olbrich et al., 2015). The approach that dominates the
literature focuses on analyzing broad frequency bands in the
EEG power spectrum termed delta, theta, alpha, beta, and
gamma (Berger, 1929; Jasper and Andrews, 1936; Hoagland
et al., 1937a,b; Dustman et al., 1962). This interpretation of
the EEG signal in terms of spectral bands has its origins in
the technical limitations of the pre-computer era of the 1930s
and ‘40s when few other analytical options were available.
However, this approach results in a reduction in the rich
temporal information available within the EEG and was, even
at that time, acknowledged to be sub-optimal (Walter, 1938).
Yet, despite the tremendous progress in computing power and
available algorithms, the spectral band approach continues to
persist as the dominant approach to EEG analysis, including in
the development of clinical biomarkers. A recent example of
this is the approval by the FDA4 of the use of the theta/beta
ratio as a biomarker for ADHD diagnosis (Saad et al., 2015;
Gloss et al., 2016) whilst others are exploring the application
of alpha-asymmetry as a potential marker for depression (van
der Vinne et al., 2017; Kaiser et al., 2018). One question,
therefore, is whether the approach of splicing the power spectrum
into bands has persisted because it offers a superior approach
in terms of research insight, methodological standardization,
and reliability of results across studies, or whether it is

1http://www.who.int/
2http://www.who.int/en/news-room/fact-sheets/detail/mental-disorders
3http://www.who.int/en/news-room/fact-sheets/detail/autism-spectrum-
disorders
4https://www.accessdata.fda.gov/cdrh_docs/reviews/K112711.pdf

because researchers have simply kept with the status quo of
80 years ago.

To explore the degree to which spectral band analysis of the
EEG offers a reliable and useful approach for understanding
different psychiatric disorders, we have reviewed the methods
and results from 184 resting-state EEG studies across a host
of psychiatric disorders that report differences (or lack thereof)
in the various frequency bands within the power spectrum.
The objectives of this review are therefore threefold. First, to
determine the dominant patterns of results and reveal similarities
and dissimilarities in the spectral trends both between and
within different brain disorders during resting-state; second, to
report the reliability and consistency of results across disorder
types to determine the validity of applying power spectral
analyses to inform on individual psychiatric disorders; and
thirdly to review the methodological and analytical approaches
across all studies to determine the degree to which they
can be compared and contrasted to draw reliable conclusions
within the field. In this respect, we provide an objective view
of the literature along numerous methodological dimensions
from sample size and choice of demographic (e.g., age,
gender) to method of clinical diagnosis and parameters of
EEG recording (e.g., reference type) and analysis (e.g., artifact
removal, Fourier transform algorithm) used both within and
across disorder types. We note that we restrict our focus to
analysis of frequency bands at the level of single channels or
averaged across channels and do not cover derivative analysis
of these spectral bands such as their spatial coherence or
asymmetry.

Such a cross disorder view is particularly warranted since the
majority of clinical resting-state EEG studies focus primarily on
one clinical disorder at a time, and do not offer a perspective
across a broader range of psychiatric disorders. Therefore, whilst
a study may report changes in particular frequency bands for
one disorder type, it is not always obvious whether this is
unique to this particular disorder, or whether similar patterns
of change are found across other psychiatric disorders. In other
words, are there unique EEG signatures which differentiate one
disorder from another, or do themacro-level changes observed in
studies employing a frequency band approach overlap with other
disorders, therefore being more limited in their clinical diagnosis
potential.

MATERIALS AND METHODS

Studies Identified and Reporting
Characteristics
We present a review of studies published over the last
25 years that report spectral power in different bands during
resting state conditions (eyes open and/or closed) across
10 mental health disorders. These include depression, bipolar
disorder, addiction, autism, ADHD, anxiety, panic disorder,
obsessive compulsive disorder (OCD), post-traumatic stress
disorder (PTSD) and schizophrenia, allowing us to compare
both within and across disorders. We limit our review to
studies with an N of at least 20 participants that reported
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quantifiable results in at least one frequency band. Our intention
was not to perform a full-scale meta-analysis but rather a
comprehensive review of the state of recent literature. To do
so we conducted a search of PubMed5 in May 2018 using
combinations of the following keywords in the title or abstract:
quantitative OR qEEG OR ongoing/on-going OR spontaneous
OR resting/rest, combined with EEG and the key terms for
each of the disorders of interest. Only studies that examined
EEG spectral differences in at least one frequency band
(exclusively or alongside other EEG metrics) between a clinical
and a control group were included. Studies whose research
focus was on other aspects of mental health or cognition,
or whose analysis focused exclusively on other EEG metrics
(e.g., asymmetry, coherence, microstates, entropy etc.) were
excluded. No study was excluded due to methodological
limitations, but rather because it missed the proposed research
topic. This enabled a comprehensive review of the variability
of experimental and clinical parameters across the published
literature, rather than restricting it to a particular subset of
studies.

As a next step, various methodological parameters were
collated including sampling characteristics, EEG recording
parameters and power spectrum computation. Sampling
characteristics included sample size, demographic data (age,
gender), medication status and diagnostic screening method.
Key EEG parameters (where available) included referencing
style, and recording length, and power spectrum computation
included FFT method (windowing function, overlap, epoch
length), frequency bands (and frequency window) and whether
absolute and/or relative power differences were analyzed within
each band. We then noted any reported significant difference
(increase or decrease) or lack of significant difference in
power/amplitude across each spectral band (delta, theta, alpha,
beta, gamma where analyzed) for each study. In addition, to
standardize across studies, frequency bands which had been split
into sub-bands (e.g., beta1/beta2) were collapsed for all analyses,
and where results differed across sub bands (e.g., beta1 showed
significance, beta2 showed no significance) we considered the
significant finding as the primary result. In addition, in one study
(Hong et al., 2012) the theta and alpha bands were collapsed
together and in this instance we allocated the result to both
bands individually.

Where reported in text or figures, the magnitude of change
was also calculated (as a % increase or decrease). Any reported
correlations between individual spectral bands and clinical
symptoms were also recorded when reported. All collected data
were consolidated in a spreadsheet for review and analysis.

Consistency and Reliability Scores
To determine the dominant result for each band within each
disorder group and recording condition we first identified the
most frequently occurring (i.e., dominant) result (significant
increase, significant decrease or no significant difference). For
example, for ADHD in children in the eyes closed condition there
were 13 studies reporting a significant increase in the absolute

5https://www.ncbi.nlm.nih.gov/pubmed/

power of the delta band, one study reporting no difference and
three studies reporting a significant decrease. In this case the
dominant result is a significant increase. When the number of
studies showing either a significant increase or decrease was
the same as the number showing no difference, the dominant
result was considered no difference. When an equal number of
studies showed an increase and a decrease (and the number was
higher than those showing no significant difference) the result
was marked as ‘‘opposing.’’

We then created a consistency score computed as the ratio
of the number of studies reporting the dominant result (e.g.,
no significant difference) to the number of studies reporting a
different result (e.g., significant increase or decrease); essentially
how much more frequently the dominant result was reported in
the literature compared to some other result. When all studies
agreed (i.e., the divisor was zero) we used the number of studies
as the consistency score. When the studies were evenly divided
between any two results, we computed the consistency score as 1.

We next created a validation score by first computing the
average N for the studies showing the dominant result in each
band and multiplying this by the number of studies showing the
dominant result. We then averaged these values across all the
bands (excluding the gamma band which was sparsely reported).
The validation score is therefore an indication of the size of the
population from which the dominant result was obtained.

RESULTS

A total of 184 publications published between 1993 and 2018,
found using the above search criteria in PubMed, matched
our inclusion criteria. A detailed list of studies with key study
parameters can be found in Supplementary Table S1. while
trends in results are summarized below.

Overview of Studies

Sample Characteristics
A summary of the number of studies across disorders and
their corresponding sample characteristics is shown in Table 1.
Some disorders such as ADHD and schizophrenia were widely
studied (65 and 37 articles, respectively) while others such as
depression and autism were also popular, though less so (18 and
16 studies respectively). In contrast, some disorders such as
bipolar, generalized anxiety and panic disorder were very poorly
represented in the literature (six or fewer studies each). The
median sample size across the studies was 60, with roughly equal
numbers of patients and controls in the majority of studies.
Seventy-three percent of studies had sample sizes less than
100 whilst only 10 studies (Clarke et al., 2001d; Wuebben and
Winterer, 2001; Rangaswamy et al., 2002, 2006; Magee et al.,
2005; McFarlane et al., 2005; Grin-Yatsenko et al., 2009; Kam
et al., 2013; Narayanan et al., 2014; Arns et al., 2015) had sample
sizes greater than 250 and only one of these (Arns et al., 2015) had
a sample size greater than 1,000 (N = 1,344; depression; Figure 1).
Participants were generally adults with an average age between
30 and 40 except for ADHD and autism where studies largely
focused on children and the average age ranged from 5 to 11 years
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TABLE 1 | Overview of studies.

No. of studies∗ Median N % Controls Average age (years) % Females % Eyes closed$

ADHD (children) 56# 76 45 11 25 75

ADHD (adults) 14# 55.5 50 33 43 54

Schizophrenia 37 63 54 31 33 92

ASD/Autism& 16 56 52 8.5 21 33

Depression 18 55 44 39 57 86

OCD 10 61.5 49 32 56 100

PTSD 13 74 50 40 37 67

Addiction 16 45 49 33 30 88

Panic disorder 4 79 44 35 69 50

Bipolar disorder 6 99.5 55 30 55 50

Anxiety 3 50 50 31 76 50

∗ Includes five joint studies: (1) depression/post-traumatic stress disorder (PTSD); (2) schizophrenia/bipolar; and (3) schizophrenia/depression. $ Includes studies which had only eyes

closed as well as studies which included both eyes closed and eyes open. &Excludes the one adult ASD/autism study. # Includes five studies with both children and adult participant

groups.

FIGURE 1 | Distribution of sample size across 184 studies in this review.

Sample size includes both patients and controls. Median sample size was 60.

One study, with a sample size of 1,344, was beyond the scale of this graph.

old. Furthermore, samples were typically skewed towards male
subjects (64%).

Each study compared a group with a diagnosed disorder
to a control group. The majority of studies report on only
one disorder, although a minority compare two disorders, e.g.,
bipolar disorder and schizophrenia (Clementz et al., 1994; Kam
et al., 2013; Narayanan et al., 2014), depression and schizophrenia
(Begić et al., 2011), depression and PTSD (Kemp et al., 2010),
alcohol and internet addiction (Son et al., 2015). In each case, the
disorder group(s) were determined using common psychiatric
questionnaires as described in Supplementary Table S2. In the
majority of studies (70%), patients were unmedicated which was
defined as being medication naive or having abstained from
taking medication for a predefined period of time (ranging from
12 h to 3 months).

Reported Metrics
The majority of studies reported resting state EEG with eyes
closed recordings (66% of studies). However, a minority of
studies reported results for eyes open (19% of studies) or
both eyes open and closed (15%), analyzed either combined or
separately. While some studies reported all frequency bands,
many were selective in reporting only one or two bands. Across

the studies, the alpha and theta bands were the most frequently
reported (in 85/84% of studies), followed by beta (80%) and
delta (70%). Gamma is the least frequently reported (only 18% of
studies). Given this pattern of reporting, it is sometimes unclear
when a study reported on only one or two bands, whether it was
because the other bands were not analyzed, or whether they were
excluded on account of negative or null results. Underreporting
of negative or null results may therefore bias this review towards
the positive results. It is also important to note that while most
studies followed a typical definition for the theta and alpha bands,
there was wide variation in the definitions of other bands (see
‘‘Methodological Challenges and Limitations’’ section).

For each band, studies most often reported differences in
the absolute power between control and disorder groups (61%
of studies). Some of these studies additionally reported relative
power (28%) while a few reported differences in relative power
only (10%). Relative power is typically calculated by computing
the power of each given band divided by the sum of power
across all bands. Surprisingly, 29% of studies did not explicitly
indicate the method of reporting and required some inference.
Where a study did not mention whether it reported absolute
or relative data, it was generally assumed that it was absolute
in the absence of any evidence to the contrary. Most studies
reported aggregated results for broad cortical or source localized
regions (60%) while others reported results for individual
channels (32%). A small minority provided results aggregated
across all recorded channels (8%). Given these differences in
reporting we computed the magnitude of difference between
the control and disorder groups as percentages, where the
information was available (in 40% of cases), averaging across
broad regions in all studies. Where there was a regional split
between increases and decreases across the scalp (e.g., frontal
increases and posterior decreases) the regional magnitudes were
allocated to their respective increase and decrease groupings
(rather than being averaged together). Finally, a proportion
of studies (27%) additionally reported correlations (significant
or non-significant) between individual bands and disorder
severity.

It is also important to note that although some of the studies
reported here exclusively focused on the analysis of the power
spectrum, many of them additionally reported on other metrics

Frontiers in Human Neuroscience | www.frontiersin.org 4 January 2019 | Volume 12 | Article 521

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Newson and Thiagarajan Frequency Bands in Psychiatric Disorders

including coherence analysis and asymmetries which are not
reported here.

Aggregate Trends Across Frequency
Bands and Disorders
A trend analysis was performed for both absolute and relative
power differences reported between the disorder and control
group in each band (definitional and other methodological
differences notwithstanding) for each disorder. To standardize
across studies, we collapsed across any bands which had been
split into sub-bands (e.g., beta1/beta2). Where results differed
across bands (e.g., beta1 showed significance, beta2 showed no
significance) we considered the significant result as the primary
result. Furthermore, results are shown separately for the eyes
closed and eyes open conditions. A small number of studies that
combined eyes open and closed (for opioid addiction, depression,
panic disorder, anxiety) are excluded from the trend analysis
but displayed in the tables for completeness. In addition, in the
minority of cases where there was only a single study condition
(i.e., eye open/closed, absolute/relative) for a particular disorder,
the study was not included in the summary table or trend
analysis.

Dominant Results Across Disorders
The number of studies reporting either a significant increase, a
significant decrease, or no significant difference in the power in
each of the frequency bands relative to control for each disorder
are shown in Supplementary Tables S3, S4 for absolute and
relative power respectively. The dominant result for each band
within each disorder group and recording condition (significant

increase, significant decrease or no significant difference) was
determined based on the result reported by the greatest number
of studies as described in the methods section ‘‘Consistency and
Reliability Scores.’’

Altogether we found that the most common result across all
disorders and bands combined was an absence of any significant
difference in both the eyes closed (53% absolute power, 63%
relative power) and relative eyes open conditions (83%), whilst
there were similar levels of significant increase (46%) and
no significant difference (39%) for absolute eyes open. The
dominant results for each band aggregated across all distinct
disorders and conditions are shown in Figure 2 for absolute
power (Figure 2A) and relative power (Figure 2B).

When restricting our view to the smaller proportion of
disorders/conditions where the dominant result was a significant
increase or decrease, the general pattern that emerged was that
increases dominated in the lower frequency delta and theta
bands (86% for absolute and relative power) while decreases
dominated in the alpha band (67% absolute, 100% relative). In
contrast decreases were roughly as likely as increases in the beta
band depending on the condition (37.5% absolute, 50% relative).
The gamma band was excluded from analysis due to the small
number of studies, although here again, decreases were more
common.

Examining this general effect at the level of the individual
disorder types, the results showed that there was an increase
in absolute power for both delta and theta in the eyes closed
condition for ADHD (in children), schizophrenia, OCD and
depression, while ADHD (in adults) and alcohol addiction
showed an increase only in the theta band (Figure 3A). In

FIGURE 2 | Dominant result aggregated across all disorders and bands. (A) Number of disorders with no difference in absolute power relative to controls (white), an

increase (black), a decrease (gray) or opposing results (hashed) for eyes closed (top) and eyes open (bottom) conditions. Increases are more common for lower

frequency bands (delta and theta) whilst decreases or no significant difference are more common for higher frequency bands (alpha and beta). (B) Same as (A) for

relative power. Legends and axis labels are common.
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the eyes open condition, an increase was dominant in both
delta and theta for depression, ADHD (in children) and bipolar
disorder but only in the delta band for ADHD (adults) and
only in the theta band for schizophrenia. However, even across
those disorders where an increase dominated these bands, there
were nonetheless a minority of studies reporting the opposite
effect (e.g., three studies of ADHD in children, Dupuy et al.,
2014a; Giertuga et al., 2017; Shephard et al., 2018, two studies
of schizophrenia Pascual-Marqui et al., 1999; Knyazeva et al.,
2008 and one of OCD, Bucci et al., 2004). The only cases in the

FIGURE 3 | Dominant results for each individual disorder and band.

(A) Differences in absolute power for each disorder (relative to control) for eyes

closed condition (top), eyes open (middle) and eyes open and closed

combined (bottom). White boxes indicate no change, black indicates an

increase, and gray indicates a decrease. Opposing results are shown by

hashed boxes. (B) Difference in results between absolute power and relative

power for the same disorders. White indicates no difference, gray indicates a

significant increase or decrease in one but no significant difference in the

other, while a hashed box indicates opposite results.

lower frequency bands where the dominant result was a decrease,
rather than an increase, was in the delta band for autism (eyes
closed, Coben et al., 2008) and in the theta and delta bands
for PTSD/early life stress (eyes open, McFarlane et al., 2005;
Veltmeyer et al., 2006).

Significant decreases in absolute power were dominant in the
alpha band for schizophrenia andOCD (eyes closed ), autism and
PTSD (eyes open), and in the beta band for ADHD (children),
autism and internet addiction (all eyes closed; Figure 3A). In
contrast, significant increases were dominant in a handful of
disorders, most frequently when participants had their eyes open,
including depression (beta, eyes open and closed), bipolar (alpha
and beta, eyes open), schizophrenia (alpha and beta, eyes open)
and alcohol addiction (beta, eyes closed ).

In two cases (OCD, eyes closed beta band and alcohol
addiction, eyes closed delta band) there was no dominant result
but rather an equal number of studies showing increases and
decreases. These are shown as hash marked in Figure 3A.

In Figure 3B we show the differences between the dominant
result for absolute and relative power differences. Overall the
dominant result for relative power was the same as for absolute
power in 62% of experimental comparisons (white squares)
where each comparison is one band within one disorder and
condition. Results were most similar across relative and absolute
for the theta band (73% of disorders/conditions). Cases where
there was a significant difference in one method but not the
other are indicated as gray (36% of disorders/conditions), which,
when examined in more detail, was the case for 50% of the
disorders and conditions in the beta band and 40% in the delta
band. There was a greater proportion of disorders/conditions
with no significant difference for relative power compared to
absolute power. This was particularly true for the delta band. The
only case where the dominant result was diametrically opposed
for absolute power vs. relative power was in the delta band for
ADHD in children (eyes closed) where there was an increase in
the absolute power and decrease in the relative power (Figure 3B,
hashed box).

Given the overall pattern of a greater likelihood of increases
in the lower frequencies and no change or decreases in higher
frequencies, it is important to note that, with the exception of
ADHD, the same disorders that were dominated by increases in
theta were not the ones dominated by decreases in beta. However,
the overall trend across disorders would be for a decreased
theta/beta ratio either due to an increase in theta and decrease
in beta, an increase in theta and no change in beta, or no change
in theta and a decrease in beta.

Consistency of Results
We next report analysis of consistency of the results for
those disorders/conditions where there were at least two
studies reporting on any particular band (Figures 4, 5).
Consistency scores were calculated as described in methods
section ‘‘Consistency and Reliability Scores’’ and can be read as
how much more frequently the dominant result occurred in the
literature compared to any other result.

Figure 4 shows the average consistency scores across all
disorders for each band for the eyes closed (solid bars) and eyes
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open conditions (hashed bars), for both absolute and relative
power (gray and black bars respectively). Overall, the highest
consistency score, aggregated across all disorders and bands was
for relative power with eyes closed (3.0) followed by absolute
power with eyes closed (2.2). Eyes open had lower consistency
with 2.0 and 1.5 for absolute and relative power respectively.
When calculated separately for each band, a similar pattern was
observed, though scores were slightly lower overall for delta and
alpha. Taken together this suggests that eyes open is a muchmore
variable condition and that relative power estimates are more
reliable.

Analysis of individual disorders/conditions, aggregated across
bands (Figure 5A), revealed that the highest consistency score
was for relative power comparisons of controls to ADHD in
children with eyes closed (7.0) followed by internet addiction
with eyes closed (4). The highest consistency scores for absolute
power with eyes closed was for OCD (3.3), internet addiction
(2.8) and ADHD in children (2.8). Autism and ADHD in adults
had generally the lowest consistency across all conditions. It is
significant, however, that the literature for two disorders with
the highest consistency scores, ADHD in children and internet
addiction, were each dominated by a single research group (47%
of the articles for ADHD, 100% for internet addiction) which was
not the case for other disorders with multiple studies. This has
the advantage of a consistent methodology but also risks bias. We
thus point out the consistency score for ADHD in children when
the dominant group is removed with an asterisk (Figure 5A).

We next report validation scores, computed as described in
methods sections ‘‘Consistency and Reliability Scores,’’ that are
essentially the total number (N) of study participants across all
the studies reporting the dominant result (Figure 5B). ADHD
in children with eyes closed had the highest number of studies
showing the dominant result (8–25 per band) and with an
average N of 129 the validation scores were the highest with
2,516 for relative power (beyond the scale of the graph) and
1,563 for absolute power. We note however that this more than
halves for relative power when the dominant research group is
excluded. Also high was schizophrenia with 1,446 for absolute
power followed by depression (absolute, eyes closed) with 880.

FIGURE 4 | Consistency scores aggregated across disorders for each band

and condition. Consistency scores (frequency of dominant result relative to

other results) were between 2 and 3 for absolute power in the eyes closed

condition for all bands (gray bars), between 2 and 4 for relative power eyes

closed (black bars) and typically between 1 and 2 for eyes open (absolute and

relative, gray and black hashed bars, except beta eyes open absolute power).

Nineteen percentage of disorders/conditions had scores less than
100 and 47% had less than 200 indicating that they involved few
studies and participants and therefore cannot be considered to be
sufficiently validated results.

Magnitude of Results
We next considered the reported magnitudes of difference (in %)
for absolute and relative power, averaged across only those
studies where a significant difference was reported, and where
accurate information was available in the text, tables or figures
of the publication (shown in detail in Supplementary Table S5).
On average, 40% of study comparisons reported magnitude data,
although this varied across disorder types and ranged from 68%,
67% and 58% for ADHD (adults), ASD/Autism and bipolar
disorder respectively at the upper end, through to 26% for ADHD
(children) and 29% for OCD at the lower end (in addition, no
anxiety studies identified for this review included magnitude
data).

Across all disorders/conditions, the reported magnitude of
difference (mean ± SD) was 34 ± 13% for absolute power
and 26 ± 14% for relative power, irrespective of whether the
reported result was the dominant one or not. The distribution
of magnitudes is shown in Figure 6A. Overall the magnitude
of increases (vs. decreases) were higher on average for absolute
power (gray bars) but not relative power (black bars). Given that
magnitude data was not consistently reported across bands and
conditions, no disorder or band specific trend can be reliably
inferred. We therefore do not report any trends. However, we do
note that reported magnitudes were highest for schizophrenia,
depression and bipolar disorder (∼44% on average for eyes
closed and ∼48% on average for eyes open across all bands)
and lowest for opioid, internet addiction, ADHD in children
with eyes open and PTSD with eyes open (all 21%–22%). Overall
magnitudes were also highest for the alpha band, particularly for
decreases reported with eyes closed (46% on average) while other
bands were similarly lower.

We note that in many cases where different studies
reported opposing results, the magnitudes reported were not
very different. For example, although the dominant result for
schizophrenia was a decrease in alpha (on average 58%), those
studies that reported an increase in alpha (Hong et al., 2012; Kim
et al., 2015) reported a similar magnitude (64%).

Correlation With Disorder Severity
We also looked at reported correlations between individual
bands and disorder severity, as rated by the clinical diagnosis
and symptom questionnaire (Supplementary Table S6).
Twenty-seven percent of studies reported multiple such
correlations for different bands and brain regions. We included
all reported correlations regardless of the specific brain region or
band or symptom subset for which the correlation was reported.
The distribution of these correlations is shown in Figure 6B. The
correlations generally ranged from 0.2 to 0.5 with an average
around 0.4 (positive or negative) while a fraction of instances
reported no significant correlation (shown as 0). It is highly
likely that the nonsignificant correlations are underreported.
Higher correlations of 0.6–0.8 were reported in some studies
showing a second peak in the distribution. However, these
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FIGURE 5 | Consistency and validation scores by disorders. (A) Consistency scores for each disorder for relative power (top) with eyes closed (black bars) and eyes

open (black hashed bars) and absolute power (bottom) with eyes closed (gray bars), eyes open (gray hashed bars) and eyes closed and open combined (hatched

bars). Asterisk marks for attention deficit-hyperactivity disorder (ADHD) indicate consistency scores when the dominant research group is excluded. (B) Validation

scores for each disorder. Order and legend are as in (A). Validation score for ADHD in children, relative power with eyes closed goes beyond the scale of this graph

(2,516).

were disproportionately from two studies (Pogarell et al., 2006;
Roh et al., 2015) with a very small number of participants
(less than 40). When these were excluded, the peak at 0.7 was
much reduced (shown by the dotted line). Further, there were
no notable differences in the correlations for any individual
disorder or band. In addition, some studies reported regression
coefficients rather than correlations which were generally lower
(between 0.2 and 0.3) and are not included in the distribution.
Thus, as an overall conclusion, it appears that correlations of
band power to symptom scores are generally weak and not
specific to any band or disorder.

We note that some studies included correlations to other
factors such as a particular task performance, demographic
variables or age of onset that are not reported here. In

addition, a handful of studies performed other types of diagnosis
classification modeling to distinguish and predict differences
between the two study groups (Kim et al., 2015: schizophrenia;
Knott et al., 2001b; Deldin and Chiu, 2005: depression; Chan and
Leung, 2006; Chan et al., 2007; Sheikhani et al., 2012: autism;
Kim et al., 2017: internet addiction; Ogrim et al., 2012; Buyck and
Wiersema, 2014a; Poil et al., 2014; Markovska-Simoska and Pop-
Jordanova, 2017: ADHD). Again, these are not reported here.

Individual Psychiatric Disorders

ADHD
This review identified 65 ADHD studies with a median sample
size of 76 (children) and 55.5 (adults; range 23–378). Of
these, 56 studied children and adolescents (average age of
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FIGURE 6 | Histograms of magnitudes of differences and correlations. (A) All reported magnitudes for differences between disorder groups and controls across all

bands for absolute (gray bars) and relative power (black bars). Increases are shown as positive and decreases are negative. Reported increases for absolute power

outnumbered reported decreases, although were similar in magnitude (35% and 34% respectively). Relative power was relatively symmetric with average magnitude

increases of 22% and decreases of 31%. (B) Histogram of all reported correlations of band increases or decreases with symptom severity scores (all results were

included even if not the dominant result). Reports of “no significant correlation” are shown as 0. Positive and negative correlations were typically between 0.2 and

0.5 although positive correlations were higher on average. High correlations (>0.6) were only found in two small studies (N < 40). Dotted line shows histogram

excluding these two studies.

11 years; Kuperman et al., 1996; Clarke et al., 1998, 2001a,b,c,d,
2002a,b,c,d,e,f, 2003, 2006, 2007, 2008b, 2011, 2013, 2016;
Bresnahan et al., 1999; Swartwood et al., 2003; Hermens et al.,
2005a,b,c; Magee et al., 2005; Hobbs et al., 2007; Fonseca et al.,
2008, 2013; Barry et al., 2009a,b, 2010; Sohn et al., 2010; Dupuy
et al., 2011, 2013, 2014a,b; Lansbergen et al., 2011; Ogrim et al.,
2012; Shi et al., 2012; Liechti et al., 2013; Buyck and Wiersema,
2014a,b, 2015; Poil et al., 2014; Tye et al., 2014; Kitsune et al.,
2015; Roh et al., 2015; Kamida et al., 2016; Kim et al., 2016;
Thomas and Viljoen, 2016; Giertuga et al., 2017; Jarrett et al.,
2017; Markovska-Simoska and Pop-Jordanova, 2017; Park et al.,
2017; Rommel et al., 2017; Shephard et al., 2018) and 14 studied
adults (average age of 33 years; Bresnahan et al., 1999, 2006;
Bresnahan and Barry, 2002; Hermens et al., 2004; Clarke et al.,
2008a; Koehler et al., 2009; van Dongen-Boomsma et al., 2010;
Woltering et al., 2012; Liechti et al., 2013; Buyck and Wiersema,
2014a; Poil et al., 2014; Rommel et al., 2016; Markovska-Simoska
and Pop-Jordanova, 2017; Tombor et al., 2018). Five of these
studies included both adults and children as participant groups
(Bresnahan et al., 1999; Liechti et al., 2013; Buyck andWiersema,
2014a; Poil et al., 2014; Markovska-Simoska and Pop-Jordanova,
2017). Above and beyond DSM or ICD in these studies, diagnosis

for ADHD was most typically performed using the Conners’
Parent Rating Scale (CPRS; Conners et al., 1998), the Child
Behavior Checklist (CBCL; Achenbach and Rescorla, 2001), the
Wender Utah Rating Scale (WURS; Ward et al., 1993), Conners’
Adult ADHD Rating Scales (CAARS; Conners and Sparrow,
1999) and Barkley’s Semi-structured Interview for Adults with
ADHD (Barkley, 2011; Supplementary Table S2).

The dominant results for all age groups and conditions are
shown in Figure 7A. Overall as described above, the results
for relative power in ADHD in children with eyes closed
had very high consistency (7.0) and validation (2,516) scores.
Absolute power for eyes closed was still reliable but less so,
with a consistency score of 2.8 and validation score of 1,563.
The eyes open condition had a consistency score of 2.8 and
validation score of 460. On the other hand, studies in adults
were substantially less consistent (consistency scores of 2.1 for
eyes open and 1.1 for eyes closed for absolute power, and 2 for
eyes open and 1.5 for eyes closed for relative power) and poorly
validated (75–201 depending on condition). However, given
that nearly half the studies reported for ADHD, particularly
for children, came from a single research group (31 out of
65), we also show here the results when excluding this group
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FIGURE 7 | Dominant results across conditions for specific disorders.

(A) Dominant result for each band for ADHD for each of various conditions

and age groups for both relative (rel) and absolute (abs) power and for eyes

closed (EC) and eyes open (EO), including all studies (top) and excluding the

dominant research group (bottom). White boxes indicate no change, black

indicates an increase, and gray indicates a decrease. Opposing results are

shown by hashed boxes. (B) Dominant result for each band for each type of

addiction and condition. Legend as in (A). (C) Dominant result for each band

for autism for each condition. Legend as in (A).

(Figure 7A, bottom). As can be seen, in the absence of this
group the dominant result for both delta and theta increases for
children remains, as does the decrease in beta activity for relative
eyes closed for children, but there is a greater number of ‘‘no-
significant difference’’ results overall for children. For adults,
theta increases persist for absolute and relative eyes closed, but
differences are observed for the other conditions and bands.

The following nine ADHD studies in children (absolute
power; eyes closed) failed to see the decrease in the beta band
(Clarke et al., 2001d; Hobbs et al., 2007; Fonseca et al., 2008;
Liechti et al., 2013; Buyck and Wiersema, 2014b, 2015; Dupuy
et al., 2014a; Kamida et al., 2016; Kim et al., 2016) whilst three
further ADHD studies reported a decrease in beta in posterior
regions but an increase in frontal regions (Clarke et al., 2002a,

2011; Hermens et al., 2005a). These inconsistencies could be
due to differences in the methodological approach (see below)
or demographic or clinical differences within the participant
groups.

Overall, considering all studies, there is a reasonable
confidence in the general trend reported in the results for
children but not adults, particularly for relative power eyes
closed. However, in all cases the magnitudes of difference
were modest (∼28% for both absolute and relative power) and
correlations with symptom severity were typically in the order
of 0.3–0.4 for all bands (with the exception of Roh et al., 2015)
which reported correlations between 0.6 and 0.7 across all bands
and brain regions for a very small sample set). This indicates that
overall results pertaining to frequency bands are not sufficiently
discriminatory nor predictive of symptoms.

Given the reliable increase in theta and concomitant decrease
in beta reported in children under the eyes closed condition,
the theta/beta ratio had been proposed and approved by the
FDA as a diagnostic biomarker for ADHD. However, the lack
of consistency in adults suggests that these findings are likely
age dependent and can perhaps not be extrapolated beyond
the narrow age group studied. Furthermore, the general pattern
of either an increase in theta or a decrease in beta is shared
by a number of other disorders including OCD, schizophrenia
and internet addiction suggesting that a reduced theta/beta ratio
is a general marker for shared symptoms across a number
of disorders rather than specific to the diagnosis of ADHD.
However, we acknowledge that there are some studies which
specifically examine the theta/beta ratio, without reporting
results from individual spectral bands and therefore did not meet
the inclusion criteria for this review (e.g., see Arns et al., 2013).
Reported results relating to the theta/beta ratio may therefore be
underreported in this review. For this we point the reader to a
number of recent reviews and meta-analyses of EEG and ADHD,
which have tried to detangle the pattern of EEG frequency band
changes across studies (Barry et al., 2003; Snyder and Hall, 2006;
Loo and Makeig, 2012).

Schizophrenia
A number of resting-state EEG studies have been conducted
on patients with schizophrenia (vs. healthy controls) most often
with eyes closed (although see Venables et al., 2009; Hanslmayr
et al., 2013; Narayanan et al., 2014 for three eyes open studies).
In total, 37 schizophrenia studies were identified for this review
(Clementz et al., 1994; Sponheim et al., 1994; Wada et al., 1994;
Omori et al., 1995; Pascual-Marqui et al., 1999; Begić et al., 2000;
Harris et al., 2001; Knott et al., 2001a; Wuebben and Winterer,
2001; Mientus et al., 2002; Veiga et al., 2003; Kirino, 2004; Harris
et al., 2006; Kirino, 2007; Knyazeva et al., 2008; Tislerova et al.,
2008; John et al., 2009; Venables et al., 2009; Bandyopadhyaya
et al., 2011; Begić et al., 2011; Itoh et al., 2011; Schug et al.,
2011; Hong et al., 2012; Hanslmayr et al., 2013; Kam et al.,
2013; Narayanan et al., 2014; Ranlund et al., 2014; Tikka et al.,
2014; Andreou et al., 2015; Garakh et al., 2015; Goldstein et al.,
2015; Kim et al., 2015; Mitra et al., 2015; Shreekantiah Umesh
et al., 2016; Mitra et al., 2017; Moeini et al., 2017; Baradits
et al., 2018). The median sample size was 63 (range 26–425),
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with the average age of participants being 31 years old. As
well as more conventional DSM/ICD measures, schizophrenia
diagnosis and severity was typically assessed using the Positive
and Negative Syndrome Scale (PANSS; Kay et al., 1987) and the
Brief Psychiatric Rating Scale (BPRS; Overall andGorham, 1962).

Schizophrenia showed consistent and reliable increases in
the absolute delta and theta band power and decreases in the
absolute alpha band power compared to controls with eyes closed
(consistency scores of 2.2, reliability score 1,446). Furthermore,
these differences were higher in magnitude relative to differences
reported for other disorders (average theta increase of 50%,
alpha decrease of 58%). The net result would be a higher
theta/beta ratio compared to controls, very similar to ADHD in
children. However, the three eyes open studies (Venables et al.,
2009; Hanslmayr et al., 2013; Narayanan et al., 2014) showed
a completely different pattern—an increase in theta, alpha and
beta activity. Regional differences were also observed in a handful
of studies in the delta (Begić et al., 2000) and alpha (Omori
et al., 1995; Kim et al., 2015) bands where there was a frontal-
posterior split with frontal increases and posterior decreases for
alpha and the opposite pattern in the delta band. In addition,
we found only three studies (Kirino, 2004, 2007; John et al.,
2009) which measured relative changes in spectral power, the
majority of which showed non-significant differences across all
bands (although see John et al., 2009).

Depression
Eighteen depression studies were identified for this review (Kwon
et al., 1996; Bruder et al., 1997; Bell et al., 1998; Debener et al.,
2000; Knott et al., 2001b; Pizzagalli et al., 2002; Deldin and Chiu,
2005; Morgan et al., 2005; Bruder et al., 2008; Korb et al., 2008;
Price et al., 2008; Grin-Yatsenko et al., 2009; Kemp et al., 2010;
Begić et al., 2011; Jaworska et al., 2012; Cook et al., 2014; Arns
et al., 2015; Slobodskoy-Plusnin, 2018). The median sample size
was 55 (range 21–1344) with the average age of participants being
39 years old. Beyond more conventional DSM/ICD measures,
depression diagnosis and severity was most typically measured
using the Hamilton Rating Scale for Depression (HAM-D;
Hamilton, 1960).

The dominant result for depression was an increase in the
absolute power in both theta and beta bands for both eyes
open and eyes closed conditions (eyes closed consistency 1.8,
validation 880; eyes open consistency 2.0, validation 337) with
average magnitudes of 48%. However, these increases were
no longer visible when considering relative power where most
studies failed to find any significant differences across any band
(Knott et al., 2001b; Morgan et al., 2005; Korb et al., 2008; Cook
et al., 2014). The largest study (Arns et al., 2015) consisting of
1,344 participants showed increases in theta power across frontal
regions of the brain using the eLORETA source localized signal
which is methodologically different from most other depression
studies identified for this review which perform their analysis in
electrode space.

Addiction
Here, we focus on three major types of addiction: opioids,
alcohol and the internet and identified 16 addiction studies in

this review. The median sample size was 45 (range 28–614),
with the average age of participants being 33 years old. Beyond
more conventional DSM/ICD measures, diagnosis and severity
of internet addiction was most typically performed using the
Young’s Internet Addiction Test (IAT; Young, 1998), whilst
alcohol and opioid addiction were assessed using a variable set
of questionnaires depending on the study.

Surprisingly, despite the enormous attention to opioid
addiction by both media and government, particularly in the
United States, only four resting-state EEG studies (Wang et al.,
2015b, 2016; Motlagh et al., 2017; Zhao et al., 2017) were
identified for this review based on our inclusion criteria (for
other reviews, see Wang et al., 2015a; Ieong and Yuan, 2017).
In addition, nine alcohol addiction (Günther et al., 1997; Bauer,
2001; Rangaswamy et al., 2002, 2006; Saletu-Zyhlarz et al., 2004;
Fein and Allen, 2006; Andrew and Fein, 2010; Son et al., 2015;
Herrera-Díaz et al., 2016) and four internet addiction (Choi
et al., 2013; Lee et al., 2014; Son et al., 2015; Kim et al., 2017)
studies were identified for this review (includes one publication
which examined both alcohol and internet addiction in the
same study). It is important to acknowledge that addiction
is a heterogeneous label encompassing multiple ‘‘types’’ of
addictive disorder, and that the similarities and differences
in the underlying etiologies between substance addiction and
internet addiction are still not well defined. However, with
the recent inclusion of gaming addiction in the 11th Revision
of the International Classification of Diseases (ICD-11)6, we
have included internet addiction alongside substance addiction
disorders for interest and comparison.

The dominant result across all addictions and conditions
was one of no significant difference in all bands of the power
spectrum except beta which showed an increase for opioid
and alcohol addiction and a decrease for internet addiction
(Figure 7B). In addition, there was an increase in theta power
for alcohol addiction, and a decrease in alpha power for opioid
addiction. Even where significant differences were reported, the
magnitudes were small (15%–27%). While internet addiction
had a high consistency score of 4, all four studies came from
the same research group. Alcohol addiction had a consistency
score of 2.25 while the studies for opioid addiction were too
few in each condition to calculate a consistency score. Overall,
across all addictions, the validation scores ranged (from 35 to
753 depending on addiction type and condition). Given the
small number of studies and high methodological variability,
dependable conclusions cannot yet be drawn. However, as it
stands, other than for the beta band, the power spectrum appears
essentially unaffected in any consistent and reliable way by
addiction.

OCD
Ten OCD studies were identified (all eyes closed) for this review
(Molina et al., 1995; Tot et al., 2002; Karadag et al., 2003;
Bucci et al., 2004; Pogarell et al., 2006; Velikova et al., 2010;
Kopřivová et al., 2011, 2013; Olbrich et al., 2013; Kamaradova
et al., 2016) with an median sample size of 61.5 (range 26–100).

6http://www.who.int/features/qa/gaming-disorder/en/
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The average age of participants was 32 years old. Five of these
studies analyzed spectral power in the source localized signal
(Velikova et al., 2010; Kopřivová et al., 2011, 2013; Olbrich
et al., 2013; Kamaradova et al., 2016), however source localized
results were not substantially different from non-source localized
studies. Beyond more conventional DSM/ICD measures, OCD
diagnosis and severity was typically performed using the
Yale-Brown Obsessive Compulsive Scale (Y-BOCS; Goodman
et al., 1989).

Like ADHD (in children) and schizophrenia, the dominant
pattern was an increase in the delta and theta bands (average
increases of ∼27 and 36% for absolute and relative power
respectively) and a decrease in the alpha band (average decrease
of 41%). Further this pattern had a high consistency score of
3.3 and a validation score of 231 for absolute power. On the other
hand, relative power was highly inconsistent (score 2) and poorly
validated (score 104).

OCD is often comorbid with other mental disorders and
therefore the pattern of EEG frequency band differences is
unlikely to reflect changes that are purely attributable to
OCD. There may also be overlap in symptoms with ADHD
(Abramovitch et al., 2015) and schizophrenia (Cunill et al., 2009).

PTSD
Thirteen studies with patients with PTSD (Begić et al., 2001;
Jokić-Begić and Begić, 2003; Ehlers et al., 2006; Rabe et al.,
2006; Veltmeyer et al., 2006; Falconer et al., 2008; Shankman
et al., 2008; Kemp et al., 2010; Todder et al., 2012; Wahbeh and
Oken, 2013; Imperatori et al., 2014; Clancy et al., 2017), and
with individuals who have suffered significant early life stress
(McFarlane et al., 2005), were identified for this review. The
median sample size was 74 (range 20–407), with the average age
of participants being 40 years old. In addition to conventional
DSM/ICD measures, PTSD diagnosis and severity was most
typically performed using the Clinician-Administered PTSD
Scale (CAPS; Blake et al., 1995).

The majority of eyes closed studies indicate no significant
differences in spectral bands between PTSD patients and controls
with a reasonable consistency score of 2.4 for absolute power.
When differences were reported, they suggest a decrease in all
bands in the disorder group for eyes open conditions, and both
increases and decreases for eyes closed conditions. However, in
most of these studies while ‘‘significant’’ effects are stated, specific
numbers pertaining to the magnitude are not reported making it
difficult to evaluate.

Autism
Seventeen studies with patients with autism or ASD were
identified for this review (Dawson et al., 1995; Sutton et al., 2004;
Chan and Leung, 2006; Chan et al., 2007; Orekhova et al., 2007;
Stroganova et al., 2007; Coben et al., 2008; Burnette et al., 2011;
Mathewson et al., 2012; Sheikhani et al., 2012; Tierney et al., 2012;
Machado et al., 2015; Maxwell et al., 2015; van Diessen et al.,
2015; Jaime et al., 2016; Kozhushko et al., 2018; Lefebvre et al.,
2018). These have primarily been conducted with children with
the average age of participants (children) being 8.5 years old (but
see Mathewson et al., 2012 for an example of a study with adults,
and not included in the trend analysis). The median sample size

was 56 (range 25–156). Beyond more conventional DSM/ICD
measures, autism diagnosis and severity was typically performed
using Autism Diagnostic Interview-Revised (ADI-R; Lord et al.,
1994), the Autism Diagnostic Observation Schedule (ADOS;
Lord et al., 1989) and the Social Communication Questionnaire
(SCQ; Rutter and Lord, 2003).

Overall autism showed little or no significant difference in
the majority of bands (with the exception of delta and beta eyes
closed and alpha eyes open; Figure 7C). However, the results for
autism are highly inconsistent (consistency scores all below 2),
and no general pattern can be inferred.

Other Disorders
Other disorders such as bipolar disorder (Clementz et al., 1994;
El-Badri et al., 2001; Baş ar et al., 2012; Kam et al., 2013;
Narayanan et al., 2014; Moeini et al., 2015), anxiety (Sachs
et al., 2004; Oathes et al., 2008; Xing et al., 2017) and panic
disorder (Knott et al., 1996; Gordeev, 2008; Wise et al., 2011;
de Carvalho et al., 2015) are included here for completeness.
However generally there was no more than one or two studies
for any one condition (eyes closed, eyes open, relative power,
absolute power), which was too few for the inference of any
trends or for the calculation of consistency scores. Nonetheless
we show these results as part of our table with the caveat that
they are generally poorly validated.

Summary
In summary, differences reported for ADHD in children stood
out as being the most consistent and validated, although
published results were dominated by a single research group. The
trends for schizophrenia could be considered as the next most
reliable with a trend similar to ADHD in children. Others such as
OCD, depression and internet addiction are moderately reliable
while the results for other disorders or conditions are either too
sparse or inconsistent to be considered reliable.

Methodological Challenges and
Limitations
One considerable challenge when reviewing the literature is
the range of methodologies employed that result in difficulties
comparing one study to another. Here, we outline the differences
in participant selection, EEG recording and analysis that could
impact the results reported in this review.

Several sets of EEG guidelines have been published over
the years, including guidelines from the American Clinical
Neurophysiological Society7 as well as from other published
studies (e.g., Pivik et al., 1993; Roach and Mathalon, 2008;
Keil et al., 2013; Webb et al., 2015). These discuss the
various factors that need to be considered when choosing
which EEG parameters to use. For example, Keil et al. (2013),
emphasize the multitude of parameters which can influence
the transformation of the power spectrum and highlight the
importance of noting the parameters that influence the final
reported outcome. For example, in relation to the Fourier
transform, they state that ‘‘Researchers. . . should indicate the

7https://www.acns.org/practice/guidelines
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type, size, and overlap of the window functions used,’’ reminding
researchers that ‘‘When using commercial software, it is not
sufficient to indicate that the spectrum was calculated using
a particular software package.’’ However, when looking across
the 184 resting-state EEG studies identified for this review it is
apparent that there is very poor compliance to many of these
standardization recommendations. For example, several studies
in this review, simply state that the data was transformed by
FFT without providing any further details of the parameters
used. This lack of standards presents a general confound for
the field that extends beyond the implications for this particular
review.

Study Size, Composition and Controls
The sample size of studies varies between n = 20 and
n = 1,344 with three quarters of studies based on less than
100 participants. The median is 60 (Figure 1) with similar
numbers of controls and patients in the majority of studies. For
most studies the age of participants were adults in the range of
25–45.

Interestingly most of the studies in this review were skewed
towards male participants (64% compared to 36% female). This
pattern is found for all disorders except for depression, bipolar
disorder, panic disorder, anxiety and OCD (where the % of
females ranged from 55% to 68%). The largest gender disparity
is seen for ADHD (72% M/28% F), schizophrenia (67% M/33%
F), autism (78% M/22% F) and addiction (70% M/30% F). In
addition, it was more common to study all-male participant
groups (20% of studies) compared to all-female participants
(4% of studies). In some instances, the ratio of males to
females was intentionally designed to reflect the relative
proportions of sufferers in the general population, but at other
times was a reflection of participant availability, limiting the
generalizability of these results, especially towards the female
population.

There is substantial variability in the EEG both across
and within normal individuals that has been reported in the
literature (Haegens et al., 2014) that can relate to various factors
from task performance (Arazi et al., 2017a,b) to age (Voytek
et al., 2015; Hashemi et al., 2016) and socioeconomic factors
(Parameshwaran and Thiagarajan, 2017a,b,c). Furthermore,
there is a great deal of intra person variability that can arise
both naturally and with ingestion of common substances such
as caffeine (Kelly et al., 2008; Foxe et al., 2012; Gonen-Yaacovi
et al., 2016) and alcohol (Korucuoglu et al., 2016). Only a handful
of studies considered inter person variability, relationship to age
or intra person variability in their analysis (e.g., see Debener
et al., 2000; Chan and Leung, 2006). One study (autism) which
did monitor intrapersonal variability by conducting two testing
sessions 3months apart found that amplitudes of theta, alpha and
beta significantly differed for patients (but not controls) between
the two sessions, although only alpha, and the theta/beta ratio
remained significantly different after correction for familywise
errors (Chan and Leung, 2006). In addition, the small sample
sizes make it challenging to tease out effects of age and
normal individual variability from those related to psychiatric
symptoms.

ADHD provides an example of studies focused separately on
adults and children. The stark difference between the results
of these two groups points to changes over the lifespan and it
is conceivable that similar studies in the elderly may produce
different results still. Without controlling for normal variability
and change across the lifespan, it is difficult to know whether
these changes are due to the clinical evolution of ADHD, or
reflect independent age-related maturation of the EEG.

Clinical Groups and Assessment
Ten different disorder types were included in this review.
These were selected as being the most dominant mental health
disorders in the population. Due to the wide scope of our review,
we acknowledge that we may have missed some studies for the
disorder types of interest. Age-related disorders such as dementia
were not included in this review as they were considered to reflect
a different aspect of brain health.

From a clinical perspective, participants were typically
recruited based on screening with DSM or ICD criteria for
diagnosis, complemented by additional screening questionnaires.
However, a handful of studies relied purely on screening
questionnaires. The study participants also varied according to
whether the clinical group was unmedicated (70%), defined
as naïve or temporarily abstaining from taking medication
for a variable length of time (12 h to 3 months) depending
on the type of drug, medicated (5%) or included a mix
of medicated and unmedicated patients (25%). Furthermore,
although the majority of studies had specific inclusion and
exclusion criteria, only a minority of studies specifically mention
that they excluded patients with comorbidities, or specifically
outlined the comorbidities in their patient group. The results
from a particular disorder may therefore be influenced by other
clinical comorbidities. Finally, the studies typically only report
on spectral differences between groups and only 27% of studies
provide insight into the relationship between the severity of
the symptom score from the diagnosis questionnaires and the
spectral bands.

Recording Configuration
A significant confound in the EEG space is the lack of
standardization of hardware configurations and, in particular,
the wide variety of different reference types used. Most common
are linked ears (34%), average referencing (23%) and mastoids
(15%). However, earlobes (14%), Cz (4%) and the nose (4%) are
also used. The type of referencing used has a significant impact
on the reported results, from the PSD and source localization
(Trujillo et al., 2017) to functional connectivity (Huang et al.,
2017) and various other aspects (e.g., Qin et al., 2010; Lei and
Liao, 2017).

In addition, although the majority of studies covered the
entire scalp, some studies chose to focus on midline sites. Only a
proportion of studies reported results from individual electrodes
(32%), with themajority choosing to focus on broad scalp regions
(60%). In addition, some studies calculated the power spectrum
using source localization techniques (e.g., LORETA) which may
have resulted in a different regional profile from those studies
focusing on the location of the electrodes on the scalp.
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TABLE 2 | Summary of frequency band parameters.

% of Publications Typical range (Hz) Minimum start value (Hz) Maximum end value (Hz)

Delta 70 1.3–3.5 0 6

Theta 84 4–7.5 2.5 8

Alpha 85 8–13 6 14

Beta 80 12.5–30 12 50

Gamma 18 30–40 20 100

Processing of the Signal
The length of recordings was fairly consistent with a median of
5 min. However, often this entire recording window is not used
but is divided up into artifact free segments that are epoched
before the FFT computation is applied. The epoch length used for
the FFT transform displays considerable variability (from 0.5 s to
600 s) with a median of 2.5 s. This variability is of concern as this
can impact the window length utilized in the FFT algorithm and
therefore the spreading or leakage across frequencies.

There are also inconsistencies in the methods used for
identification of artifacts. This is sometimes done with methods
such as Independent Component Analysis (ICA; Makeig
et al., 1996; Vigário, 1997; Vigário et al., 2000; Jung et al.,
2003) but many other techniques exist and many still use
a manual or visually determined approach which can be
highly inconsistent from ‘‘expert’’ to ‘‘expert’’ (see Urigüen and
Garcia-Zapirain, 2015; Islam et al., 2016). These can result in
substantial differences in the signal and therefore the spectral
results.

The method used to determine the spectrum and different
normalizations are another aspect of variability that can impact
the magnitude of differences. There are presently a wide variety
of software packages, algorithms and parameters used for
computing the power spectrum. Software packages and functions
include MATLAB/EEGLab Brainwave, Cadwell, sLORETA,
eLORETA, RHYTHM, Neuroscan, Neuroguide, NXLink, Brain
Vision Analyzer, Neurospeed, Persyst. While the FFT functions
in these packages are roughly similar they do have differences
in their default settings, and in some software the parameters
used in the algorithm are not exposed and therefore not reported.
Each function (for example spectrogram; pwelch algorithm;
psd function; FFT function in MATLAB) further differ in
their default settings with respect to the way the window
length is selected, the overlap (here the studies range from
0 to 80%) and averaging (e.g., Bartlett or Welch method),
and the windowing function used (e.g., Hamming or Hanning
Window). All of these can make the difference between a
small ‘‘significant’’ difference vs. a negative result (Keil et al.,
2013). In addition, several studies did not provide any details
about the parameters used, making it difficult to make a
complete assessment of the consistency of methods in the
field.

Finally, some studies report the differences in the absolute
power and others report relative power which can also result
in different outcomes, as we have seen above. However, as not
all studies specifically mentioned whether they used absolute or
relative power, for 29% of studies we had to infer which one
was used.

Frequency Band Definition
Last, and perhaps most significant, there is a great deal of
variability and confusion as to the specific frequency range that
defines each band (Table 2). We show the more frequently used
range as well as the entire range of definitions found in the
reviewed literature in Figure 8. While alpha and theta were more
consistent, delta could start anywhere from 0 Hz to 2 Hz and
end anywhere from 3.5 Hz to 6 Hz. Meanwhile, beta could begin
anywhere between 12 Hz and 15 Hz and end anywhere between
20 Hz and 50 Hz. Across all bands the most frequently used range
was found in only 30- 50% of studies depending on the particular
band. What one publication means by ‘‘delta,’’ or ‘‘beta’’ (etc.) is
therefore not necessarily the same as what another publication
means by the same terminology.

Some of these differences arise on account of hardware
configurations which apply different band pass filtering of the
signal during preprocessing, forcibly defining the ranges and
definition of the delta and gamma bands. Filters applied to
resting state EEG data typically vary from 0.1 Hz to 1 Hz at the
lower end to 40–100 Hz at the upper end. In addition, notch
filters are often applied at 50 Hz and/or 60 Hz to filter out AC
line noise.

Such differences in definition have enormous consequences
for interpretation. Indeed, it’s conceivable that differences
reported may disappear when moving the band windows
slightly. Thus, the considerable variability and overlapping
definitions across studies greatly diminishes the value of using
the terminology of macro bands.

Reporting Omissions
One limitation of the literature was the possible bias towards
positive results. For example, some studies did not include results
for all bands specified in the methods. This could result in
a number of unreported non-significant results that skew our

FIGURE 8 | Variability in frequency band definition. Range of frequencies used

for each band across all 184 studies. Thick line indicates most commonly

used range.
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analysis, particularly in the less frequently reported delta and beta
bands.

Another inadequacy of this review relates to the sparse
reporting of magnitudes of power change. Magnitude changes
were calculated where the information was readily available,
which was only in 40% of studies. The consequence of this is
that the magnitude estimations are only based on a subset of
studies, and do not necessarily reflect the complete picture. This
is especially the case for ADHD (children) and OCD where
the availability of magnitude data was considerably lower. In
addition, this incomplete reporting of magnitudes across studies,
and across individual electrodes also makes it challenging to
study regional differences in spectral power in a consistent
manner.

In summary, there are a number of dimensions of
methodological variability and omissions that form limitations
for this review and the field in general.

DISCUSSION

Our review describes reported differences in bands of the
EEG power spectrum between controls and those with
various psychiatric disorders including ADHD, schizophrenia,
depression, bipolar disorder, anxiety, panic disorder, autism,
PTSD, OCD and addiction. Across all disorders and conditions
however, there was a wide range of often contradictory results
for each frequency band (delta, theta, alpha, beta, gamma),
although one result typically dominated. When considering the
dominant results, the pattern that emerged is a tendency for
higher levels in the low frequency bands (delta and theta) coupled
with lower levels in the higher frequency bands (alpha, beta,
gamma) across one group of disorders (ADHD, schizophrenia
and OCD) relative to controls, and little to no difference in
the power spectrum for others (addiction, PTSD and autism).
Significant differences in this second set, when reported, were
most often decreases in the higher frequency bands. Depression
stood out as having a different pattern—an increase across the
entire spectrum.

Across all disorders and conditions, the number of studies
reporting the dominant result was on average 2.2 times the
number of studies reporting other results and was similar
across bands. In general, the eyes closed condition delivered
more consistent results than the eyes open. Furthermore, while
absolute power was most commonly reported, results were more
consistent across studies for relative power. Across disorders
and conditions, the validation score, a measure of how many
participants and studies, on average, delivered the dominant
result, was less than 250 for the majority of disorders. ADHD
in children with eyes closed stood out as being by far the most
studied and consistent in result, while schizophrenia, alcohol
addiction, depression and PTSD with eyes closed followed by a
substantial lag in being the next most reported and consistent in
the literature. However, it is important to note that the majority
of the ADHD (children) studies identified for this review were
generated from a relatively small group of researchers (from the
University of Wollongong) and the results from other research
groups for ADHD are more variable. Other disorders and

conditions were either too inconsistent or sparsely reported.
The magnitude of significant results, when reported, was on
average 34% across all bands and disorders for absolute power,
and somewhat lower for relative power differences. Interestingly
the magnitude of reported results was highest for schizophrenia
(46%–53%) and lower than average for ADHD (11%–36%) and
autism (11%–33%). Finally, the correlations between symptom
severity and the power in any particular band was low for
any brain regions reported and generally in the range of
0.3–0.5.

Implications of These Results
The extreme lack of standardization across the field raises a
strong caution to any clinical interpretation or application of
current findings. From a purely methodological perspective,
it is important that standards are imposed and adhered to
in the research community. Particularly, we emphasize the
need to use a standardized definition for each frequency band,
based on the most commonly used non-overlapping frequencies:
(delta: <4 Hz; theta: 4–7.5 Hz; alpha: 7.5–12.5 Hz; beta:
12.5–30 Hz; gamma: 30–40 Hz). Standardization of power
spectrum computation, and the comparison of relative as well as
absolute power are also essential. Absolute power, which relates
to amplitude or magnitude of the signal, is more influenced by
factors such as skull thickness and head geometry which vary
considerably across people (Hagemann et al., 2008). These factors
may be mitigated by the normalization used for relative power.
Second, the eyes open paradigm is highly variable as visual input
and attention can vary across subjects during the course of the
experiment, pointing to eyes closed as a more uniform condition.

However, the generally common pattern across multiple
disorders is an indication that individual frequency bands or
even a pattern across frequency bands does not serve as a
useful measure of distinction between disorders. It also strongly
makes the case that studying individual disorders in isolation
can be very misleading. For instance, a higher theta/beta ratio is
considered an indicator of ADHD in children and even approved
as a diagnostic marker by the FDA8. However, a similarly
higher theta/beta ratio would be likely for schizophrenia and
OCD as well. Psychiatric disorders are generally a loose set of
symptoms that may overlap across disorders and there may be
additional symptom comorbidities that are not accounted for
in studies. Consequently, analysis based on specific symptoms
and symptom clusters may yield more specific insights. This is
particularly important to consider in the context of biomarkers
based on the power spectrum.

It is also important to note that the patterns described across
disorders are at a group level. For example, theta power was
on average 27% higher in children diagnosed with ADHD vs.
a control group. However, there was still substantial overlap
in values between the groups. Further, the correlation values
between symptom severity and power were typically around
0.4. This means that differences in frequency bands are not
particularly useful for diagnosis at an individual level. With the
wide variation in the power spectrum across normal populations

8https://www.accessdata.fda.gov/cdrh_docs/reviews/K112711.pdf
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and the lifespan (Haegens et al., 2014; Voytek et al., 2015;
Hashemi et al., 2016; Arazi et al., 2017a,b; Parameshwaran
and Thiagarajan, 2017a,b,c), it would be essential to look at
larger sample sizes across multiple disorders, and with repeated
recording sessions to control for both inter and intra person
variability and parse out relationships to particular symptoms.

That said, in our view, these results along with the associated
methodological concerns and limitations call for a new approach
that goes beyond frequency bands to take into consideration new
advances in our understanding of the power spectrum and new
tools available for analysis.

From Frequency Bands to Integrated
Views: A Way Forward?
The Fourier transform which is used to describe the power
spectrum was invented as a method of resolving sinusoids
of different frequencies—an application of tremendous value
in radio transmission. The EEG however is not a simple
superposition of sinusoids of various frequencies. The power
spectrum therefore should not be interpreted as such.

The dominant structure of the EEG power spectrum has been
shown to be a decreasing function with lower power at higher
frequencies that approximates a 1/fγ pattern (Pritchard, 1992;
Voytek et al., 2015). This is seen at various levels from surface
measurements with microelectrodes (local field potentials or
LFPs; Thiagarajan et al., 2010) and surface electrocorticographs
or ECoG (Gao, 2016). The implication is that there is an
inverse relationship between frequency and power across the
measurable range and as the frequency increases, the power
decreases. The steepness with which the power drops off as the
frequency gets higher is represented by the exponent γ. This
1/fγ structure has an important implication—that there is an
underlying relationship or temporal correlations between the
frequencies such that individual frequencies are not independent
of one another (Milotti, 2002). We note however, that the
origin and mechanisms of this structure is still very much
a subject of debate as a frequency dependent filtering effect
arising from the measurement cannot be ruled out (Bédard
et al., 2006, 2017). Thus, if the spectrum best fits a 1/f
function, the power of any individual frequency or range of
frequency can be estimated if the exponent of the decay is
known.

That said, there can be deviations from the 1/f spectrum. The
most common such deviation are peaks that rises above the 1/f
envelope, particularly with the eyes closed. The harmonic around
10 Hz (in the alpha range) is most commonly encountered,
although it can sometimes occur at other frequencies and can
be visualized in the autocorrelation of the signal. The presence
of an alpha oscillation or harmonic peak is a feature that is
distinct from the underlying 1/f envelope and should therefore
be considered separately from the underlying envelope.

Specifically, we suggest reporting of metrics relating to the
power spectrum in its entirety and identifying ways of identifying
and separating periodicity from the 1/f background. There are a
number of ways in which this can be done. The most obviously
useful metric is estimation of the 1/f exponent γ (Voytek et al.,
2015). This provides a consolidated view of the differences across

bands and can be used to compute the difference between
any two frequencies if desired. The 1/f decay exponent is best
estimated in the range of 2–30 Hz where baseline drifts, line
noise and distortions introduced by band pass filters have the
least impact. Second, goodness of fit or other metrics that provide
insight into deviations from the 1/f structure would also be
informative. Recently newmetrics have been proposed to provide
a view into the degree of periodicity in different bands (Haller
et al., 2018) and the harmonic component of the alpha band
separately from the background envelope (Parameshwaran and
Thiagarajan, 2017c). However, even while deeper views of the
power spectrum could potentially provide better discrimination
between disorders, this does not negate the impact of a lack
of standardization in EEG measurement and methods used for
signal preprocessing and computation of the power spectrum
itself.

Beyond the Power Spectrum
While there are ways to substantially improve our understanding
of spectral properties in the context of psychiatric disorders, it
is important to acknowledge that the power spectrum itself is a
very general feature of the signal with few degrees of freedom.
As we have seen it does not show significant difference across
several disorders (autism, addiction, PTSD) and is not a reliable
predictor of outcomes on an individual level (as shown by
similarities of change across multiple disorders). Thus, on its
own, it is not likely to provide fundamental discriminatory power
between disorder types. Spatial views such as spectral coherence
and hemispheric asymmetry can extend the scope of the spectral
approach. However, spectral decomposition and spectral filtering
by definition disregard relative phase information which may
provide important discriminatory perspective.

The power spectrum might be thought of as analogous to
describing a picture in terms of its color spectrum, or the
relative distribution of red, blue and green pixels. While the color
spectrum of an image can provide some general suggestion of the
content of a picture (for example, higher blue on average means
more sky, an increase in green means more nature), it loses all
the relative spatial information that tells you what the picture
actually is. The EEG power spectrum similarly loses relative
temporal information, which at a more general level is one of the
main advantages of EEG signal processing over other methods
such as fMRI. Further, given that spectral decomposition is not
instantaneous and utilized blocks of signal, and spectral filtering
can distort the signal (Vanrullen, 2011; Acunzo et al., 2012;
Rousselet, 2012; Widmann and Schröger, 2012), views such as
spatial coherence are also limited in terms of their temporal
resolution and insight into relative phase information. Using
the same analogy of color, one might think of coherence, for
example, as analogous to comparing the spatial positions of pixels
in one narrow range of colors between successive image frames
after some spatial blurring, while disregarding all the others.

We therefore suggest that more discriminating insights into
differences between disorders are likely to be found in metrics
that probe the temporal structure of the EEG signal as well as
in novel connectivity measures. Numerous metrics have been
proposed including various methods of assessing the entropy of
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the signal (Sabeti et al., 2009; Liang et al., 2015) and temporal
memory (Jospin et al., 2007; Hardstone et al., 2012; Márton
et al., 2014). However, this is a continually evolving field where
new analytical tools are regularly being trialed. These should be
increasingly embraced by EEG researchers involved in resting-
state research who are looking to shift their approach away from
spectral bands towards other potential methods which may offer
greater clinical opportunities, applying these tools to their future
and past datasets.

A Call for Data Sharing and Sharable
Analytical Pipelines
Finally, whether performing spectral analysis or exploring
the signal using other methodologies, the primary issues are
common. First, a lack of standardization of preprocessing
steps and parameter choices within algorithms can result in a
diversity of results that preclude easy comparison, and even
appear contradictory. Second, small datasets limit the ability to
determine meaningful results given the large diversity of human
EEG dynamics. Consequently, we call for a concerted effort by
the field to participate in open data efforts by sharing their raw
data, and for those with analytical toolkits and analysis pipelines
to make them available for the community. We emphasize the
importance of sharing raw rather than preprocessed data given
the numerous differences in preprocessing methodologies. We
also emphasize the need for providing clear descriptions of the
recording parameters such as the referencing, sampling rate and
electrode characteristics.

While well-established databases specific for EEG are not
yet available as they are for fMRI (e.g., openNeuro) some
options presently exist and new ones are in development. For

example, data can be shared in public repositories such as
the National Institute of Mental Health Data Archive (NDA)9,
Physionet10 and Zenodo11 or in the open EEG-specific database
Brainbase which is presently in development (Thiagarajan,
2017). Similarly, open toolkits such as EEGLAB (MATLAB)
and MNE (Python) are already available but complete pipelines
are only now being established or are in development. In the
meantime, tools can be shared on Github and other repositories
and this should be made known through clear referencing in
publications.
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