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We present the four key areas of research—preprocessing, the volume conductor, the forward problem, and the inverse problem—
that affect the performance of EEG and MEG source imaging. In each key area we identify prominent approaches and
methodologies that have open issues warranting further investigation within the community, challenges associated with certain
techniques, and algorithms necessitating clarification of their implications. More than providing definitive answers we aim to
identify important open issues in the quest of source localization.
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1. Introduction

Electroencephalography (EEG) and magnetoencephalogra-
phy (MEG) represent two noninvasive functional brain
imaging methods, whose extracranial recordings measure
electric potential differences and extremely weak magnetic
fields generated by the electric activity of the neural
cells, respectively. These recordings offer direct, real time,
monitoring of spontaneous and evoked brain activity and
allow for spatiotemporal localization of underlying neuronal
generators. EEG and MEG share the following character-
istics: (1) they have a millisecond temporal resolution; (2)
potential differences and magnetic fields are linear functions
of source strengths and nonlinear functions of the source

support (e.g., dipole locations); (3) they are caused by
the same neurophysiological events, that is, currents from
synchronously activated neuronal tissue often referred to as
the primary or impressed current source density, and thus
both can be used equivalently for the localization of neuronal
generators.

The three-dimensional reconstruction of neural activity
is commonly misconstrued as tomography, which is defined
[1] as “any technique that makes detailed predetermined
plane sections of an object while blurring out the images of
other planes.” The physics governing the propagation of the
electromagnetic fields depends on the composition of the
volume conductor, which means that the source activity
outside the predetermined plane also influences the readings
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of the sensors lying in the plane. So, actually the procedures
applied in tomography and inverse solutions are somehow
reversed: in tomography we reconstruct a 3D image by
combining separately obtained slices, whereas, inverse solu-
tions calculate the whole 3D distribution, which can be later
presented as slices. While tomographic techniques (e.g., CT,
PET, MRI, etc.) are associated with well-posed mathematical
problems, the noninvasive estimation of the brain activity is
essentially an ill-posed problem due to the infinite number
of solutions.

In the subsequent sections we remark about some
important issues for the understanding, selection, and
evaluation of source imaging methods; hence our emphasis
is on general approaches rather than particular solutions.
These sections reflect upon our group discussion held at
a NeuroMath workshop. As a group we acknowledge that
we have differences of opinion regarding the selection of
methods, we face various challenges as separate research
centers, and we differ on what are the key open issues due to
our different interests. Therefore, we have attempted to write
an article that benefits the novice, aligns disparate parts of
the source imaging community, and focuses much needed
attention to several open issues.

1.1. Theory. The relationship between the sources inside the
head and the external measurements d is described as

d = L j, (1)

where L is the linear operator representing the lead field
(also known as the gain model or the direct model), and j
represents the sources. The two mathematical properties of
(1) reflect the attributes of the physical magnitudes involved.
Firstly, the homogeneity property states that the image of an
amplified source k ∗ j is an amplified measurement k ∗ d,
and secondly, the additive property states that the sum of the
two sources j = j1 + j2 produces a measurement equal to
the sum of each measurement alone d = d1 + d2. Together
these two properties follow the superposition principle, that
is, L(k1 ∗ j1 + k2 ∗ j2) = k1 ∗ d1 + k2 ∗ d2, where d1 = L j1
and d2 = L j2.

The ill-posed nature of this problem arises from the fact
that two different sources j1 and j2 might produce the same
measurement d, that is, d = L j1 = L j2, which is trivially
equivalent to say that there exists a “silent” source h such that
Lh = 0. In order to see the equivalence, note that if d = L j1 =
L j2, therefore, the silent source h = j1 − j2 fulfils Lh = L j1 −
L j2 = d − d = 0. In the other direction, if we assume that
Lh = 0 and the existence of source j1 such that L j1 = d, we
can always build a new source j2 = j1 +h that yields the same
data, that is, L j2 = L( j1 + h) = L j1 + Lh = L j1 = d.

That being said, we can establish one of the main
properties of EEG/MEG scalp distributions (maps). While
similar scalp maps cannot rule out the possibility of different
subjacent source distributions, different maps are necessarily
due to different source distributions. Importantly, we do not
need to resort to any inverse method to conclude that.

Building on linearity and in the absence of a priori
information to justify otherwise, we can represent the

solution of (1) with a linear operator G that “estimates” j
as follows:

jest = G∗ d. (2)

Substituting d by its value defined in (1) yields a fundamental
equation of linear operators relating to the estimated and the
original source distribution

jest = G∗ L∗ j = R∗ j, (3)

where R = G ∗ L is the resolution operator [2, 3]. In
practice both the sensors and the geometry are made of
discrete measurements, and thus it can be assumed that L, G,
and R are finite dimensional matrices approximating the
continuous (integral) operators.

2. Preprocessing

In this section, we discuss some relevant issues related
to the preparation of the data identifying some useful
preprocessing and things to avoid. In general, the philosophy
of preprocessing is to prepare the signal for solving. Typically,
these steps decompose complex signals and reduce the noise
from the sensors as well as other undesirable sources.

The EEG and MEG inverse problems (Figure 1, green
arrow) start with the time series (Figure 1) recorded at
the scalp sensors. Therefore, the localizations based on
the distribution of scalp amplitudes in single time instants
might be improved by the application of signal processing
techniques to the measured time series (Figure 1, blue
arrow). In particular the input noise can be reduced by
selective and sensitive extraction of relevant activities from
the EEG/MEG data. This can be achieved by localizing signal
components extracted by a blind source separation (e.g.,
ICA [4]). Other approaches rely on the information derived
from the time-frequency representations, corresponding to
the relevant phenomena we want to localize (e.g., sleep
spindles [5]). A similar but more sensitive and selective
preprocessing was proposed in [6] using the multichannel
matching pursuit algorithm. Overall, most preprocessing
algorithms are expected to benefit the quality and accuracy
of the inverse solution.

2.1. Epochs. We should weigh the advantages and disadvan-
tages of the role epochs play in the recordings of event-
related potentials. So far there has been no standard on
the number of trials, jitter, averaging amplitudes, or the
appropriateness of single trial analysis. For instance, the
signal-to-noise ratio (SNR) increases with the number of
trials, that is, the number of epochs; however, habituation
can affect the results of some studies. We propose that a
document outlining these categories would benefit future
studies in terms of comparison and regularization.

The neuroelectric signals are buried in spontaneous
EEGs with signal-to-noise ratios as low as 5 dB. In order to
decrease the noise level and find a template Evoked Potential
(EP) signal, an ensemble-average (EA) is obtained using a
large number of repetitive measurements [7]. This approach
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Figure 1: Key parts of source imaging. Preprocessing prepares the recorded signals for solving the inverse problem. The inverse problem
attempts to locate the sources from recorded measurements, whereas the forward problem assumes a source definition in order to calculate
a potential distribution map.

[8] treats the background EEG as additive noise and the
EP as an uncorrelated signal. The magnitudes and latencies
of EP waveforms display large interindividual differences
and changes depending on the psychophysiological factors
for a given individual [9]. Consequently, one goal in the
methodological EP research is to develop techniques to
extract the true EP waveform from a single sweep.

For clinical evaluations, either the template EP signal
or possible amplitude and/or latency variations on single
sweeps are used [9]. To observe such variations, the specific
features are identified from a reference/template EP based
on various estimation approaches. Since there are relatively
tight constraints related to the available recording time
or cooperativeness of the subject, the use of EA (as a
reference EP signal) is usually impractical. This has led to the
development of the alternative SNR improvement methods
based on the additive model. Some of these algorithms are
the weighted averaging approach, the subspace averaging
method, the parametric filtering, the adaptive filtering, and
Wiener filtering. In all these methods, it is assumed that
the EP (i.e., signal) is stationary throughout the experiment.
However, such assumptions are also questioned in some
reports describing the event related potentials as superposi-
tion of some phase modulated rhythmic activities which may
be related to different cognitive processes of the brain [10].

2.2. Things to Avoid. Contrary to the benefits of most
preprocessing algorithms, there are certain algorithms that
we should avoid before the application of source localization
algorithms. In particular, the following choices threaten the
integrity of the inverse solution.

(1) Baseline correction. Varying the values of individual
electrodes either by “arbitrary” baseline shifting or by scaling
factors changes the surface maps and thus the estimated

sources. Although linear inverse solutions are rather stable
(continuity with respect to the data), the application of base
line correction to two conditions (that will be compared on
the basis of their sources) can produce artificial differences
induced by the correction and not by the real sources.

(2) Artificial maps produced by grand mean data or
segmentation algorithms. Statistical averages (e.g., mean)
yield values that are usually not present in the original data.
It would not be surprising if the average maps are not present
in any of the subject averages. Furthermore, this effect can be
amplified by the differences in latencies of the subjects.

(3) The use of very high density of sensors might also
jeopardize the source analysis due to different kinds of noise
at different sensors. Moreover, no significant information is
added after approximately 128 electrodes due to the noise
levels. Lastly, some sensors might measure more artifacts
than others due to their location near active muscles.

3. Volume Conductor

The head model as a volume conductor is a key element
in source localization. The configuration of the volume
conductor directly affects the solutions to the forward
and inverse solutions. The three nearly equally important
areas are head geometry, tissue conductivities, and electrode
placement.

3.1. Geometry and Segmentation. The seminal study by
Rush and Driscoll [11] used three concentric spheres,
whereas, contemporary studies implement realistic models.
We find that the differing models within the community
are necessary, but how does each type of geometrical model
contribute to the goal of source localization? The spherical
models answer general questions of theory providing EEG
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localization accuracy of a few centimeters, while the realistic
models attempt to pinpoint exact locations but actually
improve dipole localization by a few centimeters [12–14]. On
the other hand, the spherical geometry is sufficient for most
MEG-based numerical simulations. Only the localization
of the deep sources near the bottom of the skull in the
frontotemporal and the frontal areas requires a realistically-
shaped-head-volume conductor model for MEG-based sim-
ulations [15].

The geometry is directly related to the imaging modality,
computed tomography (CT) or magnetic resonance imaging
(MRI), and the quality of the segmentation. Naturally,
we will question which modality to segment—CT, MRI,
or fused CT-MRI images [16]. We are encouraging the
modelers to understand the significance of the boundaries
defined by a particular modality and are not in any way
suggesting the medical community to provide any unsafe and
unnecessary radiation to any patient. We must remember
that the modality we select influences the segmentation
due to its sensitivity to hard or soft tissues accordingly.
Furthermore, how many tissues, which tissues, and which
cavities should the models include? We foresee that we
are nearing a plateau to the improvement in localization
accuracy as our segmentation resolution increases along
with the inclusion of too many small tissue regions. One
avenue of research that could plausibly benefit from the
development of the head-model geometry is the integration
of anthropometric and craniometric data [17]. This path
could justify individual models that claim to represent
a subpopulation and repudiate studies that misrepresent
an identified subpopulation beyond statistical significance.
Moreover, it could lead us to establishing the statistical
significance of the shape and size of the geometrical features
within individual and groups of models.

3.2. Conductivity Values. The electrical characteristics of
many biological tissues are inhomogeneous, anisotropic,
dispersive, and nonlinear. Head tissues such as the skull,
scalp, muscles, cerebrospinal fluid, and gray and white matter
have different conductivities σ , permittivities ε, and magnetic
permeabilities µ (in most cases it is considered equal to
the permeability of water, which is in turn close to the
permeability of free space µo). The skull as well as the scalp
has a multilayer structure, with each layer possessing differ-
ent electrical properties. This fact leads either to multilayer
modeling of the geometry of the tissue [18] or to attributing
inhomogeneous properties to the tissue, that is, assigning
tensors for σ = σ(x, y, z) and ε = ε(x, y, z). The values
and distributions of inhomogeneities are an even more
acute problem in patient populations where pathological
processes are likely to significantly influence conductivities
in affected brain regions. Could there exist an equivalent
hybrid isotropic model that represents multiple anisotropy
layers? How significantly would such approximations affect
source localization within healthy individuals compared with
patients with head pathologies?

The conductivity values of any model influence the lead
fields of forward problems and the solutions of the inverse

problems. Consequently, it is critical that we must assign
as accurate conductivity values as reported from previous
literature studies and extrapolate and interpolate the rest.
As a community we have established electrical-property
ranges for most head tissues in terms of conductivity σ
and permittivity ε; however, we have to determine the
actual electrical-conductivity distribution of an individual’s
head. As a result of these ranges, many historical studies
assign average values to their tissues [15, 18–26]. Using an
average value may not be appropriate for individualized
models since those models may result in inaccurate solutions
due to a function of position [27] or of age [28, 29].
Nevertheless, studies with patients [30, 31] have shown that
using approximate conductivities ratios with an accurate
geometrical description of the head (i.e., based on a subject’s
MRI) might yield reasonable, verifiable results for both
cortical and deep EEG sources. Still, future models could
benefit from using age-specific conductivities. We speculate
that the application of age-based conductivity values applied
to the skull tissues—most especially the trilayer skull tissue—
would mostly benefit the models of youth, whose ossification
centers change rapidly in the first two years and plateau in
conductivity value around 18 to 20 years of age when the
calvarial ossification process is completed [32].

In order to solidify our motivation for highlighting the
significance of the skull conductivity, we must briefly delve
into its history. The pioneering work [11] introduced a
standard conductivity ratio for the brain-to-skull-to-scalp
of 1:80:1, which is a historical value still used by some
researchers over four decades later. In [33] are reported
measurements on postmortem cadavers yielding a ratio
of brain-to-skull conductivity values of 15:1. Three years
later [28] presented conductivity values on live tissue as
low as a ratio of 4:1. Subsequently, Wendel and Malmivuo
[29] correlated postmortem to live tissue measurements as
a way to incorporate and evaluate past data due to the
lack in live tissue measurements. Their previous work used
a scaling ratio of 0.33 to 0.4 to accommodate the change
in conductivity from living to postmortem tissue based
upon the conductivity recordings of dying tissue samples
[34, 35]. In that previous paper they presented an open
issue to the community to make more measurements on
live tissue samples—most especially live skull samples—at
normal body temperature and moisture, which still remains
as an open issue today. Therefore, it is pertinent that we
discriminate the conditions under which tissue conductivity
and permittivity values were and will be acquired. Values
obtained by in vivo or living in vitro measurements should
be preferred over postmortem measurements. In the case
of postmortem measurements, the time and temperature of
acquisition should be specified since tissue properties change
rapidly after cellular death.

3.3. Acquisition of Conductivity Values. In the last two
decades, a number of approaches have been proposed to
image the electrical conductivity of the human body. In con-
ventional Applied Current Electrical Impedance Tomogra-
phy (ACEIT) low-frequency-sinusoidal currents are applied
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via electrodes attached to the body surface [36]. In Induced
Current Electrical Impedance Tomography (ICEIT), time-
varying magnetic fields with different spatial-field patterns
are applied to induce current in the body. In both cases,
surface electrodes are used to make voltage measurements.

Recently, two new approaches were proposed that utilize
magnetic measurements in determining the conductivity
distribution. In Magnetic Induction Imaging (MII), a trans-
mitter coil is driven by a sinusoidal current to provide time
varying magnetic fields [37, 38]. When a body is brought
nearby these coils, eddy currents are induced in the body.
The distribution of these currents is a function of the body’s
conductivity distribution. These currents create secondary
magnetic fields, and the electromotive force induced in a
receiver coil is measured. In Magnetic Resonance Electrical
Impedance Tomography (MR EIT), low-frequency currents
are applied from the body surface, and the resulting magnetic
fields are measured using an MR system [39, 40]. Since mag-
netic fields are measured inside the body, high-resolution
images can be measured. Note that all methods are still in
the investigation phase, and none of them can provide the
requirements of high-resolution conductivity information
required for source localization.

3.4. Electrode Montages. EEG has been traditionally mea-
sured using the standard 10–20 electrode system including
only 21 measurement electrodes. It has been widely acknowl-
edged that the spatial resolution of the 10–20 system is not
sufficient for modern brain research [41–44]. The first step
in improving the spatial resolution of EEG is to increase the
number of EEG electrodes, which the market has responded
to with commercially available systems including up to 256
electrodes.

During the last two decades several studies have inves-
tigated the benefits of increasing the number of EEG
electrodes. The effect on the accuracy of both the forward
solutions and inverse solutions has been evaluated. In several
articles, an increase in the number of electrodes to at least
128 has been shown to improve the accuracy of the results
[45–50].

Different factors affect the appropriate number of elec-
trodes. These include, for example, the widely debated value
of the skull’s relative conductivity, which has a great impact
on the accuracy of inverse solutions. Additionally, the spatial
resolution of especially the dense EEG systems (128–512
electrodes) is extremely sensitive to measurement noise.
Thus, for different EEG measurements conducted in different
environments, the appropriate number of electrodes may
vary considerably [48]. Using active electrodes will reduce
the noise.

4. Forward Problem

The 1969 study by Rush and Driscoll [11] on EEG electrode
sensitivity ushered in the new era of source localization.
Their work analytically solved Maxwell’s equations to map
the lead field, which is only possible with at least elliptical
symmetry. Contemporary models consist of a combination

of complex geometry and/or electrical parameters, thus
necessitating numerical solutions such as the boundary
element method (BEM), finite element method (FEM), and
the finite difference method (FDM) (Table 1). In this section
we aim to identify some of the complications, advantages,
and disadvantages of these numerical methods. Through
the following explanations we hope the reader gains an
understanding of the differences presented, adopts one or
more appropriate methods specific to his/her requirements,
and refers to the references for specific information.

Most models are unable to obtain the direct solution so
they rely upon iterative solvers such as the successive over-
relaxation (SOR), conjugate gradients (CG), preconditioned
conjugate gradient method (PCG), and algebraic multigrid
(AMG) solvers. While these methods have been developed
for regular linear systems, they can also be applied in our
semidefinite case. In the case of a consistent right-hand side,
semiconvergence can be guaranteed for SOR and (P)CG,
while the AMG theoretical results are more complicated [51].
A summary of each method is given based on [52] for the first
three methods and [53, 54] for the last method.

A first difference between BEM and FEM or FDM is the
domain in which the solutions are calculated. In the BEM
the solutions are calculated on the boundaries between the
homogeneous isotropic compartments while in the FEM and
FDM the solution of the forward problem is calculated in
the entire volume. Subsequently, the FEM and FDM lead
to a larger number of computational points than the BEM.
On the other hand, the potential at an arbitrary point can
be determined with FEM and FDM by interpolation of
computational points in its vicinity, while for the BEM it is
necessary to reapply the Barnard formula [55] and numerical
integration.

Another important aspect is the computational effi-
ciency. In the BEM, a full matrix (I− C), represented in

V = CV + V0, (4)

needs to be inverted. When the scalp potentials need to be
known for another dipole, V0 in (4) needs to be recalculated
and multiplied with the already available (I− C)−1. Hence
once the matrix is inverted, only a matrix multiplication is
needed to obtain the scalp potentials. This limited computa-
tional load is an attractive feature when solving the inverse
problem, where a large number of forward evaluations need
to be performed. Alternatively, an accelerated BEM approach
increases the speed considerably by calculating only m (i.e.,
the number of electrodes) rows of the corresponding inverse,
whereas, the normal inversion process requires a lot more
time due to the dimensionality of the matrix as n × n (i.e.,
n equals the number of nodes) [56, 57]. Projective methods
[58] based on the parametric representation of the surfaces
also allow for a drastic reduction of the computational load.

For the FEM and the FDM, a direct inversion of the
large sparse matrices is not possible due to the dimension
of the matrices. Typically at least 500 000 computational
points are considered thus leading to system matrices of
500 000 equations with 500 000 unknowns, which cannot
be solved in a direct manner with the computers currently
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Table 1: A comparison of the four methods for solving Poisson’s equation in a realistic head model is presented: boundary element method
(BEM), finite element method (FEM), isotropic finite difference method (iFDM), and anisotropic finite difference method (aFDM).

BEM FEM iFDM aFDM

Position of computational points Surface Volume Volume Volume

Free choice of computational points Yes Yes No No

System matrix Full Sparse Sparse Sparse

Solvers Direct/iterative Iterative Iterative Iterative

Number of compartments Small Large Large Large

Requires tessellation Yes Yes No No

Handles anisotropy No Yes No Yes

available. However, matrices found in FEM and FDM can be
inverted for a given source configuration or right-hand side
term, utilizing iterative solvers such as the successive over-
relaxation method (SSOR), the conjugate gradient (CG)
method [59], or algebraic multigrid (AMG) methods [60,
61]. A disadvantage of the iterative solvers is that for each
source configuration the solver has to be reapplied. The FEM
and FDM would be computationally inefficient when an
iterative solver would need to be used for each dipole. To
overcome this inefficiency the reciprocity theorem is used
[62].

When a large number of conducting compartments
are introduced, a large number of boundaries need to be
sampled for the BEM. This leads to a large full system
matrix, thus lower numerical efficiency. In FEM and FDM
modeling, the heterogeneous nature of realistic head mod-
els will make the stiffness matrix less sparse and badly
conditioned. Moreover, the incorporation of anisotropic
conductivities will decrease the sparseness of the stiffness
matrix. This can lead to an unstable system or very slow
convergence if iterative methods are used. To obtain a fast
convergence or a stable system, preconditioning should be
used. Preconditioning transforms the system of equations
Ax = b into a preconditioned system M−1Ax = M−1b,
which has the same solution as the orignal system. M is
a preconditioning matrix or a preconditioner, and its goal
is to reduce the condition number (ratio of the largest
eigenvalue to the smallest eigenvalue) of the stiffness matrix
toward the optimal value of 1. Basic preconditioning can
be used in the form of Jacobi, Gauss-Seidel, Successive
Over-Relaxation (SOR), and Symmetric Successive Over-
Relaxation (SSOR). These are easily implemented [63]. More
advanced methods use incomplete LU factorization and
polynomial preconditioning [63, 64].

For the FDM in contrast with the BEM and FEM,
the computational points lie fixed in the cube centers for
the isotropic approach and at the cube corners for the
anisotropic approach. In the FEM and BEM, the computa-
tional points, the vertices of the tetrahedrons and triangles,
respectively, can be chosen more freely. Therefore, the FEM
can better represent the irregular interfaces between the
different compartments than the FDM, for the same amount
of nodes. However, the segmented medical images used to
obtain the realistic volume conductor model are constructed
out of cubic voxels. It is straightforward to generate a

structured grid used in FDM from these segmented images.
In the FEM and the BEM, additional tessellation algorithms
[65] need to be used to obtain the tetrahedron elements
and the surface triangles, respectively, although cubic and
rectangular prism elements are possible in FEM like FDM.

Finally, it is known that the conductivities of some tissues
in the human head are anisotropic such as the skull and
the white matter tissue. Anisotropy can be introduced in the
FEM [66] and in the FDM [67], but not in the BEM.

5. Inverse Problem

While previous sections focused on the different steps
preceding the application of inverse procedures, that is, head
geometry approximations, conductivity, geometry profile,
accuracy of conductivity values, and so forth, this section
discusses some open issues including the selection of the
recording modality, the source model, and possible post
processing to improve the robustness of the inverse solution
estimates.

5.1. Recording Modality: MEG versus EEG. The introduc-
tion of the Superconducting Quantum Interference Device
(SQUID) made it possible to measure the very low magnetic
fields induced by the electric activity of the brain, called
magnetoencephalography, MEG.

In the beginning of biomagnetic research, there was a lot
of hope that biomagnetic signals would include information
independent on the bioelectric signals. As described by
Plonsey [68], the fact that according to the Helmholtz
theorem the scalar and the vector potential fields could be
selected independently was considered as evidence for the
independence of the electric and magnetic measurements.
On the other side, considering the origin of the bioelectric
currents it is concluded that the divergence and the curl of
the primary current could not be really arbitrarily assigned.
Further experiments described in [68] pointed to the relevant
contribution of the secondary sources to both electric and
magnetic fields. Thus, while we cannot claim that measures
of bioelectric or biomagnetic fields alone are enough to
define the other [69], we should not expect important
differences on the information recorded by them.

The conclusion that electric and magnetic measurements
provide comparable information has been confirmed on
theoretical and simulation grounds. Using the novel concept
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Figure 2: The Sensitivity Distributions of EEG. (Left) An EEG setup measuring the tangential components of neuroelectrical activity, where
each bipolar lead is located relatively close to each other. (Right) An EEG setup measuring the radial components of neuroelectric activity,
where the measuring electrode is located far from the reference electrode. The arrows in both figures represent macrocolumns of cellular
architecture not dipolar sources.
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Figure 3: The Sensitivity Distributions of MEG. (Left) An MEG setup measuring the tangential components of neuroelectrical activity, using
an axial gradiometer. (Right) An MEG setup measuring the tangential components of neuroelectric activity, using a planar gradiometer. The
arrows in both figures represent macrocolumns of cellular architecture not dipolar sources.

of the half sensitivity volume, Malmivuo et al. [70] demon-
strated that EEG and MEG record the electric activity in a
very similar way, that is, the differences between the EEG and
the MEG in the size of the half sensitivity volumes and the
form of the sensitivity distributions are very small. Further
evaluations of the spatial resolution for cortical sources in
the spherical model led to better results for the EEG [71].
Using simulations [72] confirmed also a slight advantage
of the EEG over many source locations and orientations
with best results for the combined EEG/MEG measurements.
More recently [73] applied pattern recognition techniques
to decode hand movement directions from simultaneous
EEG/MEG measurements, concluding that the inference of
movement direction works equally well for both techniques.

Therefore, it may be beneficial to consider also the cost
effect of the recording modality. The MEG instrumentation
costs about 20 times more than the EEG instrumentation
with the same number of channels. Thus, for improving
the accuracy of the inverse solution it might be beneficial
to first improve all aspects of the EEG technology, that
is, number of channels, electrode location accuracy, head
model geometry, and tissue resistivity accuracy, and so forth,
because improving all these cost much less than the MEG
instrumentation.

In summary we can confirm to the reader that besides
the cost differences, these two techniques offer similar
information about brain sources in what concerns accu-
racy of source localization, spatiotemporal resolution, and
decoding or predictive power. We would like to highlight
that although similar information is detected, the EEG and
MEG measurement sensitivities are orthogonal. The EEG
primarily detects electric sources that are radial to the scalp
surface with sufficiently distant electrodes and tangential
components when the leads are located near to each other
(Figure 2); however, the MEG primarily senses magnetic
currents generated by electric sources in the radial direction
(Figure 3).

5.2. Source Models. There is vast literature reviewing the
arsenal of methods available for the solution of the so-
called bioelectromagnetic-inverse problem dealing with the
estimation of the electrical activity (i.e., the distribution
of sources) inside the head given external measurements
of the electric and magnetic fields, for example, [44, 74,
75]. Nevertheless, before applying an inverse solution we
must decide about the type of sources and their possible
distribution (i.e., locations) inside the head.
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The inverse solution estimators differ in source modeling
assumptions. By comparing the number of unknowns of the
source model with the amount of data, we can differentiate
two main type of problems (i.e., of solutions). Firstly, over-
determined problems (e.g., dipolar solutions) with more
data than unknowns can differ in minimization algorithms
and their efficiency to escape local minima, measures of
goodness of fit as well as the use of physiological and/or
mathematical constraints often required in the solution
estimation/selection process. These models require assump-
tions regarding the number and location of the brain
sources modeled as point-current dipoles giving a unique
solution provided that the global minimum is identified.
Such approaches require a model order search in addition to
a source parameter optimization [76]. Numerical simulation
studies have demonstrated that an accurate estimation of the
temporal dynamics of dipolar models is critically dependent
on the ability to resolve and accurately localize all active
brain regions [77]. While there is a range of physiological
and anatomical reasons, animal studies as well as already
converging evidence from the human hemodynamic and/or
metabolic fMRI and PET studies suggest that the sensory
and cognitive process can be considered as a network of
distributed focal activity; possibility of extended activations
of neuronal tissue in some conditions cannot be disregarded.
In-depth electrode recordings used to be the primary evi-
dence for the latter assumption, demonstrating activity over
wide brain regions. However, even with such recordings, the
summed contributions of the primary source contributions
and volume currents are to be expected, and inverse models
should be considered instead of taking such measures as
strong evidence for extended brain activations.

On the other hand, we have the underdetermined
problems (e.g., distributed inverse solutions) with more
unknowns than data associated with the linear-minimum-
norm approaches that is suggested [75, 78, 79] for cases
when focal source assumptions are not justified. Such an
approach is challenging as it might require further weighting
and regularization to compensate for depth bias, selected by
imposing mathematical criteria or physiological ones.

In order to help the reader make the correct choice, we
describe four primary source models obtained by restriction
on the source type and/or their location together with their
main assumptions.

(1) The equivalent-current dipole model. It assumes that
measurements are due to a single concentrated source. It
is primarily valid for strong and spatially limited sources
(e.g., some focal epilepsy) or sources observed from a far
away measurement surface. It is probably more useful to
summarize the measured field than the source itself, which
is a particular case of the following source model.

(2) Dipolar models as used in overdetermined problems. These
models consider that the measured fields are due to a small
number of sources with unknown locations and orientations.
They are very well suited for low-rank data as produced by
filtered and averaged-evoked responses [80, 81].

(3) Cortical model. Under the extreme assumption that deep
sources do not contribute to the external fields of the head,
it assumes that the primary sources are located only in the
cortical mantel with a direction constraint. It is probably very
well suited for the analysis of measurements associated with
the activation of some primary cortical areas [82].

Previous models can be considered as data driven in
the sense that they can be only used under very specific
and restrictive experimental conditions that will not be
acceptable as a general model for the EEG and MEG
sources. Furthermore, there is scarce experimental evidence
in favor of the dipole. In fact a dipole would imply
an indefinitely increasing potential when we approach its
location. Hopefully, this has never been reported because
that would correspond to an undefined potential at that
location. Nevertheless, a more complete source model must
contain, as a particular case, previous source models while
incorporating those elements that are out of discussion so
far, that is as follows.

(4) Potential distribution inside the head. The electromag-
netic measurements at/near the scalp are due to the potential
distribution inside the brain. These (intracranial) potentials
that represent the primary source are generated in at, at
least, the entire gray matter and not only at the cortex. This
source model is compatible with all previous geometrical
constraints while including the dipoles as a particular case.
Importantly, this source model implies significant theoretical
and numerical simplifications, solving also the issue of focal
versus extended sources, since the potential is always a
continuous function defined at all points of the head.

After defining the adequate preprocessing and source
model for our data, we face the problem of the inverse
procedure selection. The following issues might be relevant
at this stage.

5.3. The Dipole Localization Error. The evaluation of the
overdetermined-dipolar models seems to have a straightfor-
ward solution by comparing target and estimated sources
with measures as the dipole localization error. Unfortunately,
these measures cannot be directly extrapolated to under-
determined distributed solutions. This is probably why the
evaluation of the distributed solutions remains as an open
issue in this field. Obviously, this might influence the
selection of the inverse solution. While we do not want to
tell the reader what he/she should do/use, we would like to
discuss some things to avoid.

It has been suggested that the zero dipole localization
might be the way to select the inverse solution. This is
likely motivated by genuine applications where the data
is dominated by single focal sources (e.g., epilepsy focus
localization) as well as by the long experience accumulated
from overdetermined (dipolar) models. It is probably an
abuse of language, which brings people to believe that “if
we correctly localize each single source alone, then by the
principle of superposition we should correctly localize any
combination of sources”. There are two clear inaccuracies
with this statement.
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(1) In this case, correct localization only means that
the maximum of the modulus of the current source
density coincides with the target site. This ignores
that the amplitude will be, as is almost always
the case for linear methods and multiple sources,
misestimated due to the unavoidable off-diagonal
elements on the resolution matrix (3).

(2) As the definition clearly states, the dipole localization
error (DLE) is estimated from the modulus of
the current source density, which means that the
DLE is not a linear function of the data d, and
thus the principle of superposition does not hold.
Consequently, linear system theory, that characterizes
the system by their response to (Delta like) input
impulses, cannot be invocated.

Given previous theoretical flaws, it is not surprising
that the DLE fails to predict the performance of an inverse
solution in the presence of multiple sources. In fact it can be
proved that correct localization of single sources is a trivial
property of simple yet robust methods (see the work by
Grave de Peralta et al. for this issue) that, we insist, are only
applicable if the concentrated single source hypothesis holds.

5.4. Inverse Solutions and Spatial Filters. A sound approach
for the inverse-problem solution in physical volumes is
the estimation of spatial filters, which “filters out” the
activity that arises from one special location, while trying to
suppress the activity from all others. These methods that have
reappeared nowadays under the name “beamformers” are
very appreciated, among other things, because the solution
can be computed independently for each solution point.
Continuing with the original descriptions of these methods
[83, 84], it was clear that minimizing crosstalk (i.e., distance
to the ideal resolution matrix) between sources does not
necessarily imply an optimal resolution kernel. Nevertheless,
current applications suggest that the solution provided by
these methods is not affected by the crosstalk.

There are very good reasons to select a Backus-Gilbert
(i.e., beamformer) method such as its adaptive properties
to deal with specific noise structures [85]. However, we
cannot emphasize enough that the only way to assess the
estimates provided by a linear inversion procedure is to
look at the resolution kernels [2, 3, 86]. The fact that we
build an independent estimate for each point alone does not
mean that this estimate is not contaminated by the effect of
simultaneously active sources.

In order to conclude the issue of the inverse procedure
selection on a positive note, we mention that there is a sound
theoretical way to select, and more importantly, to build an
inverse solution. It is enough to note that infinitely-many-
linear-inverse methods can be described by the equation G =
C ∗ L′ ∗ (L∗ C ∗ L′)+. The source jest estimated with this
method will belong to the space spanned by the columns
of C ∗ L′ for both the noiseless and the noisy case. On
the other hand, it is clear from (3) that the only way to
change the rows of the resolution matrix (i.e., the resolution
kernels) is by right transformations of the lead field. These
two procedures together yield meaningful source estimates,

when C is selected according to sound a priori information
and when an appropriate right-hand transformation of the
lead field is made [87].

5.5. Robust Methods for the Analysis of EEG/MEG Sources.
The problem with the estimation of the EEG/MEG sources
can be interpreted as follows. The measured data provides
precise (up to the noise level) but local information. In order
to know more about the whole system (i.e., the brain), we
need to ascend to qualitatively higher levels corresponding
to the surface maps and the 3D distribution of sources. By
doing this we obtain a more complete global descriptor but
probably also with a higher incertitude (if compared with the
sensor data).

As it is also the case for the fMRI signal [88], in general
we cannot rely on the amplitudes provided by the inverse
solution to compare the neural activity at two different
locations. For the same reason, ghost and lost sources appear
in every reconstruction mixed with real sources. Thus, dif-
ferentiating true sources from artifacts is almost impossible
unless we know the real distribution. Consequently, we can
say that the source distribution obtained from a single map
is probably the most imprecise picture that we can have of
brain activation.

What can we do to increase the reliability of these
functional images? As for a partial answer, we suggest the
following points.

(1) Select your inverse solution keeping in mind the
previously discussed points about the spatial filters
and the zero dipole localization error and consider
with caution source distributions estimated from
a single map (as produced, e.g., by segmentation
algorithms).

(2) Use source models that reduce the underdetermi-
nation of the inverse problem. Give preference to
physically sound transformations that reduce the
problem to the estimation of scalar fields improving
the resolution kernels.

(3) Compute magnitudes or figures of merit based on
the temporal course of brain sources instead of the
instantaneous local amplitudes and use measures that
are independent of the scale factor of the intracranial
signals like correlation coefficients.

(4) Evaluate contrasts between experimental conditions
or prestimulus versus poststimulus conditions to
reduce systematic ghost and lost source effects [31,
89].

(5) Compute correlations between magnitudes derived
from the time course of the brain activity and
behavioral measurements as reaction times [90].

6. Conclusion

There are many key areas that critically affect the accuracy
and precision of source localization. In this paper we
discussed the four key areas of EEG/MEG source imaging,
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namely, preprocessing, the volume conductor, and the
forward and inverse problems. Notwithstanding these wide-
ranging components, we emphatically direct the community
to allocate attention to these key open issues. Firstly,
the conductivity equally affects the forward and inverse
solution thus warranting the need for actual conductivity
measurements on live tissue to fill the void of these critical
parameters. These future studies should accurately docu-
ment their measurement setups—most especially in terms
of moisture and temperature. Secondly, future modeling
studies should incorporate how pathologies alter a normal,
healthy head model. Lastly, it is critical to select the source
model and the inverse procedure based on sound theoretical
and experimental basis.

Ultimately, we should make wise decisions to optimize
elements of the model that gain the most precision and
accuracy in source imaging and suppress those that con-
tribute minimal gains in source localization. After such
optimizations, how well do these future models represent
their physiological counterpart, that is, the human head? As
we proceed forward as a community, we should remember
to highlight the shortcomings of future studies reflecting
new conductivities, pathologies, source models, and so forth,
to prevent any further misinterpretations of those models,
while collectively building upon the contributions of past
models.
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