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EEG patterns of self-paced 
movement imaginations towards 
externally-cued and internally-
selected targets
Joana Pereira  , Andreea Ioana Sburlea & Gernot R. Müller-Putz  

In this study, we investigate the neurophysiological signature of the interacting processes which 

lead to a single reach-and-grasp movement imagination (MI). While performing this task, the human 

healthy participants could either define their movement targets according to an external cue, or 
through an internal selection process. After defining their target, they could start the MI whenever 
they wanted. We recorded high density electroencephalographic (EEG) activity and investigated two 

neural correlates: the event-related potentials (ERPs) associated with the target selection, which reflect 
the perceptual and cognitive processes prior to the MI, and the movement-related cortical potentials 

(MRCPs), associated with the planning of the self-paced MI. We found differences in frontal and parietal 
areas between the late ERP components related to the internally-driven selection and the externally-

cued process. Furthermore, we could reliably estimate the MI onset of the self-paced task. Next, we 

extracted MRCP features around the MI onset to train classifiers of movement vs. rest directly on self-

paced MI data. We attained performance significantly higher than chance level for both time-locked 
and asynchronous classification. These findings contribute to the development of more intuitive brain-
computer interfaces in which movement targets are defined internally and the movements are self-
paced.

Brain-computer interfaces (BCIs) provide a way of interaction with the external world by replacing the brain’s 
neuromuscular output pathways. �is is particularly interesting for persons who su�er from severe motor disabil-
ities1,2. Researchers have been working with BCIs based on electroencephalography (EEG) with the goal of help-
ing individuals with motor impairments, like people with amyotrophic lateral sclerosis, spinal-cord injury (SCI) 
or stroke survivors2. Typical BCI control strategies involve sustained movement imagination (MI) of squeezing a 
ball, repetitive opening and closing of the hand, or repeated feet MI. �ese tasks typically induce a power decrease 
or increase of EEG activity in certain frequency bands3. BCIs which exploit the modulation of these rhythms of 
the sensorimotor cortex are known as SMR-based BCIs, and have been successfully used in asynchronous BCI 
scenarios4–7. Despite their success cases, the strategies used (e.g. repetitive feet MI) o�en do not correspond to the 
actual movements executed by the end-e�ector (e.g. hand close). Ideally, a BCI would accurately comprehend and 
mimic the way one plans a movement, allowing for a more natural control8. In this study, we use EEG to investi-
gate the neurophysiological signature of the processes that lead to a single reach-and-grasp MI. In our view, this 
single motor task o�ers a more natural mental strategy which could be used by tetraplegic end-users to trigger a 
grasping command of a neuroprostheses9.

Reaching and grasping a glass among many others located on a table involves interacting neural processes 
which cover the domains of both perceptual and movement-related decision making. First, the surrounding envi-
ronment needs to be perceived and sensory information processed. Allocating attention to the environment and 
de�ning one of the glasses as a target remains within the domain of perceptual decision making. �ese processes 
are not strictly motoric, since they de�ne the target of movement, rather than the movement itself. Second, there 
must be preparation and planning for the actual movement. Namely, the movement onset and other movement 
details, like speed or shaping of the hand, are de�ned10,11.
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Regarding the de�nition of the movement target, when more than one target is available, it is necessary to 
decide among various alternatives. If the target is de�ned by direct in�uence of an external stimulus, this process 
is externally-cued. Externally-cued processes are common on cue-based BCI training paradigms. However, in a 
BCI �nal application on daily-life scenarios, the target is o�en de�ned by an internally-driven process, without 
direct in�uence of an external cue. �erefore, it is important to determine whether these two processes are di�er-
ently represented in the EEG (and if so, how?). �e neural activity underlying perceptual and cognitive processes 
prior to motor tasks can be investigated using event-related potentials (ERPs). Recently, it has been shown that 
there is a modulation of ERPs’ later components, like the P300, as a function of complexity of cognitive control 
prior to motor tasks12. �e P300 is a large positive component which peaks between 350–600 ms a�er stimulus 
onset13. For task-relevant stimuli, the P3b subcomponent is particularly relevant, since it is o�en related to the 
cognitive resources allocated to a certain goal-directed task13,14. �ere is evidence that the P300 peak is related 
with stimulus evaluation, but independent from the upcoming response15. While the P300 peak seems to be 
task-independent, the following negative-going phase has been related to decision-making prior to the prepa-
ration of a response16,17. Furthermore, this phase has been reported to be most conspicuous and durable with 
increased level of task complexity prior to a button press12.

For natural neuroprostheses or robotic arm control, the users should also have the possibility to initiate the 
movement at their own pace, the BCI being responsible to detect and/or classify that movement intention asyn-
chronously. Movement-related cortical potentials (MRCPs) are known to re�ect the cortical processes employed 
in movement planning and execution18,19 and can be used for movement detection and/or classi�cation. MRCPs 
are time-domain amplitude modulations in the delta frequency band which occur around movement execu-
tion (ME), MI or attempted ME18,19. When associated with self-paced tasks, these modulations are known as 
Bereitscha�spotential (BP)19 and are characterized by a slow negative de�ection which begins several hundreds 
of milliseconds before the movement onset. Its peak negativity is reached near the onset, followed by a return 
to baseline level20. Since MRCPs encode several movement properties (e.g. di�erent grasp types, force levels or 
speed)21–31, and its detection has a short latency32,33, there is growing interest in using MRCPs for BCI control. 
Still, analyzing and exploiting the MRCPs around the onset of a self-paced MI is challenging. On a self-paced MI 
task, it is not possible to align the EEG activity to a cue, nor to a measurable myographic or kinematic onset. �is 
alignment is important if one wants to extract MRCP features to train movement detectors (i.e. classi�cation of 
movement vs. rest). For that reason, researchers have trained detectors on self-paced ME features, in which there 
is a measurable movement onset, to later detect self-paced MI30,31,33. �is approach is not suitable for users who 
do not have residual muscular activity on their upper limbs. In that case, one would have to train the detectors 
directly on self-paced MI features.

In this study, we conducted an experiment in which healthy participants performed a self-paced single 
reach-and-grasp MI towards one of �ve targets displayed on a screen. �e participants de�ned their target either 
by the direct in�uence of a cue, or by an internally-driven selection process. A�er de�ning their target, the par-
ticipants could then freely decide when to start the reach-and-grasp MI. Similar to Libet’s experiments34, we esti-
mated an MI onset which re�ected the participants’ awareness of their intention to perform the reach-and-grasp. 
Our �rst hypothesis is that the EEG is modulated di�erently, depending on whether the target was externally-cued 
or internally-driven. We expect to �nd these di�erences in the late ERP components following target presenta-
tion, since they re�ect cognitive control prior to the preparation of the motor task. Our second hypothesis is that 
it is possible to train detectors directly on self-paced MI features, when using this estimated MI onset. �e perfor-
mance of the detector, which was based on MRCP amplitude features, was evaluated o�ine in both time-locked 
and asynchronous scenarios. Understanding the neural processes of MI tasks, in which movement targets are 
de�ned internally and the movements are self-paced, can help us to develop more intuitive BCIs.

Results
Experimental paradigm. We recorded the EEG and electrooculography (EOG) signals of 15 healthy 
human subjects while they were performing the paradigm illustrated in Fig. 1. Each session consisted of runs 
in which visual cues were displayed on a computer monitor. An average of 6.6 ± 0.7 (s.d.) runs were recorded 
per subject. A run was composed of trials in which the subjects were instructed to de�ne the movement target 
according to the condition and then perform the MI of a single reach-and-grasp directed towards that target, in 
a self-paced manner (Fig. 1b).

In all conditions, a�er a baseline of 2 s, �ve glasses showed up in addition to a scroller that showed consecutive 
3-digit numbers every 750 ms. �e scroller was positioned at the center of the screen and the glasses could appear 
to have water or to be empty. On the internally-driven condition (ID) the participants could freely select one of 
the �ve glasses. On the second internally-driven condition (IDII) the participants could select one of the two 
glasses which had water. On the externally-cued condition (EC) they were asked to perform the task towards the 
only glass which had water. �e glasses with water in both EC and IDII conditions were pseudo-randomly posi-
tioned and all glass positions were covered with the same frequency. We instructed the participants to de�ne the 
target according to the condition and as soon as they saw the glasses. A�er de�ning the target, subjects could per-
form the kinesthetic MI of a single reach-and-grasp towards the glass at their own pace. To help the participants 
to perform the MI, they had the possibility to execute real reach-and-grasps towards a glass at the beginning of 
the experiment. Inspired by Libet’s experiments34, we instructed the subjects to memorize the number that was on 
the scroller when they perceived the urge to perform the MI. At the end of each trial, subjects reported the target 
(from 1 to 5) and the number that was displayed on the scroller. Figure 1a shows the trial timings and exempli�es 
the reporting on a IDII condition. A new trial started a�er a break of 1.5 s. An average of 195 ± 25 (s.d.) trials and 
3 additional rest runs (with duration of 60 s each) were recorded per subject.

We analyzed the channel-space and source-space EEG during the target de�nition period by time-locking to 
the cue and grouping the trials in the 3 conditions. Henceforth, we refer to this section as the cue-locked EEG. 
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Furthermore, we analyzed the EEG around the MI by time-locking to the onset which was estimated using the 
numbers reported by the participants. Henceforth, we refer to this section as the response-locked EEG. We used 
the MRCP features around the estimated onset to train and evaluate time-locked and asynchronous detectors of 
the self-paced MIs.

Cue-locked EEG. We analyzed the EEG on the target de�nition period by grouping the trials in conditions 
and time-locking them to the cue (Fig. 1a, second 2). At this time point, the glasses were displayed and the sub-
jects de�ned their target according to the condition. Grand-averaged cue-locked ERPs for the conditions (ID, 
IDII and EC), as well as points in which statistically signi�cant di�erences among the conditions were found, 
are shown in Fig. 2a for selected channels over centro-parietal areas. Supplementary Figure I additionally shows 
the grand-averaged ERPs over a larger set of channels. For all conditions, we found two distinctive peaks. We 
observed an earlier positive peak at ~200 ms which was more prominent in parietal and occipital electrodes. A 
second positive peak emerged at ~500 ms with higher amplitude over centro-parietal electrodes. �e location and 
timing of this second peak are consistent with the P300 component, concretely with the P3b subcomponent. �is 
peak was followed by a slow negative-going phase, reaching the baseline ~1.3 s a�er the cue on parietal electrodes. 

Figure 1. Experimental paradigm. (a) Trial timings and structure. A trial started with a 2 s baseline period. 
�erea�er, one of the cues associated with one of the three experimental conditions was displayed. In the 
internally-driven (ID) condition, all glasses were empty and subjects chose freely one of the �ve glasses. In 
the second internally-driven (IDII) condition, subjects chose one of the two glasses �lled with water. In the 
externally-cued (EC) condition, the target was the one glass �lled with water. (b) Experimental setup and task 
illustration. A�er de�ning the target according to the condition, subjects performed the MI of a reach-and-
grasp directed towards the glass at their own pace. We positioned a scroller with numbers on the middle of the 
screen and instructed the subjects to memorize the number that was on the scroller when they perceived the 
urge to perform the MI. At the end of each trial, there was a reporting period in which subjects reported the 
number they memorized and the selected target. In this �gure the example corresponds to the IDII condition.
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A third peak could be identi�ed in more frontal and central areas which overlapped this negative-going phase of 
the P300.

We found signi�cant di�erences (α = 0.05, paired-sample two-tailed permutation tests based on t-statistics) 
in the earlier ERP components around 250 ms a�er cue, between the ID conditions (ID vs. IDII). Concretely, 
earlier ERP amplitudes were higher for the ID condition, when comparing with the IDII condition. On the 
negative-going phase that followed the P300 peak, we found signi�cant di�erences (α = 0.05, paired-sample 
two-tailed permutation tests based on t-statistics) between the EC and the ID conditions (ID vs. EV and IDII vs. 
EC). Namely, ERP amplitudes associated with the ID and IDII conditions were signi�cantly higher from ~600 to 
800 ms a�er the cue, when comparing to the EC condition. No signi�cant di�erences were found on the late ERP 
components related to both ID conditions (ID vs. IDII).

We then investigated these di�erences in the source space. �e results of the source analysis, in which the 
inverse problem was solved using standardized low-resolution brain electromagnetic tomography (sLORETA)35, 
are shown in Fig. 2b. Di�erences were investigated in a time-window of [0 1.4] s with respect to the cue. We 
averaged non-overlapping 200 ms segments for each condition and determined the signi�cantly di�erent voxels 
among conditions. On Fig. 2b only signi�cant voxels are colored. Signi�cant di�erences (α = 0.05, paired-sample 

Figure 2. Cue-locked EEG. (a) Grand-average ERPs over electrodes CPz, P3, Pz and P4 (0 s corresponds to 
the cue). Colored shaded areas show the 95% con�dence interval for the mean (α = 0.05) of each experimental 
condition. Signi�cant di�erences between the conditions are color-coded and presented below each channel 
plot (assessed with paired-sample two-tailed permutation tests based on t-statistics, α = 0.05). (b) Di�erences 
between ERPs in the source space (sLORETA) from 0 to 1.4 s with respect to the cue. Sources were averaged 
on non-overlapping time-windows of 200 ms. We show the signi�cantly di�erent voxels between ID and EC 
conditions, and IDII and EC conditions (paired-sample two-tailed permutation tests based on t-statistics, 
α = 0.05). No signi�cant di�erences were observed on the source maps between ID and IDII conditions.
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two-tailed permutation tests based on t-statistics) were present from 0.4 to 1 s between ID and EC conditions (ID 
vs. EC and IDII vs. EC). Namely, we observed increased activations on frontal-central and posterior parietal areas 
on the ID conditions. No signi�cant di�erences were found between ID conditions (ID vs. IDII).

Response-locked EEG: MRCPs. A�er de�ning their movement target, the subjects performed a self-paced 
MI of a single reach-and-grasp. By time-locking to the number reported by the participants, we obtained an imag-
ination onset (IO), which enabled us to analyze the low-frequency EEG modulations around the MI. We observed 
potentials in the delta frequency band consistent with MRCPs, concretely with the BP which is characteristic of 
self-paced motor tasks. MRCPs were observed in 14 out of the 15 subjects. �e grand-average MRCPs are shown 
in Fig. 3a for selected channels over the motor cortex. Supplementary Figure II shows the MRCPs on a larger set 
of channels. We observed a negativity that started at around 1 s before the IO and culminated on a negative peak 
that was higher in absolute amplitude in the midline electrodes (FCz and Cz) at 500 ms a�er the IO. �is peak 
negativity was followed by a slow return to baseline level, which happened ~2 s a�er the IO. From a single-subject 
perspective, there was variability in peak amplitude and respective latency, which can be seen in Supplementary 
Table I. Negative peak amplitudes ranged from −1 to −14 µV and occurred from −0.4 to 1.4 s with respect to the 
IO. In Supplementary Table I, the amplitude and latency of the peak negativity for subject s10 are not reported, 
since for this subject we did not observe the characteristic negative slope, when time-locking to the IO.

We analyzed the MRCPs in the source space on a time-window of [−1 1.8] s with respect to the IO. 
Grand-averaged sLORETA source maps are shown in Fig. 3b, in which only significant voxels (α = 0.05, 
paired-sample two-tailed permutation tests based on t-statistics) with respect to the baseline ([−2.2 −2] s) are 
colored. Compared to baseline, the estimated activity was �rst signi�cant (0.4 s before IO) at the supplementary 
motor area (SMA) and premotor cortex, becoming broader on remaining motor areas (primary motor cortex and 
primary somatosensory cortex) and posterior parietal cortex, when closer to the peak negativity (0.2 to 1 s a�er 
IO).

Time-locked classification. We performed two types of o�ine single-trial classi�cation to detect the 
MRCPs associated with the self-paced MI task: time-locked classi�cation and, to simulate an online scenario, 

Figure 3. Response-locked EEG. (a) Grand-average MRCPs on electrodes FCz, C3, Cz, and C4 (0 s corresponds 
to the imagination onset, IO. In light blue we show the 95% con�dence interval for the mean (α = 0.05). (b) 
Grand-average MRCP on the source space from −1 to 1.8 s with respect to the IO. Source maps were averaged 
on non-overlapping time-windows of 200 ms and only signi�cant voxels with respect to a baseline period are 
shown (assessed with paired-sample two-tailed permutation tests based on t-statistics, α = 0.05).
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asynchronous classi�cation. For both, a shrinkage regularized linear discriminant analysis36 classi�er was used to 
discriminate MI vs. REST classes. �e results of the 10 × 5-fold cross-validated time-locked classi�cation are sum-
marized in Fig. 4, on the le� bar plot. �is plot shows the mean accuracy per subject and respective con�dence 
intervals. With the exception of subject s10, all subjects were above chance level. Notably, 8 of the 15 subjects had 
accuracies above 80%. Overall, a classi�cation accuracy of 81.2 ± 9.5% (mean ± s.d.) was achieved. �e average 
true positive rate (TPR) was 81.0 ± 9.7% and the average false positive rate (FPR) was 19.1 ± 9.7%. Supplementary 
Table I additionally shows the TPR, FPR, false negative rate (FNR) and true negative rate (TNR) per subject.

Asynchronous classification. �e results of the 10 × 5-fold cross-validated asynchronous classi�cation are 
summarized in Fig. 4, on the right bar plot. We performed a trial-based evaluation over a 12 s long window which 
started 1 s a�er cue presentation. We labeled the MI class as the positive class (3 of the 12 s of the trial were labeled 
as MI), and the REST class (remaining 9 s) as the negative class. �e performance measure was the number of cor-
rectly classi�ed trials. A trial was only considered correct when there was at least one MI detection within the MI 
period (i.e. at least one true positive) and no detections during REST (i.e. no false positives). Figure 4 (right bar 
plot) shows the percentage of correct trials per subject and its respective 95% con�dence interval. Chance-levels 
were determined by structured permutation of the labels. �e average percentage of correctly classi�ed trials is at 
52.5 ± 16.8%, and all subjects had performances above chance level. Supplementary Table I additionally shows the 
positive likelihood ratio (PLR) per subject, which corresponds to the ratio between the TPR and FPR.

In Fig. 5 we give two examples of testing folds for subjects s1 and s3, to better illustrate the trial-based eval-
uation procedure of the asynchronous classi�cation. Figure 5a shows the MRCPs on channel Cz for those two 
subjects. We then show the single-trial classi�er probabilities for the MI class over time on a testing fold (Fig. 5b). 
Figure 5c represents the e�ect of our evaluation criteria for the performance on that fold, in terms of correct and 
incorrect trials. Subject s1 had a performance above average (74% correct trials). �is performance was driven 
by the consistently higher classi�cation probabilities of the MI class during the MI period, when compared to the 
REST period (Fig. 5b). We attained very few false positives and a high number of true positives, when compared 
for instance to subject s3 (Fig. 5c).

Behavioral analysis. Since the subjects were performing the MI at their own pace, it is of interest to analyze 
the time of the IOs for each subject. Figure 6 shows the boxplots graphically depicting the time of the IOs per 
subject. As expected from the paradigm and instructions given to the participants, there was variability in IOs 
within and among the subjects. �is �gure also shows the group boxplots correspondent to the group-average IO 
for the three conditions. To check for possible confounds, we analyzed whether there were statistically signi�cant 
di�erences among the conditions. No statistically signi�cant di�erences were found among conditions (α = 0.05, 
paired Wilcoxon rank-sum test, FDR corrected for multiple comparisons).

Figure 4. Classi�cation results. Le�: Time-locked classi�cation accuracy. We show the mean of the 10 × 5-fold 
cross-validated accuracy and respective con�dence interval (α = 0.05 per subject. �e orange bar represents the 
grand-averaged accuracy. �e horizontal dark blue lines (or orange lines, in the case of the mean) over each bar 
represent the chance level (α = 0.05, adjusted Wald interval57). Right: Asynchronous classi�cation performance. 
We show the mean of the 10 × 5-fold cross-validated percentage of correct trials and respective con�dence 
interval (α = 0.05) for each subject. �e horizontal dark blue lines over each bar represent the chance level 
(obtained by permuting the labels 500 times). �e orange bar represents the grand-averaged results.
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Discussion
We investigated the EEG correlates of a single reach-and-grasp MI task, in which movement targets were de�ned 
internally or by the in�uence of an external cue, and the onset of movement was self-paced. We found that the 
ERPs associated with the externally-cued process were signi�cantly di�erent from those of the internally-driven 
selection. �e di�erences on the late ERP components were predominantly encoded in frontal and posterior 
parietal cortices. By time-locking to an estimated onset, we observed an EEG potential consistent in morphology 
and topographical distribution with an MRCP. MRCP features were then used to detect self-paced movement 
imaginations. �e performance of the classi�er, in both time-locked and asynchronous scenarios, shows that it is 
possible to detect MRCPs in single-trial when training solely on self-paced MI.

Cue-locked EEG. �e participants started each trial by de�ning the target of their reach-and-grasp MI. 
�is target de�nition could have been externally-cued, in that the target was directly in�uenced by the cue, or 
internally-driven. We analyzed the cue-locked EEG following target presentation, to �nd whether the ERP com-
ponents di�ered depending on whether the participants were, or not, externally-cued in respect to their target 
of movement. Our �ndings suggest that the P300 (speci�cally the P3b subcomponent) associated with the ID 
conditions is di�erent from the EC condition. While the peak latencies and respective amplitudes were simi-
lar, signi�cant di�erences were found from 600 to 800 ms a�er cue presentation. Concretely, the amplitudes of 
the negative slope following the P300 peak were higher for the ID conditions. �e P300 is related to stimulus 
processing15, which was necessary in all experimental conditions. However, the P3b has also been previously 

Figure 5. Trial-based asynchronous evaluation examples. We give two examples of classi�er outputs and 
respective movement detections on a testing fold of a subject with performance above average, subject s1 (le� 
panel), and for representative subject s3 (right panel). (a) MRCPs on channel Cz. (b) Single-trial image showing 
the normalized probability for the MI class over time (time-locked to the IO). (c) Single-trial image showing 
the corresponding detections according to the evaluation criteria applied. Movement detections are marked 
in white over each trial (trials are represented in black). �e orange vertical lines mark the beginning and the 
end of the period evaluated as MI, second 0 is the IO. �e vertical bar positioned right to each of the single-
trial images shows the trials marked as correct (green) and incorrect (red). A trial was only considered correct 
when there was at least one true positive (detection within the MI period, limits marked in orange) and no false 
positives (no detections outside MI period).
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related to cognitive resources allocated to a certain goal-directed task13,14. We observed that aside from the slow 
negative-going phase a�er the P300 peak, which lasted until 1.3 s a�er target presentation, there was an overlap-
ping positive waveform on more central and frontal electrodes. �ese late positive components which overlap 
the negative slope of the P300 have been grouped under the label of positive slow waves37. While there are many 
interpretations about which processes are being encoded in these positive slow waves, Niewhenhuis and col-
leagues suggested that these components encode processes which guide the future response, in the light of what 
are the task demands and rules16. Moreover, this negative-going phase following the P300 peak has been related 
to decision-making prior to the preparation of a response17. �ese explanations are in line with our observations. 
In our task, the target could only be truly selected in the two ID conditions. One possible explanation is that the 
need of internally selecting a target evokes an increase in task demand which is re�ected in higher amplitudes in 
the late ERP components. Since these late positive components are not strictly related to motor responses37, one 
topic of interest for future studies would be whether the di�erences observed in the ERP components are also 
present in similar tasks which do not involve motor planning.

It is important to note that subjects decided among glasses with water (IDII and EC condition) or empty 
glasses (ID condition). �is constitutes a limitation of our study, concerning the paradigm design. However, the 
di�erences observed on the late ERP components cannot be explained by this empty vs. full context. Concretely, 
di�erences on the late ERP components were present on the ID vs. EC and IDII vs. EC condition. No di�erences 
were observed in the later components between the ID condition (in which participants freely selected an empty 
glass) and IDII or EC conditions (in which participants freely selected a glass with water).

Using source imaging, we estimated that the di�erences among the ID and the EC conditions were located in 
frontal and posterior parietal areas. �e neural generators of the P300 are not clearly characterized, but our results 
are in line with previous studies that point out those areas as generators of the P300 component38,39. One expla-
nation is that tasks which involve response to visual stimuli activate frontal areas that then transmit information 
to temporal and parietal areas. �ese areas are in turn responsible for indexing task context updates, which is a 
necessary step for response organization and production16. In our study, the information relates with the target of 
the upcoming motor response: the self-paced MI task.

Response-locked EEG: MRCPs. A�er de�nition of the movement target, the participants performed a 
self-paced MI of a single reach-and-grasp. We introduced a scroller with numbers and asked the subjects to 
report the number that was displayed when they felt the urge to start the MI. With this strategy we estimated 
an MI onset, which enabled us to analyze the response-locked EEG activity associated with a self-paced MI 
task. We found a cortical potential consistent in timing, morphology, and topographical distribution with an 
MRCP. We observed a negative potential which started around 1 s prior to the IO and was more prominent in 
the central-medial scalp. �e peak negativity of the BP is typically occurring closer to movement execution onset 
(when the onset is estimated using EMG). However, we observed that for the majority of the subjects, the peak 
negativity occurred a few milliseconds a�er the IO. �e most obvious reason for such di�erence in latencies is that 
our alignment is not as accurate as an eventual ground truth: a new number was introduced on the scroller every 
750 ms which is a signi�cant time interval and can result in imperfect alignments. Moreover, it is important to 
notice that the start of the BP is known to vary among subjects19. Using source imaging, we were able to estimate 
which brain areas were active around the self-paced MI. It is important to point out that, despite recording the 
individual electrode positions, our head models were generated from a template magnetic resonance imaging 
scan, which can increase the location error of the estimated EEG sources. Our results indicate the involvement 
of SMA, premotor areas, M1, somatosensory cortex and posterior parietal cortex. All these areas are well known 
to be involved in movement planning and preparation. �e SMA and premotor cortex have been indicated as the 

Figure 6. Imagination onsets relative to the cue. We show the boxplots depicting the time of the IOs per subject 
(in grey) and the boxplots with respect to the group results. For the later, we grouped the IOs in the three 
experimental conditions (in orange for the ID condition, in purple for the IDII condition, and in blue for the EC 
condition).
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origin of the BP. For self-paced �nger movements, it has been reported that SMA activation preceded that of the 
motor cortex by 800 ms40.

For the alignment of the trials to an MI onset, we used a memorization task instead of a motor execution task 
(such as a key press at the end of the MI) to avoid additional movement-related patterns which would interfere 
with the MI pattern, creating confounds. Furthermore, this intermediate memorization task allowed a separation 
between the target de�nition period and the actual MI. Recently, Aliakbaryhosseinabadi and colleagues41 showed 
that the MRCP features on a ME task changed signi�cantly between single and dual-task (involving counting 
of auditory stimuli). �e higher attention diversion imposed by the dual-task lead to a signi�cant reduction in 
speci�c MRCP features, further a�ecting the performance of the movement intention detector. In our paradigm, 
there was a dual-task of MI and memorization. A decrease in MRCP features (e.g. decrease in absolute amplitudes 
of the peak negativity) is therefore likely and this can be seen as a drawback in our strategy. It is also relevant to 
mention that the morphology of MRCPs can be in�uenced by impairments of the sensory-motor system. As an 
example, on a cue-based protocol, absolute amplitudes of the peak negativity are reduced in a group of spinal cord 
injured individuals when compared to a group of healthy subjects42. Another study has shown that there is a larger 
variability of the MRCP in individuals with spinal cord injury (both within and between subjects)43. Furthermore, 
on self-paced ME, longer BP latencies have been observed in aged subjects (>60 years-old)44. For these reasons, 
it is necessary to investigate the suitability of our paradigm in end-users.

Self-paced MI detection. We performed o�ine detection of self-paced MI using MRCP features. Detection 
based on MRCPs can be an alternative to SMR-based BCIs, which o�en involve less intuitive control strate-
gies. MRCPs are modulated by several movement factors that, when correctly classi�ed, could allow for new 
control strategies. �ese factors include movement speed22,24, force24, movements involving di�erent joints21,28, 
grasp types29 and the presence of motor goals27. Additionally, the detection of MRCPs is faster, providing timely 
feedback to the user. �is last fact could have implications for BCIs which aim to induce cortical plasticity32. 
However, the detection of MRCPs presents its challenges. A correct alignment to the movement onset is critical 
to train detectors based on MRCP features. Hence, researchers have trained detectors using MRCP features from 
self-paced ME, and later tested these detectors on self-paced MI30,31,33. �is approach is only suitable for users 
who have residual muscular activity. In the current study, time-locking to the MI onset allowed us to train clas-
si�ers directly on MRCP features of self-paced MI data. �is can be of particular interest for end-users without 
residual motor function of the upper limb.

Regarding the time-locked classi�cation, an average accuracy of 81 ± 10% was achieved. With the exception 
of one subject, all remaining subjects were above chance level. While it is of interest to assess the performance 
of the time-locked classi�cation, especially when testing new paradigms, the asynchronous classi�cation is of 
greater interest since it corresponds more closely to the BCI scenario that we envision. �erefore, we performed 
asynchronous classi�cation with a trial-based evaluation scheme and assessed the classi�er performance using 
the percentage of correctly classi�ed trials. We used a strict evaluation in which a trial was only considered correct 
if there was at least one true detection and no false detections. As expected, those subjects who achieved higher 
performances on the time-locked scenario were also achieving higher performances on the asynchronous sce-
nario. On average, 53 ± 17% trials were correctly classi�ed. One could prematurely consider this performance to 
be poor. However, due to the low ratio between positive and negative examples, the chance level is 20%, and all 
of the subjects had performances above chance level. It will be critical in future online implementations to tackle 
the possibilities for decreasing the number of false detections (an average of 40% of trials had false detections). 
We believe that there are two main reasons for such spurious detections. Firstly, in some of the trials, there could 
have been errors in the reporting of the onset, which lead to incorrect alignments. Secondly, spurious detections 
can be caused by artefacts, and in future experiments it is important to deal with artefacts online. One possibility 
would be to detect artefactual segments online and ignore the classi�er output on these segments, or to correct 
the artefacts without the need of ignoring the classi�er’s output.

A direct comparison between the performance of our self-paced MI detector and other movement detectors 
is di�cult, due to the variability among tasks (upper/lower limb, self-paced/cue-based, ME/MI/attempted move-
ments), classi�cation scenarios (o�ine, online, simulated classi�cation procedures), type of participants (healthy, 
stroke, spinal cord injury), and among the metrics used to assess performance (e.g. accuracy, number of correctly 
classi�ed trials, true positive rate). Sburlea et al.26 obtained an average of 61% correctly classi�ed trials when using 
MRCP features for continuous detection of pre-movement state in self-initiated walking from healthy subjects. 
In this study, EMG was used to align the trials to the movement onset and only pre-movement EEG features (i.e. 
before EMG onset) were used to train the detector. In another study, Jochumsen et al.25 showed that on average 
~75% of grasp movements were correctly detected for ME and MI (in healthy) and attempted ME (in stroke 
patients) in a cue-based paradigm.

Main findings and conclusion. EEG signals during a self-paced MI of a single reach-and-grasp were 
recorded and analyzed o�ine and in healthy participants. We analyzed the ERPs following target presentation, 
to investigate the underlying perceptual and cognitive processes prior to the MI. Concretely, we were interested 
in the di�erences between a internally-driven target selection and a externally-cued process, in which the target 
is de�ned by the direct in�uence of an external cue. A�er target de�nition, and around the estimated onset of 
the self-paced MI, we analyzed the MRCPs as correlates of movement planning. Our results show that the late 
ERP components associated to the internally-driven process are di�erent from those of an externally-driven 
process. Moreover, we were able to exploit the MRCP features around the MI onset to train detectors of MI 
directly on self-paced data. �ese �ndings help us understand and exploit the EEG representations of a MI task, 
in which movement targets are de�ned internally and the movements are self-paced. Finally, the goal is to provide 
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end-users with a BCI control strategy which feels natural and is suitable for neuroprostheses or robotic arm 
control.

Materials and Methods
Participants. Fi�een healthy participants (23 ± 2 (mean ± s.d.) years old, 8 males) took part in this study. 
Participants gave their informed consent and the study was conducted in accordance with the protocol approved 
by the ethics committee of the Medical University of Graz (approval number: 29-058 ex 16/17). All subjects were 
right-handed.

Instructions. Subjects sat on a comfortable chair, in a shielded room, facing the computer monitor that was 
placed at a distance of 130 cm. �eir arms were supported in both armrests. Additionally, a wireless keyboard 
was placed in front of them, at the same level as their elbows (Fig. 1b). �ey used the keyboard to report the 
numbers, a�er the end of each trial - as described in Fig. 1a. During the experiment, subjects were asked to keep 
their gaze in the center of the monitor and to avoid moving their eyes towards the selected target during the trial. 
We also instructed them not to execute any arm/ hand movements within the trial, and explained the di�erence 
between movement imagination and execution. �e subjects were asked to minimize blinks and muscular arte-
facts when not on the reporting period or break. �e negative e�ects of these artefacts on the EEG recordings 
were explained. Lastly, we observed the participants performing the task. During the rest runs (each 60 s long), 
the subjects remained at rest and �xated their gaze on the center of the monitor, which displayed the table and the 
scroller. Rest runs were recorded as follows: one run was recorded at the beginning, one in the middle, and other 
in the end of the measurement.

Signal recordings. EEG and EOG signals were recorded using 64 active actiCAP electrodes (BrainProducts 
GmbH, Germany). Reference was placed on the right mastoid and ground on AFz. �e EEG was measured 
from 61 equally-spaced channels covering frontal, central, parietal, temporal and occipital areas (channel 
layout can be seen in Fig. 7a). �ree EOG electrodes were placed above the nasion and below the outer can-
thi of the eyes. Additionally, we recorded the position of each EEG electrode in 3D coordinates using ELPOS 
ultrasound-based system (Zebris Medical GmbH, Isny im Allgäu, Germany). Biosignals were sampled at 1 kHz 
using two 32-channel BrainAmp ampli�ers, and inspected using the BrainVision so�ware (BrainProducts GmbH, 
Germany). For the recordings and time-synchronization we used the lab streaming layer framework (Swartz 
Center for Computational Neuroscience, UCSD, freely available online45). We used a photodiode to adjust the 
timestamps of the events to the moment when they were displayed on the monitor.

Behavioral analysis. We discarded trials with incorrect responses from the rest of the analysis. In these tri-
als, participants reported an incorrect number (i.e. which was not presented on the scroller during that trial) and/
or incorrect target according to the condition (i.e. target which was not indicated by the EC or IDII conditions). 
An average of 9.4 ± 8.8 (mean ± s.d.) trials per subject had incorrect responses.

We used the reported numbers to determine the IOs. For that, we simply took the time point when the num-
ber was shown on the scroller. We assessed whether there were signi�cant di�erences of IO times among the 
three conditions (ID, IDII and ED) using non-parametric Wilcoxon rank-sum tests, FDR corrected for multiple 
comparisons.

Signal processing. EEG and EOG were processed offline using MATLAB 2015b (The MathWorks, 
Massachusetts, USA). We additionally used the BioSig toolbox46, EEGLAB47 and Brainstorm48. Figure 7b sum-
marizes the EEG processing steps described in this section. A�er removing the trials due to incorrect responses, 

Figure 7. EEG recordings and processing. (a) EEG was recorded from 61 channels covering frontal, central, 
parietal, temporal and occipital areas. Highlighted are the channels which were later used for MI detection 
(classi�cation of MI vs. REST). (b) Scheme representing the EEG processing steps.
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we removed noisy channels by visual inspection (3 EEG channels were removed on average). �e data were 
notch-�ltered (notch frequency of 50 Hz) to remove power line noise.

To deal with artefacts, we performed a trial-based artefact rejection followed by artefact correction using 
independent component analysis (ICA). For the trial-based artefact rejection, data was �rst band-pass �ltered 
from 1 to 70 Hz with a zero-phase 4th order Butterworth �lter. We then epoched the EEG with respect to the start 
of the trial and we used EEGLAB to: (1) �nd values outside an interval between −200 µV and 200 µV, (2) reject 
trials with abnormal joint probability and/or (3) abnormal kurtosis. A threshold of 5 times the standard deviation 
was used for each statistic. An average of 11.2 ± 4.2 (mean ± s.d.) trials were removed due to artefacts. In total, an 
average of 174.1 ± 24.8 trials remained for analysis (58 trials per condition). We then applied principal compo-
nent analysis (PCA) for dimensionality reduction and retained components which explained 99% of the variance 
of the data. We used ICA on the PCA-compressed EEG and EOG data using the extended Infomax algorithm49. 
We marked the independent components that corresponded to ocular or muscular artefacts. Using visual inspec-
tion, an average of 11.6 ± 3.0 components per subject were marked as representing artefacts.

On the EEG data only subjected to notch filtering (i.e. no band-pass filter), the aforementioned 
artefact-contaminated trials were rejected, and the weights of the ICA decomposition were used to back-project 
exclusively the components without artefacts into the channel-space. For the three rest runs recorded, the ICA 
weights were also used for back-projection. We refer to the EEG in the channel-space a�er this artefact rejection 
and correction procedure as cleaned EEG.

Cue-locked EEG. We analyzed the cue-locked EEG activity in the channel-space by �ltering the cleaned EEG 
signals between 0.1 to 15 Hz with a 4th order zero-phase Butterworth �lter. �is band-pass �lter o�ers a good 
compromise between removing noise and preserving information for P300 applications50. We then time-locked 
the trials to the cue, grouped them in conditions, and calculated the average. For each condition we calculated the 
con�dence interval of the mean (α = 0.05) using nonparametric t-percentile bootstrap statistics.

Di�erences among the conditions were assessed using nonparametric paired-sample two-tailed permutation 
tests based on t-statistics (α = 0.05) on the [0 2] s window with respect to the cue51. �is test was chosen since 
we performed individual tests at each time point and channel, and permutations tests can be used to mitigate 
the multiple comparisons problem52. For each permutation, paired samples t-statistics were obtained and the 
multivariate t-statistics tmax was calculated (tmax denotes the most extreme positive or negative value of all the 
t-scores across the entire family of tests). A�er all permutations, a tmax reference distribution was obtained. �e 
p-values of each comparison were derived from this reference distribution, which is automatically adjusted to 
re�ect the chance of false discoveries53,54. Since we conducted two-tailed tests at α = 0.05, we found the critical 
values in the tmax reference distribution that cut o� 0.025 on each tail. Each of the individual t-statistics was 
compared with those critical values to make a determination of signi�cance: points falling above or below these 
critical values were declared statistically signi�cant.

�e di�erences among conditions were further investigated in the source space. For this purpose, we com-
puted boundary element head models with OpenMEEG55 using the ICBM152 brain model template included in 
Brainstorm48 and the subject individual EEG electrode positions. �e registration between the ICBM152 tem-
plate (head model based on a non-linear average of 152 subjects) and the individual EEG electrode positions was 
done using the Brainstorm48 automatic alignment algorithm. �is alignment is based on the three �ducial points 
(nasion, le� ear and right ear) and a further iterative algorithm which �nds a better �t between the two head 
shapes, using the remaining head points to improve the initial registration. We visually inspected this alignment. 
�e cleaned EEG was downsampled to 250 Hz and band-pass �ltered from 0.1 to 15 Hz. �ree rest runs were also 
equally processed, and used to obtain full noise-covariance matrices with shrinkage regularization56. Finally, 
to solve the inverse problem, we computed 15002 brain sources using sLORETA35 with unconstrained dipole 
orientations. �is means that sources were estimated independently for the three dipoles with orthogonal direc-
tions. To show the activity maps, the norm of the vectorial sum of the three orientations at each vertex was taken. 
Since we wanted to estimate the brain areas associated with the di�erences observed a�er the cue, we selected a 
time-window of interest, from [0 1.4] s. We then averaged the di�erence over conditions on non-overlapping seg-
ments with 200 ms for each subject and determined the signi�cantly di�erent voxels (i.e. the norm of the vectorial 
sum) using paired-sample two-tailed permutation tests based on t-statistics (α = 0.05).

Response-locked EEG: MRCPs. MRCPs were calculated by �ltering the cleaned EEG signals between 0.1 
to 1 Hz with a 4th order zero-phase Butterworth �lter. We then time-locked the trials to the IO and calculated 
the subject averages. Grand-averages over subjects were obtained, as well as the respective con�dence inter-
val of the mean (α = 0.05) using nonparametric t-percentile bootstrap statistics. Additionally, we analyzed the 
low-frequency EEG signals in the source space using the same methods for calculating the head models and 
solving the inverse problem as described in the section above. �e cleaned EEG signals were downsampled to 
250 Hz and bandpass �ltered between 0.1 and 1 Hz. �ree rest runs were also equally processed, and used to 
obtain full noise-covariance matrices with shrinkage regularization56. A time-window between [−1 1.8] s with 
respect to the IO was selected and the subject individual sources were averaged on non-overlapping segments 
with 200 ms. We computed the signi�cantly di�erent voxels with respect to a baseline [−2.2 −2] s using nonpar-
ametric paired-sample two-tailed permutation tests based on t-statistics (α = 0.05).

Time-locked classification. MRCP features were extracted for movement detection (classi�cation of MI 
vs. REST). In this section, we describe the pairwise comparison which was performed in the time-locked trials 
(i.e. in a synchronous manner). To extract the relevant time-domain amplitude features, we applied a zero-phase 
anti-aliasing �lter and downsampled the data to 10 Hz to reduce computational e�ort. �en, data were processed 
as described in the previous section (0.1–1 Hz band-pass �ltered cleaned EEG). We took the amplitudes over 1 s 



www.nature.com/scientificreports/

1 2SCIENTIFIC REPORTS |  (2018) 8:13394  | DOI:10.1038/s41598-018-31673-2

windows of 26 channels located over the somatosensory and motor areas relevant for the task (channels used 
are speci�ed on Fig. 7a). For each subject, the set of EEG features was divided into training and testing on a 
10 × 5-fold cross-validation procedure. For each trial, REST and MI features were extracted from time-windows 
with duration of 1 s, as follows:

•	 REST window. �e start of the REST window varied among trials. As long as the window upper limit would 
not exceed the end of the trial, its start was at 4 s a�er the IO. Otherwise, the REST window started at −5 s.

•	 MI window. In order to determine the MI window, we had to take into account the di�erences in the MRCPs 
latencies among subjects. �erefore, we calculated the average MRCP on channel Cz on the training set data 
and searched for its peak negativity around [−2 2] s with respect to the IO. If the peak latency was before 0.5 s, 
we chose to start the MI window at −1 s. Otherwise, we chose to start the MI window at 0 s. �e de�nition of 
the MI window is illustrated in Fig. 8a.

We classi�ed the EEG with a shrinkage regularized linear discriminant analysis36, which is a state-of-the-art 
method for classi�cation of event-related potentials36, and has been used in movement detection and classi�-
cation of MRCPs27–29. �e accuracies reported correspond to the average over all cross-validation procedure. 
Subject-speci�c chance-level was calculated based on the number of trials using the adjusted Wald interval57.

Figure 8. Illustration of the data segments used to train and to test the classi�ers. (a) Scheme representing 
the de�nition of the MI window for feature extraction. We calculated the average MRCP at channel Cz on the 
training folds. We then searched for the latency of the peak negativity. For the time-locked classi�cation, if the 
latency was smaller than 0.5 s, the MI window was [−1 0] s, otherwise [0 1] s was taken. For the asynchronous 
classi�cation, if the peak was before 0.5 s, then three windows were taken from [−1 0], [0 1] and [1 2], otherwise 
[0 1], [1 2] and [2 3]. (b) Asynchronous classi�cation and trial-based evaluation. On the 12 s of the evaluation 
period, we applied a 1 s sliding window on every sample. In blue we highlight an example of the period labeled 
as MI, and in orange the 0.5 s di�erence caused by the window de�nition.
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Asynchronous classification. For the asynchronous classi�cation, we took the amplitudes over the same 
26 channels as with the time-locked classi�cation, but used more training observations since we extracted three 
consecutive windows of 1 s each, per trial and per class. �e criteria to de�ne the start of the �rst window were the 
same as for the time-locked classi�cation. �is means that we chose for the REST class three (1-s long) windows 
between [4 7] s or [−5 −2] s, depending on the trials. For the MI class we chose three windows between [−1 2] s 
or [0 3] s, depending on the subjects.

�e performance of the classi�er was obtained in a 10 × 5-fold cross validation procedure, in which, for each 
repetition, 3 folds were used for training, 1 fold was used as validation, and 1 fold was used for testing. We per-
formed a trial-based evaluation which was done on the trials of the testing set, starting 1 s a�er cue presentation. 
�is led to an evaluation period of 12 s per trial, which is represented in Fig. 8b. �e classi�er was continuously 
evaluated with a sliding window of 1 s length, on every sample. For each sample si, we took features from [si − 1, 
si]. If at least half of the window (0.5 s) was within the MI period (indicated in blue in Fig. 8b), and the MI class 
probability was higher than 0.5, then this would be considered as a true positive. �is explains the [MIstart + 0.5, 
MIend + 0.5] s period highlighted in orange in Figs 5, 8b and Supplementary Fig. III.

�e validation set was used to optimize a parameter: the number of consecutive detections (x). An MI was 
detected in sample si if that sample and all the previous x consecutive samples (i.e. [si−x si]) would have been clas-
si�ed as positive. We varied x between 5 and 15, and chose the number which maximized the number of correctly 
classi�ed trials on the validation set. A trial was correct when MI events were detected within the MI period (i.e. 
at least one true positive), and no MI events were detected during the rest (i.e. no false positives). Any other pos-
sibility was considered as incorrect. �e chance level was calculated by permuting the IO 500 times (which lead to 
a structured permutation of the labels) and by repeating the described cross-validation procedure.

Data Availability
�e datasets generated during the current study are available from the corresponding author on reasonable re-
quest.
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