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Purpose. We provide a comprehensive veri�cation of a new subcutaneous EEG recording device which promises robust and
unobtrusive measurements over ultra-long time periods.�e approach is evaluated against a state-of-the-art surface EEG electrode
technology. Materials and Methods. An electrode powered by an inductive link was subcutaneously implanted on �ve subjects.
Surface electrodes were placed at sites corresponding to the subcutaneous electrodes, and the EEG signals were evaluated with
both quantitative (power spectral density and coherence analysis) and qualitative (blinded subjective scoring by neurophysiologists)
analysis. Results. �e power spectral density and coherence analysis were very similar during measurements of resting EEG. �e
scoring by neurophysiologists showed a higher EEG quality for the implanted system for di	erent subject states (eyes open and
eyes closed). �is was most likely due to higher amplitude of the subcutaneous signals. During periods with artifacts, such as
chewing, blinking, and eye movement, the two systems performed equally well. Conclusions. Subcutaneous measurements of EEG
with the test device showed high quality as measured by both quantitative and more subjective qualitative methods. �e signal
might be superior to surface EEG in some aspects and provides a method of ultra-long term EEG recording in situations where this
is required and where a small number of EEG electrodes are su
cient.

1. Introduction

Electroencephalography (EEG) is a standard procedure to
obtain information about the metabolic and electric status of
the brain.�e EEG is widely used in both the diagnostics and
the monitoring of the state of human cognitive system, rang-
ing from epilepsy and impaired consciousness to sleep disor-
ders. �e clinical application of EEG is now well described;
however, the quality of long-term ambulatory monitoring of
EEG is still compromised by inconvenient equipment and
unstable electrodes, thus requiring continuous supervision.

�e positions of the electrodes on the scalp are given
according to international conventions, such as the 10/20
system [1]. Standard scalp EEG-recordings are suitable for
many applications in neurology; however, for long-term
continuous monitoring it is desirable to perform recordings
without causing discomfort to the patient, and outside clinical
facilities [2]. In addition, EEG recorded over a prolonged
period of time may provide deeper insight and open com-
pletely new avenues of research and applications compared
to conventional EEG. Examples include the diagnosis of
infrequent seizures and characterization of more frequent
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pathological events, together with the monitoring of drug
titration and the development of brain-computer interface
techniques [3]. Continuous EEG recording is a prerequisite
for the monitoring of, for example, vigilance level [4] or sleep
stages [5]. �is also provides the basis for early detection of
the onset of epileptic seizures [6] or indices of impending
severe hypoglycaemia [7, 8].

For continuous EEG recordings to become a reality
the device should be convenient to use, not hamper daily
activities, and at the same time provide EEG of high quality
with aminimumof electric noise and device-related artifacts.
Standard clinical EEG recording systems are not suited for
this purpose, as the electrode leads and bulky batteries
are inconvenient, electrodes are easily dislodged, gel-based
electrodes tend to dry out, and artifacts are o�en seen in
outpatient monitoring [9].

To this end, the company HypoSafe is developing an
EEG recording system which consists of a miniaturized
subcutaneous implant placed behind the ear and an external
part which provides the implant with power, receives and
stores the EEG signal, and conducts real-time data analysis
if required. Both data and power transmission employ an
inductive link, so that the inner device does not require an
internal energy supply.�is ultra-long termwearable capabil-
ity, lack of artifacts, and a perfect electrode contact make the
system robust and convenient. In preliminary experiments
the study subjects found the device comfortable and aside
from a temporary transient soreness at the implantation site,
no adverse events have been reported. Subjects informed that
they slept well with the implantable electrode.

�e current paper presents a comparative analysis of
EEG signal quality of the �rst generation of a miniaturized
subcutaneously implanted recorder [10] against standard
scalp electrodes used in conjunction with a state-of-the-art
recording system. �e EEG was analysed both qualitatively
and quantitatively over recordings of di	erent brain states
and during physical activity.

2. Materials and Methods

�e considered dataset originates from a continuous EEG
recording, and according to a protocol which aims to test the
robustness and performance of an EEG based hypoglycaemia
alarm for type 1 diabetes patients. �e project was approved
by the regional ethical committee and the Danish Health
and Medicines Authority and registered at ClinicalTrials.gov
(identi�er number NCT01238016). For optimal function of
the device, before implantation in diabetes patients, a series
of implantations were conducted in healthy volunteers. �e
population reported in this paper consists of these healthy
individuals, who all wore the device for onemonth.�eywere
consulted weekly during the study period and any reported
adverse events were recorded.

2.1. Devices

�e Subcutaneous Device.�e implantable part of the device
consists of an insulated lead (length 100mm and diameter
1mm) with three embedded platinum-iridium electrodes

located 30mm apart, each with an area of 35mm2. �e lead
is �xed to the implant housing which is 3.0mm thick and
oval shaped, with diameters of 16 and 20mm, and covered by
biocompatible epoxy; see Figure 1. �e outer device consists
of a disc for the inductive link (height, width, depth of 28mm,
20mm, 4mm) connected to a box (height, width, depth of
69mm, 29mm, 10mm) containing processing units,memory
card, and a Li-ion battery. EEG data are sampled at 65.1 Hz
with an analog high-pass �lter with a cut-o	 frequency at
0.5Hz and a roll-o	 of 40 dB/decade and a low-pass �lter with
cut-o	 at 30Hz and a roll-o	 of 80 dB/decade. �e common
mode rejection ratio was 60 dB, least signi�cant bit below
0.5 �V, and the input impedance higher than 20MΩ. �e
battery can provide the implant and processor with power
for 2 days before it needs to be recharged, and the storage
capacity is su
cient for storage of one month of continuous
measurement. �e external device gives tactile feedback, so
that the user knows when the inner and outer devices are
optimally aligned and in link.

�e Control Setup. To verify the quality of EEG data obtained
from the test device, standard scalp electrodes (reusable
silver EEG cup electrodes, 200 cm lead, 10mm cup, Embla
Systems Inc., Amsterdam, Netherlands) were placed directly
above the electrodes of the inner device, and simultaneous
recordings were performed. �e skin was initially prepared
withNuprep skin preparation gel, while the Ten20 conductive
EEG paste (Weaver and Company, Aurora, CO, USA) was
used for the disc electrodes, which were fastened with EC2
genuine grass electrode cream (Natus Neurology, Warwick,
RI, USA). �e EEG data from cup electrodes were sampled
with a g.USBamp (Guger Technologies, Austria) at 64Hz and
preprocessed using a digital Butterworth band-pass �lter of
8th order with cut-o	 frequencies at 0.5Hz and 30Hz.

All signals were �nally resampled to 207Hz for straight-
forward comparison.

2.2. Protocol. Five healthy subjects (all male, aged 33 ±
8 years) participated in the study. None had a history of
diabetes, epilepsy, or any other chronic disease and were
not taking regular medication. �e device was implanted via
local analgesia and sterile technique through a 15mm incision
behind the ear. �e electrode was placed in an open needle
and inserted from the top of the incision in the subgaleal
space in the direction towards a point between Cz and Pz,
according to the international 10/20 system. �e implant
housing of the device was placed in a pocket made by blunt
dissection behind the auricular helix.When the device was in
situ the incision was closed with resorbable sutures.

Approximately ten days a�er the insertion, the subjects
returned to the clinical research unit, and the outer part of the
device was placed on the skin by double adhesive tape directly
above the inner device.�is adhesive should be changed daily
to ensure optimal data transmission. Control electrodes were
then placed on the scalp, above subcutaneous electrodes (see
Figure 1), and the impedance was checked (should be below
5 kΩ). �e subjects were then asked to perform consecutive
prede�ned activities of 30 second length; these included rest,
closed eyes, jaw clenching, eye blinking, eye movements,
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Figure 1: Experimental setup. (1A) External disc for power and signal transmission to and from the implanted device. (1B) Logging device to
store EEG recorded by implanted device. (2A and 2B) Cup electrodes covered by protecting paper for surface EEG recording. (2C) Ground
wire for surface EEG recording. (3) Implantable device with disc for power and signal transmission.

Table 1: EEG scoring sheet for subjective analysis by neurophysiologists. Each 30 s epoch was given a score for the signal quality as well as
the noise level.

Score Signal quality Noise level

5 EEG signal clear, evaluation straight forward No or very little noise present

4
EEG signal clear, evaluation possible and close to
optimal

Some noise present but does not hamper EEG analysis
signi�cantly

3
EEG signal recognized, evaluation possible however not
optimal

Moderate amount of noise present, EEG analysis
challenging but still possible

2 EEG signal recognized, evaluation di
cult
Larger amount of noise present, EEG analysis
challenging and less reliable

1 EEG signal is not readily recognized EEG severely noisy, EEG analysis unreliable

arithmeticmental exercise, and jumping on the spot.�e total
duration of the procedure was 12 minutes.

2.3. Subjective Analysis of Time Series. �e recordings were
analyzed both visually and quantitatively. �e visual inspec-
tion was performed in a blinded fashion by two independent
neurophysiologists (TWK and MDA). For each of the above
tasks, 30 s epochs of EEG were provided and the neuro-
physiologists were asked to score the time series by a signal
scale and a noise scale as shown in Table 1. In the case of
more than two points of disagreement within a single epoch,
the neurophysiologists were asked to reevaluate that epoch
until agreement. A higher value in the signal as well as the
noise scale is preferential. For each task a Mann-Whitney
�-test was used of the null hypothesis that scorings of the
subcutaneous and surface EEG data are independent samples
from identical continuous distributions with equal medians,
against the alternative that they do not have equal medians.

2.4. Analysis of Power Spectral Densities. �e most apparent
brain signal response is the alpha attenuation response [11].
When a subject closes the eyes, the absolute as well as relative
power in the entire signal will rise in the 8–13Hz frequency
band, especially in the posterior electrodes. �e power

spectrumdensities were calculated usingWelch’smethod: the
data was split into 5-second segments with 50% overlap. A
Hamming window was applied to each data segment and the
power spectral density estimate was found by averaging the
resulting periodograms.

To determine the degree of separation of alpha powers
within the 5 s windows between the “eyes closed” and “eyes
open” tasks, the �-statistic was calculated via Welch’s � test,
given by

� = �� − ��
√�2� /� + �2�/�

, (1)

where �� and �� denote, respectively, the mean alpha power

for the “eyes open” and “eyes closed” states, �2� and �2� denote
the corresponding variances, and � denotes the number of
samples (here number of data segments). A positive �-statistic
indicates that the alpha power is greater for the “eyes closed”
recording; the larger the statistic the greater the di	erenti-
ation from the “eyes open” recording. �e corresponding 	
values were calculated.

2.5. Correspondence between Surface and Subcutaneous Sig-
nals. To investigate the similarity between the surface and
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Figure 2: Subjective analysis of EEG sequences made by two board-certi�ed neurophysiologists. Every 30 s epoch was given a score as
established in Table 1. �e number in the parentheses a�er each task is the number of scores available for the given task used to calculate the
signi�cance. ∗: signi�cant at � = 0.05 level. ∗∗: signi�cant at � = 0.01 level.

subcutaneous signals, the normalized correlation coe
cient
and magnitude squared coherence spectrum were calculated
for the states of closed and open eyes. �e normalized

correlation coe
cient, ���, was calculated by

��� () =
∑min(��+�−1,��−1)
�=max(0,�) ��+� ⋅ ��
√∑��−1�=0 �2� ⋅ ∑��−1�=0 �2�

, (2)

where � denotes the subcutaneous EEG, � is the surface EEG,
�	 is the number of samples in each calculation, and  is

the lag in the range −�	 + 1 to �	 − 1. If ��� = 0, there is
no correlation between signals, while ��� = 1 shows that the
signals are in perfect correlation.

�e magnitude squared coherence spectrum, ���, is a
function of the power spectral densities, ���(�) and ���(�),
and the cross power spectral density, ���(�). It is computed
using Welch’s averaged periodogram method:

��� (�) =
�������� (�)
�����
2

��� (�) ⋅ ��� (�)
. (3)

Similar to the normalized correlation coe
cient, the values
of the magnitude squared coherence are also in the range of
0 to 1, but with one value for each frequency bin.

3. Results

3.1. Device Tolerability. One study subject complained about
discomfort at the site of implantation and requested explan-
tation. �is was performed one week before planned ter-
mination of the study and underwent without any further
complications. No further adverse device- or procedure-
related safety issues were raised in the study.

3.2. Qualitative Analysis. �e neurophysiologists scored the
EEG quality to be higher for the test device than the standard
surface-electrode approach when the subjects were at rest,
with both open and closed eyes, as well as when performing a
mental task; see Figure 2.�is was primarily due to more dis-
tinctive EEG responses such as the alpha rhythm associated
with the “eyes closed” state. �e level of noise was adjudged
to be similar for the surface and subcutaneous systems.

3.3. Alpha Response. Table 2 shows that the subcutaneous
electrodes enable, on average, a better di	erentiation for three
of the �ve subjects (subjects 1, 3, and 4). Both the surface
and the subcutaneous approaches enabled a statistically
signi�cant di	erentiation for 10 of all the 15 trials, although
not always the same trials were found statistically signi�cant
for the implanted and scalp EEG.
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Figure 3: A comparison of power spectral densities (PSDs) for surface and subcutaneous recordings for the “eyes open” and “eyes closed”
paradigms. Panels (a) and (b) compare the surface and subcutaneous recordings for the “eyes closed” and “eyes open” cases, respectively,
while panels (c) and (d) compare the two states within each modality. Observe that the PSDs of surface and subcutaneous recordings are very
similar in panels (a) and (b).

3.4. Signal Similarity. Figure 3 shows that the power spec-
trum densities are very similar for the surface and subcu-
taneous approaches; the only di	erence is that the subcuta-
neous recordings exhibited slightly less power for frequencies
below 2Hz.�ese results are supported by the correlation and
coherence analysis in Figure 4. �e mean normalized corre-
lation coe
cient was 0.73 between the two synchronously
but independently recorded signals and the �rst side lobes
were situated at lags ±22, which is equivalent to a wave with
a frequency of 9.4Hz. �e coherence spectrum shows that
this behavior was primarily due to high coherence in the low
frequencies, where the signal power and correlation are high.

�e similarity of the subcutaneous recordings over the
one-month period also seems to be high. Figure 5 shows
the PSDs calculated based on a one-minute noise-free EEG
segment from day one and day 26 a�er the start of the
recording.

4. Discussion

We have evaluated the quality of EEG recordings from
a single-channel miniaturized partly implanted recorder
against simultaneously obtained recordings from a state-
of-the-art surface-electrode EEG system. By quantitative
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Figure 4: Similarity between surface and subcutaneous EEG recorded signal during “eyes closed” paradigm as calculated by (a) the
normalized correlation coe
cient and (b) the magnitude squared coherence spectrum. �e maximum correlation at lag 0 for closed eyes
is 0.73. �e two side lobes are situated at lags −22 and 22, corresponding to a frequency of 9.4Hz. Outside the shown lags, the correlation
coe
cient is close to zero. For the coherence spectrum, primarily the lower frequencies have higher coherence. �e vertical dashed lines
indicate the alpha-band.
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Figure 5: Comparison between power spectral densities (PSDs) one
and 26 days a�er the start of the recording for the subcutaneous
electrodes. �e PSDs are made based on a one-minute long EEG
segment randomly chosen from the two days.�e level of similarity
is very high.

comparison, we found a close correlation between these
two data-sets. Likewise, the moresubjective, yet structured,

qualitative comparison of the data indicated that the
implanted test device provided data of comparable quality.

Ultra-long term EEG recordings may constitute a com-
plementary approach to standard EEG recordings in order to
elucidate occurrence of rare EEG events. In such cases, there
will inevitably be a tradeo	 between the utility of a full-scale
EEG recording and the requirement of extended use. �e
EEG-recorder tested in the present study was developed for
the purpose of EEG-based hypoglycaemia detection in type 1
diabetes patients, a task which requires continuous and long-
term monitoring [7, 8]. �e present study was undertaken to
evaluate the quality of data from the test device, de�ned as a
high signal-to-noise ratio and little or no data loss.

�is proof-of-concept study considered a relatively small
subject population. We have studied �ve healthy volunteers
who used the EEG device for a period of one month.
Intra-subject variation in the EEG or aberrations from the
normal EEG was accordingly less essential. Another aspect
of the implanted device is that the EEG recording and
validation are limited to a single channel and accordingly
to a small part of the brain’s surface. Notice that anatomic
variations in the thickness of the cranium and the overlying
so� tissue may in�uence the subcutaneous and the surface
measures di	erently [12]. �e anatomic area considered in
this study was chosen according to the requirement of the
hypoglycaemia paradigm. It is prominent in the temporal
area of the brain, where the hypoglycaemia alarm device is
also positioned [10, 13]. If the test-device is to be used at other
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parts of the brain, it will be essential to evaluate the signal
from these relevant areas.

A strength of the study is that the EEG obtained by sub-
cutaneous and surface methods is evaluated and compared
by complementary approaches.�e spectral analysis provides
a straightforward quantitative comparison showing that the
two modalities give near-identical signals. As the power
spectra are almost identical for all frequencies above 2Hz,
one might suspect that the power from the scalp recordings
below 2Hz originates from a nonphysiological phenomenon
such asmovement of the longwires between the scalp and the
ampli�er on a nearby table. As those wires are not present for
the test-device, this artifact will not be present on that device.

Alpha activity was observed during the eyes-closed state
in most study subjects. By cross-correlation analysis, it is
substantiated that the two methods measure near-identical
signals. A mean normalized correlation coe
cient of 0.73
between the synchronously but independently recorded time
series of subcutaneous and surface EEG data is high. �e
occurrence of signi�cant side-lobes in the cross-correlogram
at lags ±22 samples during closed eyes further highlights
the high degree of matching between the two signals. �e
coherence spectrum shows that this is primarily due to high
coherence in the low frequencies up to 12Hz, where the signal
power is also highest.

As a complementary approach, the EEG was examined
visually by two independent neurophysiologists. �is was
achieved in a blinded manner with respect to the recording
technique, in order to avoid systematic bias. We found that
the noise present in each of the approaches was equivalent,
irrespective of the recording methodology. Physiological
noise might be expected to arise from at least two sources:
(i) due to activity of the temporal muscle (EMG) which leads
to increased noise especially during periods of chewing and
(ii) from the eye muscles during eye movement and blinking.
As expected, it was found that these physiological sources
of noise were equally represented in the EEG. Noise may
also arise from instability of the electrode connection to the
skin or from induced currents due to electrode movements.
�ese sources of noise are expected to be reduced when the
electrode is fully implanted, thus ensuring a rigid connection
with the source of the signal. �is might be the reason that
the reported signal quality of the subcutaneous approach was
highest during rest with eyes open, eyes closed, and during
a mental task. Had the evaluation continued over days, we
would have expected the surface-electrode skin-contact to
degrade, resulting in an inferior performance [14].

To assess short-term robustness of the recordings we
compared data recorded on day one and day 26. Figure 5
shows similar power spectral densities, suggesting that the
signal quality does not change over time. Further comprehen-
sive longitudinal evaluations of the long-term durability will
be published in a later study.

5. Conclusion

We have found that the proposed subcutaneous recording
system provides data quality which is comparable to state-
of-the-art in standard surface recording technology. �is has

been veri�ed through both quantitative and more subjective
qualitative methods, thus promising a method for a discreet
and unobtrusive ultra-long term EEG where a small number
of electrodes are su
cient. A blinded visual examination
indicates especially highEEGqualitywhennophysicalmove-
ments were performed, and initial studies of the performance
of the subcutaneous electrodes over a one-month period
suggest its suitability for long-term EEG recordings. Further
studies will evaluate the performance of the test device during
multiple months’ long trials.
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