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Abstract

Epilepsy patients experience challenges in daily life due to precautions they have to take in order to cope with this

condition. When a seizure occurs, it might cause injuries or endanger the life of the patients or others, especially

when they are using heavy machinery, e.g., deriving cars. Studies of epilepsy often rely on electroencephalogram

(EEG) signals in order to analyze the behavior of the brain during seizures. Locating the seizure period in EEG

recordings manually is difficult and time consuming; one often needs to skim through tens or even hundreds of hours

of EEG recordings. Therefore, automatic detection of such an activity is of great importance. Another potential usage

of EEG signal analysis is in the prediction of epileptic activities before they occur, as this will enable the patients (and

caregivers) to take appropriate precautions. In this paper, we first present an overview of seizure detection and

prediction problem and provide insights on the challenges in this area. Second, we cover some of the state-of-the-art

seizure detection and prediction algorithms and provide comparison between these algorithms. Finally, we conclude

with future research directions and open problems in this topic.

1 Review
1.1 Introduction

Epilepsy, which is classified as a neurological disorder

that affects the brain, impacts about 2% of the world

population leading to a reduction in their productivity

and imposing restrictions on their daily life [1]. Diagno-

sis of epilepsy is done by analyzing electroencephalo-

gram (EEG) signals, as well as patient behavior. EEG

signals have two types: scalp EEG and intracranial EEG

(iEEG). Scalp EEG signals are usually collected with elec-

trodes placed on the scalp using some sort of conductive

gel after treating the scalp area with light abrasion in

order to decrease the impedance resulting from dead

skin cells. Commonly, 19 recording electrodes in

addition to a ground and system reference are placed on

the scalp area according to specifications by the Inter-

national 10–20 system. However, fewer electrodes are

used when the EEG signals are recorded for neonates

[2]. Each of these electrodes collects an EEG signal,

which is centrally recorded for post-processing. On the

other hand, in iEEG, electrodes are placed directly on

the exposed surface of the brain during a surgery to rec-

ord electrical activity from the cerebral cortex. For the

seizure detection task in the case of epilepsy patients, it

is required to analyze these EEG signals towards a deci-

sion of the existence, or absence, of an epileptic seizure.

If a seizure exists, further analysis could be made for

more understanding of seizure behavior. Most of the re-

search work in the field of seizure detection depends on

scalp EEG signals, which are acquired with non-invasive

techniques. So, we will adopt the term EEG to refer to

scalp EEG throughout the paper.

The seizure detection process can be made on a

single- or multi-channel basis [3,4]. Single-channel seiz-

ure detection requires selecting the channel containing

the strongest EEG signal collected from the closest point

to the seizure spot. This selection process depends

mainly on activity measures evaluated for the different

channels instantaneously such as the local variance. A

better treatment to the seizure detection issue depends

on incorporating the information from all EEG signals

available into the seizure detection process through data

fusion, or multi-channel processing techniques [5].

Several studies have been conducted on EEG seizure

detection [3,4]. To perform seizure detection on time-

domain waveforms, there is a need to create models for

the EEG signals, from which features are extracted,
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because treating the signal as discrete-time sequence is

not a robust approach for extracting characterizing fea-

tures. Some algorithms create models for normal and ab-

normal EEG signals of the patients and use these models

in the training process. New signals are tested against these

models leading to the decision of seizure or non-seizure

activities. Most of the time-domain seizure detection algo-

rithms are patient specific; that is, they are applied to the

patient for which training data are extracted. This is intui-

tively meaningful as each patient has a different nature for

his/her EEG signals.

Efforts have also been made to develop seizure predic-

tion algorithms [6,7]. Note that with seizure prediction,

it is possible to alert ambulatory patients or caregivers

before seizure occurs and causes injury. In addition, seiz-

ure prediction could initiate time-sensitive clinical proce-

dures necessary for characterizing epileptic syndromes. It

could, also, help in initiating delivery of therapy early

enough to attenuate seizure attack and reduce its duration

or may even terminate it completely. The endeavor to-

wards fast and simple seizure prediction algorithms has

led to the development of a variety of algorithms which

will be covered in this paper.

Signal processing has shown a breakthrough with the

evolution of several discrete transforms and signal de-

composition techniques, because all of these transforms

and decompositions have their unique nature. For ex-

ample, the discrete Fourier transform (DFT) and discrete

wavelet transform (DWT) have found popularity in seiz-

ure detection and prediction applications. Similarly, the

singular value decomposition (SVD) and empirical mode

decomposition (EMD) have also found a role in these

applications. Even the principal component analysis

(PCA) and the independent component analysis (ICA)

have found a pre-processing noise removal role in these

applications.

Several attempts have been presented in the literature

to classify EEG seizure detection and prediction methods.

For example, classification into linear and non-linear

methods considers variance-based, correlation-based, and

simple power spectrum-based methods as linear methods

and all other methods as non-linear methods [8-10]. We

did not adopt this classification as most of the reviewed

methods in this paper are non-linear techniques. Another

classification for seizure detection and prediction methods

depends on the type of EEG signals used: whether scalp

EEG or iEEG. We mentioned in this paper the type of

database used for testing each method and the type of the

signals in the database.

Tzallas et al. presented a classification of EEG seizure

detection methods into pattern recognition methods,

morphological analysis methods, parametric methods,

decomposition methods, clustering methods, and data

mining methods [11]. In this paper, we review some of

the recently developed seizure detection and prediction

algorithms along with a comparison study between them

adopting another basis for classification of seizure detec-

tion and prediction methods depending on the trans-

form domain of operation. It seems that seizure detection

and prediction are two different trends, but we look at

them from a signal processing perspective with different

transform domains. We investigate in our description and

classification in this paper the most important seizure de-

tection and prediction algorithms operating in each trans-

form domain. Figure 1 shows a classification of the seizure

detection and prediction methods based on the processing

domain.

Therefore, we organize the paper as follows. We first

begin by the most common methods for seizure detec-

tion and prediction: time-domain methods, which are

addressed in Section 1.2. Section 1.3 is devoted to

frequency-domain seizure detection methods. Wavelet-

domain seizure detection and prediction methods are

covered in Section 1.4. Sections 1.5 and 1.6 are devoted

for seizure detection methods that are based on the

EMD and the SVD, respectively. Section 1.7 presents the

role of ICA and PCA in seizure detection. A comparison

study illustrating seizure detection and prediction

methods is given in Section 2.

1.2 Time-domain methods

In general, local activities of EEG waveforms vary from

patient to patient; therefore, seizure detection and pre-

diction algorithms are preferred to be patient specific.
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Figure 1 Classification of seizure detection and

prediction methods.
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Figure 2 shows an example of an EEG signal including a

seizure period. It is clear that there is a difference be-

tween seizure and non-seizure intervals. As we are able

to differentiate between these intervals visually, time-

domain detection and prediction methods attempt to

differentiate between them automatically, and evaluate

the performance using different metrics such as the sen-

sitivity, specificity, accuracy, and false-positive value.

These metrics are defined as follows [12]:

Sensitivity ¼
TP

TPþ FN
� 100 ð1Þ

Specificity ¼
TN

TNþ FP
� 100 ð2Þ

Accuracy ¼
TPþ TN

TNþ FPþ TPþ FN
� 100 ð3Þ

False positive value ¼
TP

TPþ FP
� 100; ð4Þ

where true positive (TP) is the number of seizure epochs

determined by both algorithm and experienced physi-

cians, false positive (FN) is the number of seizure epochs

which are missed by the algorithm but have been deter-

mined by experienced physicians, true negative (TN) is

the number of non-seizure epochs recognized by both

algorithm and experienced physicians, and false positive

(FP) is the number of non-seizure epochs recognized as

seizure by the algorithm.

1.2.1 Seizure detection methods

To detect EEG seizures in time domain, there is a need

to analyze discrete time sequences of EEG epochs. This

analysis can be accomplished through histograms of the

epochs. Runarsson and Sigurdsson presented a simple

time-domain seizure detection method that is based on

tracing consecutive peaks and minima in the signal seg-

ment at hand and estimating the histograms for two var-

iables: the amplitude difference and time separation

between peak values as well as minima [13]. The fea-

tures used for classification of an epoch as a seizure or

non-seizure are the estimated values of the histogram

bins. The authors used a support vector machine (SVM)

classifier for this task and achieved an average sensitivity

of about 90% on self-recorded data.

Another approach to deal with the EEG seizure detec-

tion method in time domain is to compute the signal en-

ergy during seizure and non-seizure periods. A better

treatment to the energy estimation approach is to esti-

mate the energies of the signal sub-bands not the signal

as a whole in order to build a more discriminative fea-

ture vector. Yoo et al. adopted this approach and pre-

sented an eight-channel EEG acquisition system-on-chip

(SoC) that can detect and record patient-specific epilep-

tic seizures [14]. They used a bank of seven band-pass

filters covering the frequency range from 2 to 26 Hz on

eight channels of the processed EEG signals. Eight highly

dynamic analog channels, classification processor, and a

64-KB SRAM have been integrated in the SoC. With this

approach, a long-term seizure monitoring and storage

Figure 2 An EEG signal containing a seizure.
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device was built. The authors used an SVM as a classi-

fier with a gain and bandwidth (GBW) controller to per-

form real-time gain and bandwidth adaptation to analog

front end (AFE) in order to keep a high accuracy. This

classifier is well suited for the hardware implementation.

The SoC was tested on CHB-MIT scalp EEG database

[15], and it was verified in the presence of a rapid eye

blink giving an accuracy of 84.4% with 2.03 μJ/classifica-

tion energy.

Another approach to deal with time-domain seizure

detection is to exploit some discriminating statistics be-

tween seizure and non-seizure epochs. Dalton et al. de-

veloped a body senor network (BSN) that can monitor

and detect epileptic seizures based on statistics extracted

from time-domain signals [16]. These statistics include

the mean, variance, zero-crossing rate, entropy, and auto-

correlation with template signals. For auto-correlation es-

timation, they adopted a dynamic time warping (DTW)

approach for best alignment between the signal segment

to be tested and the template signal. The authors pre-

sented a network to be embedded in wearable kinematic

sensors and an N810 Internet tablet. Data were recorded

from the subjects using kinematic sensors such as triacce-

lerometer, gyroscope, and magnetic sensor for physical ac-

tivity monitoring. This algorithm was, then, commercially

distributed and a BSN was developed on a Mercury plat-

form. The sensitivity of the proposed algorithm for a data-

set of 21 seizures was found to be 91% with a specificity of

84% and battery lifetime of 10.5 h.

1.2.2 Seizure prediction methods

The research work on the issue of time-domain seizure

prediction is richer than time-domain seizure detection

due to the importance of the seizure prediction problem.

We can think of the seizure prediction problem as a de-

tection problem of the pre-ictal state on seizure records.

This requires a considerable long inter-ictal state for

good prediction results. Similar statistics to those used

in seizure detection like the zero-crossing rate can be

used for seizure prediction. Zandi et al. used the zero-

crossing rate of EEG signal segments to develop a

patient-specific seizure prediction method [17,18]. A

moving window analysis is used in this method. The his-

tograms of the different window intervals are estimated,

and selected histogram bins are used for classification into

pre-ictal and inter-ictal states based on comparison with

reference histograms. A variational Bayesian Gaussian

mixture model has been used for classification. In this

method, a combined index for the decisions taken on se-

lected bins is computed and compared with a pre-defined

patient-specific threshold to raise an alarm for coming sei-

zures as shown in Figure 3. This method has been tested

on 561 h of scalp EEG containing 86 seizures for 20 pa-

tients. It achieved a sensitivity of 88.34%, a false prediction

rate of 0.155 h−1, and an average prediction time of

22.5 min.

Aarabi and He [19] developed a time-domain rule-

based patient-specific seizure prediction method which

consists of three stages: pre-processing, feature extraction,

and rule-based decision making. In the pre-processing

stage, the iEEG data is filtered using a 0.5- to 100-Hz

band-pass filter in addition to a 50-Hz notch filter. Then,

the filtered signal is segmented into non-overlapping 10-s

segments. Five univariate features (correlation entropy,

correlation dimension, Lempel-Ziv complexity, noise level,

and largest Lyapunov exponent) and one bivariate feature

(non-linear independence) were extracted from each seg-

ment in the second stage.

Based on the theory of chaos, the correlation dimen-

sion (denoted by ν) represents a dimensionality measure

of the space having a set of random points; in our case,

EEG signals. For an m-dimensional space containing a

set of N points, we have:

x
→

ið Þ ¼ x1 ið Þ; x2 ið Þ; :::::::; xm ið Þ½ �;

i¼ 1; 2; ::::;N

ð5Þ

The correlation integral C(ε) can be estimated as [20]:

C εð Þ ¼ lim
N→∞

g

N2
; ð6Þ

where g represents the total number of pairs of signals

or points having a distance less than ε. As the number of

points increases and tends to infinity and the distance

tends to be shorter or close to zero, the correlation inte-

gral, in turn, for small values of ε becomes:
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Figure 3 Zandi et al. seizure prediction method.
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C εð Þ≈εv ð7Þ

If a large number of evenly distributed points exists, a

log-log graph of the correlation integral versus ε can be

used to estimate ν. For objects with higher dimensions,

several ways exist for points to be close to each other,

and hence, the number of pairs which are close to each

other jumps rapidly for higher dimensions [20].

Correlation entropy is a Kolmogorov entropy variant,

which is similar to the mutual information between two

sequences of data. Large mutual information between an

available data segment and stored segments with specific

patterns is an indication that the segment at hand

belongs to a dataset with similar characteristics to the

stored pattern [21]. The Lempel-Ziv complexity is a

measure of randomness of data sequences [22]. It counts

the number of data patterns with certain characteristics

in data segments. For example, if we find enough short

patterns with specific mean, variance, or higher-order

statistics in an EEG segment, we can classify this seg-

ment as a seizure segment.

The Lyapunov exponent of a dynamical system deter-

mines the separation rate of very closely related trajec-

tories. Hence, two signal vectors in the phase space with

an initial separation of δZ0 will eventually diverge at a

rate given by:

δZ tð Þj j≈eλt δZ0j j; ð8Þ

where λ is the Lyapunov exponent. This can be achieved

if the divergence can be dealt with within the linearized

approximation.

The separation rate differs based on the initial separ-

ation vector orientation. The maximal Lyapunov expo-

nent can be estimated as [23]:

λ ¼ lim
t→∞

lim
δZ0→0

1

t
ln

δZ tð Þj j

δZ0j j
ð9Þ

The limit δZ0→ 0 ensures the validity of the linear ap-

proximation at any time.

Considering a given segment and feature, if N chan-

nels exhibit behaviors like those expected in the feature

or segment spatiotemporal profile describing the pre-

ictal state of the patient, and if N was greater than a

threshold Nch, then this segment is temporarily catego-

rized as a seizure precursor, and hence a flag, labeled as

I, is raised for the segment as shown in Figure 4. A value

is given to this flag by an averaging process for the chan-

nels’ absolute normalized feature values. The channels

selected are those that show similar behavior to the one

expected in the spatiotemporal profile of the feature char-

acterizing the pre-ictal state of the patient. The values and

location of all flag Is are hence stored and given as input

into the feature integrator, which integrates decisions for

every segment to accurately locate the seizure precursors.

For any signal segment, if M flag Is with values that are

higher than a certain significance threshold Tc1 are raised

and if M is larger than a certain threshold NF, then an-

other flag which is labeled as II is raised. This flag is deter-

mined as the average of the values of the flag Is. Flag IIs

ensure a higher likelihood of accurate seizure prediction.

Flag IIs are used as input to the feature integrator II to ob-

tain a higher-level decision. This feature integrator inte-

grates flag Is and flag IIs as shown in Figure 4. If both flag

I and flag II are raised, then a flag III representing a defini-

tive seizure precursor is also raised.

This method has been evaluated using iEEG data from

two patients (frontal, temporal lobe origin) from Freiburg

Seizure Prediction EEG (FSPEEG) database with a 256-Hz

sampling rate and a total of 58 h, and 10 seizures with

50-min pre-ictal at least [24]. The results demonstrated

average sensitivities of 90% and 96.5% for patient one and

patient two, respectively. The average false prediction

rates were 0.06/h and 0.055/h for both patients for predic-

tion horizons of 30 and 60 min.

Schelter et al. presented a new method to minimize

the false alarms adopting circadian concepts [25]. A cir-

cadian rhythm is defined as any biological operation that

reveals an endogenous, entrainable oscillation for 24 h.

The authors used the output of the mean phase coher-

ent algorithm, which measures the interaction between

pairs of EEG signals, as a seizure predictor, which causes

an alarm to be raised if it exceeds a certain threshold. It

was assumed that the seizures occur while the patient is

sleeping. The false alarms display a circadian depend-

ency with most of the seizure prediction algorithms. The

seizure predectability is increased during night due to

the large number of seizures. Accordingly, threshold

adaptation can be used in day and night to enhance pre-

dictability. The authors evaluated this method utilizing

iEEG data from eight patients and a total of 1400 h,

which include 172 seizures and reported a good predic-

tion performance for 40% of the patients.

Wang et al. proposed an adaptive learning system that

interactively learns from the patient and improves its
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seizure predictability over time [26]. It is based on

reinforcement learning and online monitoring, in addition

to adaptive control theory. In this system, a sliding win-

dow size of 10 min is used to read continuous multi-

channel EEG data with a 50% overlap at each move. Then,

k-nearest neighbor (KNN) method is adopted for the

classification of the windowed epochs to normal or pre-

seizure states based on pre-constructed baselines for both

states using pre-specified baseline for normal and pre-

seizure states. Finally, according to the prediction feed-

backs, the two baselines are updated. This method

was evaluated using iEEG data for five patients having

temporal lobe epilepsy. The EEG data consisted of 26

channels with a duration range from 3 to 13 h. This

method achieved an accuracy of 70% compared to 50% for

the Poisson random predictor with a mean interval of λ

minutes.

Researchers have proved that symptoms like sleep

problems or headaches are observable from the analysis

of the iEEG. These symptoms can be utilized as a major

tool for seizure prediction. Bedeeuzzaman et al. have

presented a seizure prediction algorithm with a statis-

tical feature set consisting of mean absolute deviation

(MAD) and inter-quartile range (IQR) to predict epilep-

tic seizures [27]. A linear classifier has been used to find

the seizure prediction time in pre-ictal iEEGs. A sensitiv-

ity of 100% with zero false-positive rate (FPR) in 12 pa-

tients and low values of FPR for the rest were achieved

using Freiburg iEEG dataset. Average prediction time

varied between 51 and 96 min.

The envelope of the EEG signal can be exploited to

distinguish between different activities. Li et al. pre-

sented a time-domain method for seizure prediction that

is based on spike rate estimation [28]. Morphological

operations and averaging filters are applied to transform

each signal segment to a train of spikes in a way similar

to the process of envelope detection. Based on the spike

rate, ictal, inter-ictal, and pre-ictal states can be identi-

fied through comparison with a certain threshold. This

method was applied on 21 patients from Freiburg data-

base, and it achieved a sensitivity of 75.8% and an aver-

age false-alarm prediction rate of 0.09/h.

Due to the inherent intra- and inter-patient seizure het-

erogeneities and EEG non-stationarity, it is difficult to

measure the modulations of neuronal network interac-

tions using seizure precursors. To solve this problem,

Stamoulis et al. studied the pre-ictal neuro-modulations

corresponding to temporal and/or frontal lobe seizures.

They used information theoretic features like entropy and

mutual information extracted from two frequency ranges

(the range that is less than or equal to 100 Hz and the

range that is greater than 100 Hz) of awake scalp EEGs

[29]. They succeeded to measure pre-ictal modulations at

frequencies greater than 100 Hz with high specificity.

Another approach to process EEG signals in the time

domain in order to detect or predict seizure is to create

models from the EEG signal segments corresponding to

different activities. One of such models is the auto-

regressive (AR) model, which can be thought of as a data

reduction model that transforms the EEG signal segment

into few coefficients. Chisci et al. studied the implant-

ation of monitoring and control units on drug-resistant

epilepsy patients with AR modeling [30]. They adopted

AR modeling with a least-squares parameter estimator

for EEG feature extraction in addition to a binary SVM

classifier to distinguish between pre-ictal, ictal, and

inter-ictal states as shown in Figure 5. This algorithm is

computationally simple enabling real-time implementa-

tion. Simulation results on the Freiburg database have

shown 100% sensitivity with low false-alarm rate. This is

attributed to the regularization strategy of the SVM clas-

sifier with Kalman post-processing.

The realization of implantable seizure prediction de-

vices that can be used for alerting the patient and taking

an action is a very challenging task. Cellular non-linear

networks (CNNs), which represent a paradigm for high-

speed computations, can be used for this task. Tetzlaff

and Senger presented four different CNN-based ap-

proaches for epileptic seizure prediction towards an im-

plantable seizure warning device working on any type of

simple time-domain features [31]. This method can be

used with any of the abovementioned features. The

CNNs have been used in these approaches because they

consist of locally coupled dynamical systems that can

simulate the non-linear phenomena encountered in

physical communication.

1.3 Frequency-domain methods

Frequency-domain techniques have been used for EEG

seizure detection. Both of the Fourier transform magni-

tude and phase can be exploited for this purpose. Rana

et al. presented a frequency-domain epileptic seizure
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Figure 5 Chisci et al. seizure prediction method.
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detection approach depending on the phase-slope index

(PSI) of multi-channel EEG signals [32]. If we consider

signals zi [n] and zj [n], their cross spectrum is given by:

Sij fð Þ ¼ E Zi fð ÞZ�
j fð Þ

h i

; ð10Þ

where Zi (f ) and Zi (f ) are the Fourier transforms of zi
[n] and zj [n]. Hence, the complex coherence is given by:

Cij fð Þ ¼
Sij fð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sii fð ÞSjj fð Þ
p ð11Þ

An unnormalized PSI metric can be defined using

complex coherence as follows:

~Ψ ij ¼ Im
X

f ∈F

C�
ij fð ÞCij f þ δfð Þ

 !

; ð12Þ

where δf is the frequency resolution and F is the fre-

quency band of interest. We can deduce that ~Ψ ij mea-

sures a weighted sum of the slopes of the phase between zi
[n] and zj [n] over the selected band F [32]. Normalization

with the standard deviation is used to determine whether

causal influence from zi [n] to zj [n] is of significant extent

or not.

The PSI computes the measure of interaction between

two channels. The authors used the PSI metric to distin-

guish between seizure and normal activities. The detec-

tion performance has been evaluated over five patients

having different types of epilepsy with 47 seizures in

258 h of recorded data. The simulation results showed

that this algorithm succeeded in the detection of all sei-

zures for four out of five patients, and it achieved a

lower false detection rate than two per hour. The results

also showed that the channels with strong activity can

be determined for each patient.

Khamis et al. used frequency-moment signatures for

building a patient-specific seizure detection method [33].

Firstly, experienced electroencephalographs have marked

the collected scalp EEG data with seizure events. After

that, a filtering process has been performed on the win-

dowed EEG data from electrode differences T6-P4 for

the right hemisphere and T5-P3 for the left hemisphere.

Power spectral densities of the signals on both hemi-

spheres have been computed and a background removal

technique has been used. Moments of these spectra have

been used as features for signal classification as seizure

or non-seizure. Results reported a sensitivity of 91% and

false-alarm rate of 0.02 false positives per hour.

EEG signals are in general non-linear and non-stationary.

So, there is a difficulty to characterize different activities of

EEG signals with certain mathematical models. To tackle

this problem, Acharya et al. presented a modified method

for the detection of normal, pre-ictal, and ictal conditions

from recorded EEG signals [34]. This method is based on

four entropy features for classification: phase entropy 1 (S1),

phase entropy 2 (S2), approximate entropy (ApEn), and

sample entropy (SampEn). The phase entropies are esti-

mated from the higher-order spectra of EEG signal epochs

as discriminating features for ictal, pre-ictal, and inter-ictal

activities. The approximate and sample entropies are loga-

rithmic metrics that determine the closeness and matching

between the incoming EEG signal pattern and the recorded

templates. These features are extracted from EEG signals

and fed to seven different classifiers for comparison: SVM,

fuzzy Sugeno classifier (FSC), probabilistic neural network

(PNN), KNN, naive Bayes classifier (NBC), decision tree

(DT), and Gaussian mixture model (GMM). The obtained

results with this method showed the superiority of the

Fuzzy classifier, which achieved an accuracy of 98.1%.

1.4 Wavelet-domain methods

Wavelets have been widely used in the field of EEG sig-

nal analysis, especially for seizure detection and predic-

tion. The wavelet transform in itself can be regarded as

some sort of sub-band decomposition, but with down-

sampling. The wavelet transform can be implemented

on analog as well as digital signals. We are more inter-

ested in the DWT. The DWT can be implemented with

low-pass (LP) and high-pass (HP) filtering in addition to

a decimation process, and it must be invertible as shown

in Figure 6a [35]. The DWT can be implemented with a

single level or multi levels as shown in Figure 6b, c. For

the multi-level wavelet decomposition, further decompo-

sitions up to the required level are performed on the

low-pass branch only. Another implementation of wave-

let analysis is the wavelet packet transform, which

performs further decomposition on the low-pass and

high-pass branches.

The wavelet decomposition and reconstruction filters

H0, H1, G0, and G1 must satisfy the perfect reconstruc-

tion (PR) condition. These filters can be obtained by

solving the following equation [35]:

Y zð Þ ¼
1

2
X0 zð Þ þ X0 −zð Þf gG0 zð Þ þ

1

2
X1 zð Þ þ X1 −zð Þf gG1 zð Þ

¼
1

2
X zð Þ H0 zð ÞG0 zð Þ þ H1 zð ÞG1 zð Þf g

þ
1

2
X −zð Þ H0 −zð ÞG0 zð Þ þ H1 −zð ÞG1 zð Þf g

ð13Þ

The main idea of using the wavelet analysis for EEG

seizure detection and prediction is extracting discrimin-

ating features from appropriate sub-bands to be used for

further classification.
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1.4.1 Wavelet-domain seizure detection

The main challenge in wavelet-based EEG seizure detec-

tion is the determination of the appropriate wavelet de-

composition level and the selection of the features from

certain sub-bands for discrimination between seizure

and non-seizure periods. Zhou et al. presented a wavelet-

based seizure detection method that depends on lacunar-

ity and fluctuation index as features with Bayesian linear

discriminant analysis (BLDA) [12]. The lacunarity is a

measure of heterogeneity used in fractal analysis. In this

method, the authors first decompose the EEG epochs into

five wavelet sub-bands. Three sub-bands with scales 3, 4,

and 5 are chosen for further processing. For feature ex-

traction, lacunarity and fluctuation index are computed

within the frequency bands. If p(m,l) denotes the probabil-

ity of points, whose amplitude is equal to m, l represents

the length of EEG epochs, A is the minimum amplitude

value, and B is the maximum amplitude value, then the

equation below holds [12]:

X

B

m¼A

p m; lð Þ ¼ 1 ð14Þ

After calculating,

M1 lð Þ ¼
X

B

m¼A

mp m; lð Þ ð15Þ

M2 lð Þ ¼
X

B

m¼A

m2p m; lð Þ ð16Þ

The lacunarity can be obtained as:

la lð Þ ¼
M2 lð Þ− M1 lð Þ½ �2

M1 lð Þ½ �2
ð17Þ

After feature extraction, BLDA is used to classify the

seizures. The BLDA tries to minimize the risk associated

with the classification decision. It can deal with high
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Figure 6 Wavelet decomposition and reconstruction. The down arrow is down-sampling by 2, and the up arrow is up-sampling by 2. (a) The

two-band decomposition-reconstruction filter bank. (b) Multi-level wavelet decomposition tree. (c) Multi-level wavelet reconstruction tree.
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dimensionality and noisy datasets, assuming a linear re-

lation between targets t and feature vectors x from one

side and additive white Gaussian noise n from the other

side in Bayesian regression. Post-processing, such as

smoothing, and multi-channel decision fusion are ap-

plied to enhance the detection accuracy of the BLDA.

The performance of this method was investigated on

Freiburg EEG database, and it achieved a 96.25% sensi-

tivity with 0.13/h false detection rate.

Another five-level wavelet decomposition method for

seizure detection was developed by Liu et al. [36]. This

method works on multi-channel iEEG signals. Three

wavelet sub-bands are selected for further processing.

The extracted features from these sub-bands are the

relative amplitude, relative energy, coefficient of vari-

ation, and fluctuation index from the selected frequency

bands. The coefficient of variation is the ratio between

the standard deviation of a decomposed sub-band and

the square of its mean. The fluctuation index is a meas-

ure of the intensity of a decomposed sub-band. An SVM

classifier is used in this approach, and some sort of post-

processing is implemented to enhance the detection per-

formance with smoothing, multi-channel decision fusion,

and collar processing. The collar processing is technique

aiming to maintain the data continuity during processing.

The performance of this method has been tested on 509 h

for 21 epilepsy patients. Experimental results have shown

that this method achieved a 94.46% sensitivity, a 95.26%

specificity, and a 0.58/h false detection rate on long-term

iEEG.

The five-level wavelet decomposition was also adopted

by Panda et al. with an SVM classifier for seizure detec-

tion from background EEGs [37]. This classifier was

tested on a healthy subject with open eyes, a healthy

subject with closed eyes, and an epilepsy patient. The

extracted features for signal classification are energy,

standard deviation, and entropy. The simulation results

revealed an accuracy of 91.2% in seizure activity detec-

tion. Khan et al. proposed a similar approach for seizure

detection, but with relative energy and a normalized co-

efficient of variation (NCOV) as features [38]. It works

on wavelet coefficients acquired in the frequency range

of 0 to 32 Hz as follows:

1) The COV is estimated as:

COV ¼
σ
2

μ2
ð18Þ

where σ2 is the epoch variance and μ is the epoch

mean.

2) The RCOV is estimated as:

RCOV ¼
COV e nð Þ

COV lð Þ
ð19Þ

where COVe(n) is the epoch coefficient of variation

and COV(l) is the background coefficient of variation.

3) The NCOV is evaluated as:

NCOV ¼
σ
2

μ
a

; ð20Þ

where μa represents the mean of the absolute values of

the wavelet coefficients. The obtained results with the

NCOV are better than those obtained using the COV

only.

Wang et al. used Neyman-Pearson rules and an SVM

classifier for seizure detection as shown in Figure 7 [39].

This method depends on the wavelet coefficients in

addition to the ApEn in the wavelet domain as extracted

features, and the detection is performed using Neyman-

Pearson rules with an SVM. The approximate entropy is

an entropy metric that takes into consideration the order-

ing of the points of the discrete time sequence at hand,

and hence, it is a good measure for the regularity of the

data sequence. Simulation results have shown a detection

accuracy of 98% and a false detection rate of 6%.

Zainuddin et al. investigated the use of wavelet neural

networks (WNNs) based on wavelet basis functions for

seizure detection [40]. Firstly, the wavelet transform of

EEG signals is estimated, and maximum, minimum, and

standard deviation of the absolute values of the wavelet

coefficients in each sub-band are extracted as features.

These features are then fed to trained WNNs. The

Gaussian, Mexican Hat, and Morlet wavelet activation

functions have been investigated for classification. A

cross-validation approach have been adopted in the

Wavelet

Transform
ApEn

Neyman -

Person 

Detector

SVM

Performance 

Evaluation

Raw EEG

Signal

Figure 7 Wang et al. method for seizure detection.
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simulation experiments. Simulation results revealed that

the best performance was obtained with WNNs employ-

ing a Morlet wavelet activation function with order 4

Daubechies wavelet for feature extraction. The authors

have carried simulation experiments on the University of

Bonn database for scalp EEG signals [41]. The simulation

results reported sensitivity and accuracy up to 98% with

such combination.

Niknazar et al. presented a wavelet-based method for

epileptic seizure detection that adopts recurrence quan-

tification analysis (RQA) on EEG recordings and their

delta, theta, alpha, beta, and gamma sub-bands extracted

through a four-level Daubechies wavelet transform [42].

The RQA is well-suited for non-linear data analysis. It

quantifies the number and duration of recurrences of

the EEG signals based on phase space trajectories. The

phase space is built on estimating a time delay and an

embedding dimension, which are the features corre-

sponding to each EEG signal state. The authors adopted

an error-correcting output coding (ECOG) classifier for

discriminating between three states: healthy, inter-ictal,

and ictal. This method achieved an accuracy of 98.67%.

Daou and Labeau presented a wavelet-based approach

for EEG signal compression and seizure detection, sim-

ultaneously [43]. The compression is performed with the

set partitioning in hierarchical trees (SPIHT) algorithm.

The SPIHT codes the LP and HP components of the sig-

nals with binary sequences. A dictionary is built for

these binary sequences of normal and seizure activities.

The seizure detection process is performed for each in-

coming segment by correlation estimation with the bin-

ary codes of normal sequences in the dictionary. If low

correlation is detected, correlation estimation is per-

formed with binary sequences of the HP components of

seizure segments to ensure seizure activity. This method

achieved an accuracy of about 90%.

Statistical analysis revealed that the spectra of normal

EEG signals follow an inverse attenuation law over the

bands of interest, which means that there are self-similar

fluctuations in EEG signals over a multiplicity of scales.

Based on this idea, Mehta et al. presented a scale-invariant

seizure detection method [44]. In this method, the onset is

detected, when the scale invariance is lost, which means

that the slope of the regression line on a logarithmic plot

for the wavelet scales 6 to 2 decreases.

Shoaib et al. presented a low-energy scalable processor

for directly analyzing EEG signals acquired through com-

pressive sensing [45]. This work adopts wavelet energy

features. It studies the effect of compressive sensing on

seizure detection performance showing a reduction of

only 4% in detection sensitivity and an increase of only

0.15/h in false-alarm rate and 1 s in latency compared to

baseline performance. The main advantage of this method

is energy saving archived through compressive sensing.

Zandi et al. presented a wavelet packet real-time seiz-

ure detection algorithm working on scalp EEG signals

[46]. They developed a patient-specific metric to differ-

entiate between seizure and non-seizure states in the 1-

to 30-Hz frequency range based on wavelet coefficients

of seizure and non-seizure references. A combined seiz-

ure index (CSI) is derived from all EEG signal channels

depending on the rhythmicity and relative energy of sig-

nal epochs for classification as seizure or non-seizure. A

majority voting rule is used on the decisions from all

channels to generate the CSI and raise an alarm when a

seizure is detected. This algorithm was tested on 14 pa-

tients having 75.8 h with 63 seizures, and it achieved a

sensitivity of 90.5%, a median detection delay of 7 s, and

a false-alarm rate of 0.51 h−1.

1.4.2 Wavelet-domain seizure prediction

The same concepts of wavelet signal analysis used for

seizure detection can be extended to seizure prediction,

but with the target this time as the detection of the pre-

ictal state. In general, EEG signals containing seizures

are build up of constantly changing bursting levels. This

signal nature enables discrimination between different

signal activities from wavelet sub-bands. The residual

sub-band wavelet entropy (RSWE) can be directly used

to estimate the entropy of bursts from the sub-bands as

proposed by Paul et al. [47]. The wavelet decomposition

equation for an EEG signal using a sliding window of

index m is given by:

s tð Þ ¼
X

∞

τ¼−∞

amL τð Þϕ 2−Lt−τ
� �

þ
X

L

l¼1

X

∞

τ¼−∞

Cm
l τð Þψ 2−lt−τ

� �

; ð21Þ

where Cm
1 τð Þ;Cm

2 τð Þ;…;Cm
L τð Þ are the wavelet coeffi-

cients. The sequence amL τð Þ
� �

is the coarser-resolution

signal for a high-level decomposition. The authors experi-

mented lower and higher numbers of levels and found

that the five levels are the optimum choice.

The relative wavelet energy (RWE) of the wavelet coef-

ficients is used to derive a sub-band wavelet entropy

(SWE) feature. For a sliding window with index m, the

field potential (FP) is given by [48]:

Em
l τð Þ ¼ Cm

l τð Þ
�

�

�

�

2
ð22Þ

The wavelet coefficients total energy is given by:

Em
rmtotal ¼

X

l

X

τ

Em
l τð Þ ð23Þ

The RWE can be expressed with normalization as:
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pml τð Þ ¼
Em
l τð Þ

Em
rmtotal

ð24Þ

The SWE at scale l can be defined with a probabilistic

approach as:

H Cm
l

� �

¼
X

τ

pml τð Þ logpml τð Þ ð25Þ

The lth level RSWE of the nth frame is given by:

J Cm;n
l

� �

¼ H Cm;n
l

� �

−
1

No

X

No

n¼1

H Cm;n
l

� �

; ð26Þ

where C
m;n
l represents the wavelet coefficients of the nth

frame in the mth window.

For the estimation of the RSWE, a sliding window of

1-min length has been used assuming that the FP is sta-

tionary during this window. It was also assumed that the

background FP fluctuations stay statistically unchanged

for frames of 5-s length during the main sliding window.

On the other hand, the FP fluctuations have another

component that is statistically variant over the 5-s

frames. Hence, an averaging process is performed on the

background entropy components estimated in the main

window. Consequently, resulting residual entropy corre-

sponds only to the bursting components. A key observa-

tion on this approach is that there is an increment in the

mean cortical RSWE during the transition from the pre-

ictal to inter-ictal period. This increment can be used

with an efficient slope change detector and used for

early seizure prediction.

Hung et al. developed a very large scale integration

(VLSI) setup of wavelet-based seizure prediction algo-

rithm using the correlation dimension (Dc) and its

correlation coefficient [48]. Their system comprises

arithmetic functional and control units. The arithmetic

functional units are the DWT, correlation dimension,

correlation coefficient, and seizure prediction. The DWT

of the pre-processed signal is estimated to decompose it

into four sub-bands (0 to 63 Hz, 64 to 128 Hz, 0 to

1 Hz, and 32 to 64 Hz). The higher-frequency sub-bands

are then represented in the phase space. The correlation

dimension and correlation coefficient are estimated in

the phase space as seizure prediction features. The au-

thors evaluated their method utilizing iEEG data from

11 patients of the Freiburg database with 256-Hz sam-

pling rate. Their method achieved an average of 87%

sensitivity, 0.24/h false prediction rate, and in average a

27-min warning time ahead the ictal.

Chiang et al. developed an online wavelet-domain

retraining method to improve the seizure prediction by

enlarging the training dataset gradually [49]. Their

method is based on the method of Mirowski et al. [50]

that uses non-linear interdependence, cross-correlation,

difference of Lyapunov exponents, and phase locking.

Post-processing is used in this method to reduce the

false-alarm rate if two consecutive patterns are classified

as pre-ictal. The authors evaluated their method using

three datasets: Freiburg database, CHB-MIT database

(eight patients), and National Taiwan University Hospital

database for scalp EEG (one patient) [51]. This method

achieved sensitivities of 74.2% and 52.2% on intracranial

and scalp databases, respectively. It also achieved an im-

provement in the sensitivity of off-line training on both

databases by 29.0% and 17.4%, respectively.

Rojas et al. presented a seizure prediction method de-

pending on brain excitability recognized with couplings

between low-frequency phases (delta: 0.5 to 33 Hz, theta:

3 to 8 Hz) and high-frequency amplitudes (low gamma:

40 to 70 Hz, high gamma 70 to 140 Hz) of brain waves

[52]. They evaluated this method on 20 patients from

EPILEPSIAE scalp EEG database [53]. The EEG data

was recorded using either depth or subdural stereotactic

electrodes at a sampling rate 1,024 Hz with a total of

267 seizures and more than 3,400 h of inter-ictal activ-

ities. They found that in 50% of the cases, their predictor

performed better than the random predictor, which is

based on Poisson process, with an average sensitivity

98.9%, false rate of 1.84/h, and pre-ictal window length

of 10 min.

Gadhoumi et al. presented an iEEG-based seizure pre-

diction method based on measuring the similarity with a

reference state as shown in Figure 8 [54]. In the valid-

ation of this method, 1,565 h of continuous iEEG data

for 17 patients having mesial temporal lobe epilepsy

were used. These recordings have 175 seizures. Distance,

inclusion, and persistence features are extracted in this

method from the continuous wavelet transform of EEG

recordings to discriminate between pre-ictal and inter-

ictal states. The distance is a Euclidean distance between

the center energy and the rest of energy points computed

from the wavelet coefficients. Inclusion is the percentage

of energy points with entropy confined to a pre-specified

distance. Inclusion represents the time interval in which

the maximum number of successive 2-s points has energy

and entropy profiles confined to the pre-specified dis-

tance. An SVM classifier has been used in the signal dis-

crimination and a comparison has been performed with a

random statistical predictor. Simulation results have

shown a sensitivity of 85% and a false-alarm rate of 0.35/h.

The authors came to a conclusion that state similarity

measures can be used for seizure prediction above chance

in 41% of the patients.

Gadhoumi et al. also presented a method to discrimin-

ate between pre-ictal and inter-ictal states using features

extracted from the high-frequency sub-bands of iEEG

signals [55]. The selected features are the wavelet energy

and entropy extracted from different signal epochs. The
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estimated energy and entropy are compared to reference

energy and entropy for pre-defined signals with pre-state

and seizure activities, and based on distance metrics, the

decisions are taken from different channels and fused.

Sensitivity and false-alarm rate evaluation revealed a

sensitivity of about 80% and a false positive rate ranging

from 0.09 to 0.7 for different patients.

Wang et al. presented a wavelet-based online adaptive

seizure prediction system [56]. This system adopts Lyapunov

exponent, correlation dimension, Hurst exponent, and

entropy features extracted from the wavelet transform

of EEG recordings. It adopts also a KNN classifier. The

adaptation is performed in this system with a reinforcement

learning algorithm. A 150-min prediction horizon used on

ten patients and the system achieved the best prediction re-

sults of 73% sensitivity and 67% specificity.

Soleimani et al. presented a simple and fast adaptive

online method for the detection of pre-ictal patterns de-

pending on multiple features as illustrated in Figure 9

[57]. These features are time domain and wavelet do-

main. The time-domain features are the curve length,

the average energy, non-linear energy, six-order power

at time n, kurtosis, skewness, and variance. The wavelet-

domain feature include mean of absolute values, average

power, standard deviation, absolute mean of sub-bands

of a fifth level Daubechies wavelet transform. In this

method, a neuro-fuzzy model is used for combined fea-

tures learning in an adaptive manner. An adaptive tun-

ing process is used in the classifier operation to build a

personal seizure predictor. Freiburg database of intracra-

nial recordings for 21 patients has been used with this

classifier. Simulation results revealed that on-line adap-

tive seizure prediction achieves better results than off-

line non-adaptive seizure prediction. The percentage of

prediction was 99.52%, and the FPR was 0.1417/h.

It is possible to use some time-domain features with

wavelet-domain features to enhance the detectability of

seizures. Costa et al. have selected 14 features for effi-

cient seizure prediction from EEG recordings [58]. These

features include energy estimated from time-domain sig-

nals, energy variation, energy level, non-linear statistics,

and sub-band energies extracted from the wavelet sub-

bands. They used a neural network classifier for signal

classification into four states: pre-ictal, ictal, inter-ictal,

and post-ictal. They achieved an average specificity of

99%, an average sensitivity of 83%, and an average accur-

acy of 96% on patient records from Freiburg database.

Moghim and Corne compared the Costa et al. results with

multi-class SVM and evolved neural network classifiers

[59]. They carried out this comparative study on one pa-

tient (patient 2: 135 min, 3 seizures, 30 to 40 min before

and 10 min after each seizure) from Freiburg database,

and they reported that 8- to 10-min detection before the

onset can be achieved with reasonable specificity and

sensitivity.

1.5 Empirical mode decomposition

The EMD is a signal decomposition, which transforms a

signal into a group of intrinsic mode functions (IMFs).

For EEG seizure detection, these IMFs show different

behavior with normal and abnormal activities in the sig-

nals. Features can also be extracted from the IMFs and
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Figure 9 Soleimani et al. seizure prediction method.
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tested for seizure detection and prediction. The steps to

extract these IMFs from an original signal x(t) are sum-

marized below [60]:

1. Determine the signal envelope by maxima and

minima point estimation and interpolate between

them.

2. The local mean, m(t) is estimated using the envelope

as follows:

m tð Þ ¼
emin tð Þ þ emax tð Þ

2
ð27Þ

where emin(t) and emax(t) are the envelope minimum

and maximum values respectively.

3. The mean is subtracted from the original signal to

get h(t) = x(t) −m(t).

4. If h(t) does not satisfy the IMF criteria of a

difference of at most 1 between the number of

extrema (maxima and minima) and number of zero

crossings, we go to step 1 with h(t) as a new input.

5. The obtained h(t) is stored as an IMF in case it

satisfies the criteria of an IMF, ci(t) = h(t). Hence,

this IMF is removed from the original signal by

subtraction, r(t) = x(t) − ci(t), where i is the ith IMF.

6. Similar steps are repeated beginning from step 1.

The Hilbert transform (HT) is performed on each IMF

to get ~ci tð Þ provided that z tð Þ ¼ ci tð Þ þ j~ci tð Þ is ana-
lytic. Both amplitude and phase of z(t) are given by:

A tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2i tð Þ þ ~c2i tð Þ
q

ð28Þ

ϕ tð Þ ¼ arctan
~c2i tð Þ

c2i tð Þ

� 	

ð29Þ

The instantaneous frequency is estimated as:

ω ¼
dϕ tð Þ

dt
ð30Þ

1.5.1 EMD seizure detection

Eftekhar et al. used the EMD approach for seizure detec-

tion [60]. They adopted features such as the frequency

rise at the seizure onset with the EMD in a patient-

specific manner. Their simulation results have shown

that the Hilbert transform can be used to decompose

EEG signals into components, from which features can

be extracted for seizure onset detection.

Tafreshi et al. evaluated the performance of the EMD

in discriminating epileptic seizure data from normal data

using means of the absolute of the IMFs as features [61].

They compared this approach for feature extraction with

wavelet features using both multi-layer perceptron

(MLP) and self-organizing map (SOM) neural networks.

Results have shown that the EMD approach is better in

performance than the wavelet approach with success

rates up to 95%, and they revealed that four empirical

modes are enough to obtain good results. In addition,

the results have shown that a window length of 1,500

samples is appropriate to obtain good recognition rates.

The MLP networks are superior in performance to the

SOM networks.

Orosco et al. presented a seizure detection approach

based on the energies of IMFs as discriminating features

between seizure and non-seizure activities as shown in

Figure 10 [62]. In this approach, the IMF energies are

compared with certain thresholds for decision making. It

was tested on nine patient records from Freiburg data-

base with invasive nature. The obtained sensitivity and

specificity were 56.41% and 75.86%, respectively, using

39 seizure records.

Guarnizo and Delgado presented a modified EMD ap-

proach, in which mutual information is used for feature

selection in the EMD domain [63]. These features in-

clude the average or instantaneous frequency and ampli-

tude for all EMD components. Higher-order statistics such

as the skewness and kurtosis in addition to Shannon’s en-

tropy have been selected as features extracted from the en-

ergy estimated with the Teager energy operator (TEO)

over all EMD components [64-66]. This approach adopts a

linear Bayes classifier and it achieved an accuracy of 98%.

Alam and Bhuiyan presented a seizure detection method

depending on extracting kurtosis, skewness, largest Lyapunov

exponent, variance, approximate entropy, and correl-

ation dimension from the EMD of EEG signals with

artificial neural network classifiers [67,68]. This method

achieved a 100% sensitivity in seizure detection and has

shown a superiority as compared to time-frequency

techniques and band-limited techniques in the compu-

tational complexity.

Bajaj and Pachori presented an EMD-based seizure de-

tection method to detect focal temporal lobe epilepsy

[69]. In this method, they used Hilbert transformation of

IMFs which were obtained by an EMD process. Epileptic

seizures are then detected based on the instantaneous

area estimated from the trace of analytic IMFs of EEG

signals. The performance of this epileptic detection

method was evaluated on Freiburg database and achieved

a sensitivity of 90%, a specificity of 89.31%, and an error

detection rate of 24.25%.

The local mean of EMD can be used as a statistical

feature for seizure detection. This local mean is obtained

by averaging the lower and upper envelopes obtained

through interpolation between the local maxima and

minima. If these local maxima and minima are not de-

fined as in the case of multivariate signals, another alter-

native which is the multivariate EMD (MEMD) can be

used instead. The MEMD depends on signal projections
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along n-dimensional spaces to generate n-dimensional

envelopes, which are then averaged to get the local mean.

The projection direction vectors are based on spherical

and polar coordinates. To sample the n-sphere, quasi-

Monte Carlo low-discrepancy sequences are exploited for

sampling enhancement. This style of sampling is non-

uniform but not random. Its objective is to get the most

useful samples over a certain space. The other steps of the

algorithm to estimate the MEMD are similar to the stand-

ard EMD algorithm. The use of the MEMD enables the

multi-channel EEG signal decomposition into narrow fre-

quency bands that can be analyzed separately for better

detectability of seizures. In addition, the mean frequency

of the signal segments can be used as a discriminative fea-

ture for seizure detection. This mean frequency can be

calculated by applying the Hilbert transform on the result-

ing IMFs. Rehman et al. investigated the use of the

MEMD with the mean frequency as possible features for

EEG seizure detection [70], but this proposal needs fur-

ther studies.

1.5.2 EMD seizure prediction

Qi et al. suggested the use of EMD for seizure prediction

with a new feature, called IMF-VoE. This feature com-

bines three IMFs obtained from the EMD of an EEG sig-

nal in addition to the range variance between upper and

lower envelopes (VoE) in the EMD domain [71]. The au-

thors tested this method using 80.4 h of EEG data con-

taining ten seizures for four patients. This method

achieved a sensitivity of 100% and a false detection rate

of 0.16/h. The estimated average time delays were 19.4,

13.2, and 10.7 s for false detection rates of 0.16, 0.27,

and 0.41/h, respectively, using different thresholds.

1.6 SVD methods

The SVD operating on a matrix A decomposes it into

matrices U, S, and V [72,73]:

A ¼ USV
T ð31Þ

The matrices U and V are orthogonal such that U
T

U = I, and V
T

V = I. S = diag(σ1,…,σP), where σ1 ≥ σ2 ≥

…σP ≥ 0 is the matrix of SVs of A. The matrix U contains

the left singular vectors of A, while the matrix V con-

tains the right singular vectors of A. An important char-

acteristic of the SVD that can be used in EEG seizure

detection is that the SVs are not largely affected by little

disturbances in the matrix A. This property can be used

for the detection of seizure activities taking into consid-

eration the slight variations between seizures [72,73].

Vanrumste et al. developed an SVD-based algorithm

for EEG seizure detection [74]. In this algorithm, the

EEG is segmented into overlapping epochs, which are

formulated as 2-D arrays to allow SVD. Most of the

Pre-Processing

EMD

Energy Computation

Energy and duration 

thresholds detection

Energy event 

Identification

Inter-channels 

Decision

EEG Signals

Epileptic Seizures
Figure 10 Orosco et al. method for epileptic seizure detection

with EMD.
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signal energy, which differs from seizure to non-seizure

activities, is concentrated in the first SVs. After that, an

EEG dipole source analysis adopting a single-dipole model

is implemented on the EEG segments. This analysis as-

sumes that each spike results from a dipole in the human

brain and performs a localization process for the position

of this source dipole [75]. This yields dipole parameters in

addition to a relative residual energy (RRE). A seizure

alarm on an epoch is raised if the SVD indicates a domin-

ant source and the RRE has a low value. The algorithm

has been investigated on synthetic EEG signals obtained

from two sources, synchronous and asynchronous. In the

synchronous case, the main metric is the RRE, and in the

asynchronous case, the SVD and RRE are of major con-

cern. The same algorithm has been investigated with real

EEG signals having two spikes and an eye-blink artifact.

The algorithm has shown that the RRE was always low for

all three events.

Shahid et al. presented an algorithm based on SVD for

the detection of seizures [76]. In this algorithm, the SVD

is applied sequentially on a sliding window of the EEG

signal of 1-s width and then r singular values are ob-

tained and used to indicate sudden changes in the sig-

nals. EEG recordings of four pediatric patients with 20

seizures have been used to validate this algorithm, and

the results indicated the sensitivity of the SVs to the

changes in the EEG signals due to epileptic seizure.

1.7 ICA and PCA methods

The SVD methods presented in above section adopt a

strategy of transforming the 1-D data to a 2-D array, but

the PCA and ICA techniques in this section adopt a co-

variance approach to obtain the PCs. ICA is signal decom-

position that transforms a multivariate signal into additive,

non-Gaussian, and statistically independent components

[77]. The main principle that the ICA depends on is the

maximization of the statistical independence between the

estimated components. This can be guaranteed through ei-

ther mutual information minimization or non-Gaussianity

maximization. For mutual information minimization,

measures like Kullback–Leibler divergence and maximum

entropy are exploited. On the other hand, for non-

Gaussianity maximization, central limit theorem, higher-

order statistics such as kurtosis, and negentropy are used

[77]. The ICA depends mainly on some pre-processing

techniques such as mean removal, whitening, and dimen-

sionality reduction. Both whitening and dimensionality re-

duction can be achieved with PCA or SVD. Whitening

ensures an equal treatment to all dimensions before the al-

gorithm is run.

1.7.1 Seizure detection

Both ICA and PCA have been used as signal separation

algorithms to enhance the detectability of seizures from

EEG signals by separating artifacts from these signals

[78]. Xie and Krishnan proposed a multi-scale PCA

method combining both DWT and PCA for de-noising

and EEG signal decomposition [79]. They developed an

empirical classification (EC) method using spatial and

temporal features. This method achieved high classifica-

tion accuracy.

1.7.2 Seizure prediction

Miri and Nasrabadi proposed a seizure prediction tech-

nique based on chaos theory and non-linear dynamics to

create a return map depending on zero crossings [80].

This method consists of nine steps: raw EEG data re-

cording from six channels, baseline noise reduction

through filtering, signal segmentation to non-overlapping

5-min sections, PCA decomposition of the signal, zero-

crossing rate estimation for the first PCA component,

resampling of the second component based on the esti-

mated zero-crossing rate, creation of a series of samples to

construct a Poincare map, feature extraction, and finally

estimation of the seizure risk. They evaluated this method

with iEEG data from six patients of Freiburg database with

256-Hz sampling rate, 50-min pre-ictal, and 24 h of non-

seizure data. Their method achieved a 20 ± 5-min predic-

tion time, an 86.6% sensitivity, and a 0.067/h false-alarm

rate.

Williamson et al. presented a seizure prediction method

that is based on estimating eigenspectral features from

space-delay correlation and covariance matrices of EEG

signal blocks with multiple delay scales [81]. An SVM

classifier has been used in this method. An averaging

process over 15-min windows is used as a post-processing

step to get the final prediction score. This method was

tested on the recordings of 19 patients from the Freiburg

database having at least three seizures. It succeeded in

predicting 71 out of 83 seizures. The false prediction rate

was 13.8/h.

2 Conclusions
Table 1 shows a comparison between the different seiz-

ure detection and prediction methods. It is clear from

this table that most seizure detection and prediction

methods adopt time- or wavelet-domain features. For

wavelet-domain method, several papers have adopted

five-level decomposition for robust feature extraction.

Few methods have used hybrid features like time and

wavelet-domain features and achieved better perform-

ance than using features from one domain only. It is

clear also that the EMD is a promising trend for seizure

detection and prediction that needs further investigation.

Also, we can say that seizure detection and prediction

methods based on classifiers are better in performance

than methods that do not implement classifiers. Multi-
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Table 1 Summary of seizure detection and prediction methods

Method Domain and
algorithm

classification

Single or
multi-channel

Database Frame
length

Features Classifier Performance metrics Hardware
implementation

Runarsson and
Sigurdsson [9]

Time,
detection

Single channel Self-recorded data Variable
length
frames

Histogram bin amplitudes for
amplitude difference and

separation time between peaks
and minima

SVM Sensitivity: 90% No

Yoo et al. [14] Time,
detection

Multi-channel MIT database (scalp EEG) 2 s Energies of sub-bands SVM Accuracy: 84.4%, classification
energy 2.03 μJ

Yes

Dalton et al.
[16]

Time,
detection

Single channel Dataset of 21 seizures 12 to 25 s Signature of seizure Template
matching

Sensitivity: 91 %, specificity:
84 %, battery lifetime: 10.5 h

Yes

Zandi et al.
[17,18]

Time,
prediction

Multi-channel 561 h of scalp EEG with 86
seizures for 20 patients

15 s Combined index Non-linear
SVM with
Gaussian
classifier

Sensitivity: 88.34%, false
prediction rate: 0.155 h−1,
average prediction time:

22.5 min

No

Aarabi and He
[19]

Time,
prediction

Single channel 316 h of iEEG data containing
49 seizures for 11 patients
from Freiburg database

10 s Correlation dimension,
correlation entropy, noise level,
Lempel-Ziv complexity, largest

Lyapunov exponent

No classifier Average sensitivity: 79.9%,
90.2% with average false
prediction rate: 0.17 and

0.11/h

No

Schelter et al.
[25]

Time,
prediction

Single channel Eight patients with focal
epilepsy

30 s Probabilistic threshold No classifier Sensitivity: 60% No

Wang et al. [26] Time,
prediction

Single channel Data for five patients 10 min Area under the ROC curve KNN Average accuracy: 70% No

Bedeeuzzaman
et al. [27]

Time,
prediction

Single channel 21 patients from Freiburg
database (scalp and iEEG)

1 min MAD, IQR Binary linear
classifier

Sensitivity: 100%, FPR: 0 (for
12 patients), average
prediction time: 51 to

96 min

No

Li et al. [28] Time,
prediction

Multi channel 21 patients from Freiburg
database (scalp and iEEG)

5 s Spike rate No classifier Accuracy: 75.8%, false
prediction rate: 0.09

No

Chisci et al. [30] Time,
prediction

Multi channel 21 patients from Freiburg
database (scalp and iEEG)

2 s AR coefficients SVM Sensitivity: 100%, average
prediction time: 60 min

No

Rana et al. [32] Frequency,
detection

Multi-channel EEG and ECoG time series, BW:
0.5 to 100 Hz

10 to 60 s Phase slope index No classifier Detection accuracy: 100% No

Khamis et al.
[33]

Frequency,
detection

Single channel 12 patients with six data records
(R1 to R6)

32 s Range of frequencies, range
of frequencies used for

background subtraction, number of
points, hemisphere parameters,
moment parameters, artifact

removal parameters, p-norm power,
cutoff point

Powell’s
direction set
method

Sensitivity: 91%, false
positives per hour: 0.02

No

Acharya et al.
[34]

Frequency,
detection

Single channel Self-recorded data 23.6 s Phase entropy 1 (S1),
phase entropy 2 (S2),

approximate entropy (ApEn),
and sample entropy (SampEn)

SVM, FSC,
PNN, KNN,
NBC, DT,
and GMM

Average accuracy: 98.1% No
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Table 1 Summary of seizure detection and prediction methods (Continued)

Zhou et al. [12] Wavelet,
detection

Multi-channel Freiburg database of 21
patients; six channels: channels
1, 2, and 3 near the epileptic
focus, and channels 4, 5, and 6

in remote locations

4 s without
overlapping

Lacunarity and fluctuation
index on wavelet scales

Bayesian
linear

discriminant
analysis
(BLDA)
classifier

Sensitivity: 96.25%, false
detection rate: 0.13/h, mean

delay time: 13.8 s

No

Liu et al. [36] Wavelet,
detection

Multi-channel Dataset of 509 h from 21
epileptic patients

4 s Relative energy, relative
amplitude, coefficient of
variation, fluctuation index

SVM Sensitivity: 94.46%, specificity:
95.26%, false detection rate:

0.58/h

No

Panda et al.
[37]

Wavelet,
detection

Single channel 500 epochs of EEG data from
five different brain activities
(100 signals per epoch)

0.5 s Energy, entropy, standard
deviation

SVM Accuracy: 91.2% No

Khan et al. [38] Wavelet,
detection

Single channel Self-recorded data for five
patients

25 s Energy and normalized
coefficient of variation

Simple LDA
classifier

Sensitivity: 83%, specificity:
100%, accuracy: 92%, overall

precision: 87%

No

Wang et al. [56] Wavelet,
detection

Single channel Changhai Hospital database
(scalp EEG)

70 to
200 ms

Approximate entropy Neyman-
Pearson

criteria and
SVM

Detection accuracy: 98%,
false detection rate: 6%

No

Zainuddin et al.
[40]

Wavelet,
detection

Single channel University of Bonn database
(scalp EEG)

23.6 s Maximum, minimum,
standard deviation of absolute

wavelet coefficients

WNN Sensitivity: 98%, accuracy:
98%

No

Niknazar et al.
[42]

Wavelet,
detection

Single channel 100 single-channel segments
from Bonn University Database

(scalp EEG)

23.6 s Time delay, embedding
dimension

ECOG Accuracy: 98.67% No

Daou and
Labeau [43]

Wavelet,
detection

Multi-channel Nine patients from MIT
database, and nine patients
from Montreal Neurological
Institute database (scalp EEG)

1 s SPIHT codes No classifier Accuracy: 90% No

Mehta et al.
[44]

Wavelet,
detection

Single channel Self-recorded 10 s Slope of the regression line
on a logarithmic plot for the

wavelet scales 6 to 2

No classifier Slope decreases with onset No

Shoaib et al.
[45]

Wavelet,
detection

Multi-channel MIT database (scalp EEG) 2 s Wavelet energy SVM Sensitivity: 91% to 96%,
latency: 4.7 to 5.3 s, false-
alarm rate: 0.17 to 0.3/h

Yes

Zandi et al. [46] Wavelet,
detection

Multi-channel EEG recordings from 14
patients approximately 75.8 h

with 63 seizures

10 to 40 s Combined seizure index No classifier Sensitivity: 90.5%, false
detection rate: 0.51 h−1,

median detection delay: 7 s

No

Paul et al. [47] Wavelet,
prediction

Single channel Data for rats 5 s RSWE No classifier Detection: 90% No

Hung et al. [48] Wavelet,
prediction

Multi-channel 11 patients from Freiburg
database (scalp and iEEG)

1 h Chaos features, wavelet features,
correlation dimension

No classifier Accuracy: 87%, false
prediction rate: 0.24/h,
average warning time:
27 min ahead the ictal

Yes
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Table 1 Summary of seizure detection and prediction methods (Continued)

Chiang et al.
[49]

Wavelet,
prediction

Single channel Freiburg database, CHB-MIT
database (eight patients), Na-
tional Taiwan University Hos-
pital database (one patient)

60 s Wavelet coherence SVM 74.2% and 52.2% sensitivity
on intracranial and scalp
databases, sensitivity

improvement by 29.0% and
17.4% for both databases

No

Rojas et al. [52] Wavelet,
prediction

Single channel 20 patients (267 seizures,
3,400 h)

Up to 22 h Cross-frequency coupling No classifier Sensitivity: 100% No

Gadhoumi
et al. [54]

Wavelet,
prediction

Multi-channel 1,565 h iEEG, 17 patients with
mesial temporal lobe epilepsy

with 175 seizures

1 min with
75%

overlap

Distance, inclusion, persistence SVM Sensitivity: >85%, warning
rate: < 0.35/h, proportion of
time under warning: <30%

No

Gadhoumi
et al. [55]

Wavelet,
prediction

Multi-channel Self-recorded dataset for six
patients

2 s, disjoint Wavelet energy and entropy Binary
classifier

Average sensitivity: >80%, FP
rate: from 0.09 to 0.7 FP/h

No

Wang et al. [56] Wavelet,
prediction

Multi-channel Ten patients (self-recorded
data)

10 min
with 50%
overlap

Lyapunov exponent, correlation
dimension, Hurst exponent,

entropy

KNN Sensitivity: 73%, specificity:
67%

No

Soleimani et al.
[57]

Wavelet and
time,

prediction

Single channel 21 patients Freiburg database
(scalp and iEEG)

10 s Time- and wavelet-domain
features

Neuro-fuzzy Prediction: 99.52%, FPR:
0.1417/h

No

Moghim and
Corne [59]

Wavelet and
time,

prediction

Single channel One patient from Freiburg
database (135 min, three
seizures, 10 min following

each seizure) (scalp and iEEG)

Up to
5 min

Time-domain energies,
wavelet-domain energies,
correlation dimension, max

Lyapunov exponent

MC-SVM and
EANN

Sensitivity and specificity
with different values

according to simulation
assumptions

No

Tafreshi et al.
[61]

EMD,
detection

Single channel Five patients of Freiburg
database (scalp and iEEG)

4 to 6 s Mean of the absolute of each
IMF, wavelet features

Neural
network

Accuracy: 95% No

Orosco et al.
[62]

EMD,
detection

Single channel 90 EEG segments acquired for
nine patients

1 h Energies of the IMFs No classifier Sensitivity: 56%, specificity:
75%, positive predictive
value: 61%, negative
predictive value: 72%

No

Guarnizo and
Delgado [63]

EMD,
detection

Single channel Five groups with 100 single-
channel registers sampled at

173.61 Hz

Whole
signal

Instantaneous frequency,
amplitude of each EMD component,
skewness, kurtosis, Shannon’s entropy

Linear Bayes
classifier

Accuracy: 98% No

Alam and
Bhuiyan [67,68]

EMD,
detection

Single channel Bonn University database
(scalp EEG)

23.6 s Skewness, kurtosis, variance,
largest Lyapunov exponent,

correlation dimension, approximate
entropy from intrinsic modes

ANN Accuracy: 100% No

Bajaj and
Pachori [69]

EMD,
detection

Single channel Freiburg database for 21
patients (scalp and iEEG)

15 s Modified central tendency measure No classifier Sensitivity: 90%, specificity:
89.31%, error detection rate:

24.25%

No

Qi et al. [71] EMD,
prediction

Single channel Pre-surgical epilepsy
monitoring database with
80.4 h of EEG data with ten
seizures of four patients

Whole
signal

IMF-VoE No classifier Sensitivity: 100%, false
detection rate: 0.16/h,

average time delay: 10.7 to
19.4 s are 19.4 s

No

Vanrumste
et al. [74]

SVD,
detection

Single channel Simulated EEG signals 10 s Dipole parameters, relative
residual energy (RRE)

No classifier Visual inspection of
parameters

No
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Table 1 Summary of seizure detection and prediction methods (Continued)

Shahid et al.
[76]

SVD,
detection

Single channel Recordings of four pediatric
patients with 20 seizures

1 s Largest r-singular values, Euclidean
distance from the r-singular
values of a baseline window
located 1 h before the seizure

No classifier Visual inspection of results No

Xie and
Krishnan [79]

PCA in
wavelet
domain,
detection

Single channel Data for eight patients 4,097 s Adjusted random index (ARI) Empirical
classifier

ARI up to 1 No

Miri and
Nasrabadi [80]

PCA,
prediction

Multi-channel Six patients of Freiburg
database (scalp and iEEG)

5 min Zero-crossing rate, a statistical index No classifier Prediction time: 20 ± 5 min,
sensitivity 86.6%, false-alarm

rate: 0.067%

No

Williamson
et al. [81]

PCA, FFT,
prediction

Multi-channel Freiburg database (scalp and
iEEG)

15 s Eigen spectral features SVM Sensitivity: 85.5%, false
prediction rate: 0.033/h

No
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channel techniques are also more superior in perform-

ance than single-channel techniques.
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