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Applications based on electroencephalography (EEG) signals suffer from the mutual

contradiction of high classification performance vs. low cost. The nature of this

contradiction makes EEG signal reconstruction with high sampling rates and sensitivity

challenging. Conventional reconstruction algorithms lead to loss of the representative

details of brain activity and suffer from remaining artifacts because such algorithms only

aim to minimize the temporal mean-squared-error (MSE) under generic penalties. Instead

of using temporal MSE according to conventional mathematical models, this paper

introduces a novel reconstruction algorithm based on generative adversarial networks

with the Wasserstein distance (WGAN) and a temporal-spatial-frequency (TSF-MSE) loss

function. The carefully designed TSF-MSE-based loss function reconstructs signals by

computing the MSE from time-series features, common spatial pattern features, and

power spectral density features. Promising reconstruction and classification results are

obtained from three motor-related EEG signal datasets with different sampling rates and

sensitivities. Our proposed method significantly improves classification performances of

EEG signals reconstructions with the same sensitivity and the average classification

accuracy improvements of EEG signals reconstruction with different sensitivities. By

introducing the WGAN reconstruction model with TSF-MSE loss function, the proposed

method is beneficial for the requirements of high classification performance and low cost

and is convenient for the design of high-performance brain computer interface systems.

Keywords: EEG signals reconstruction, generative adversarial network, Wasserstein distance, sampling rate,

sensitivity

1. INTRODUCTION

Electroencephalography (EEG) (Cecotti and Graser, 2011; Narizzano et al., 2017; Freche et al.,
2018) is one of the most important non-invasive neuroimaging modalities used in cognitive
neuroscience research (Mullen et al., 2015; Mete et al., 2016; Luo et al., 2018b) and brain-computer
interface (BCI) development (Ahn and Jun, 2015; Arnulfo et al., 2015; Sargolzaei et al., 2015;
Kumar et al., 2017). However, EEG-based cognitive neuroscience and BCI fields currently face a
bottleneck in that high sampling rate and high-sensitivity EEG amplifier hardware are extremely
expensive and generally complicated to operate for collecting signals (Jiang et al., 2017). Ideally,
EEG amplifiers with high sampling rates and sensitivities are preferred to record high-resolution
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brain activities underlying different stimuli. Lowering the
sampling rate and sensitivity may influence the utility of
acquired signals (Wu et al., 2015). Therefore, extensive efforts
have been dedicated to reconstructing high-sampling-sensitivity
EEG (HSS-EEG) signals from low-sampling-sensitivity EEG
(LSS-EEG) signals to improve performance. The up-sampling
operation is one of the conventional time-series reconstruction
methods. By using an up-sampling operation, the reconstructed
signals are up-sampled and with different sensitivity. The
reconstruction methods can be divided into three categories:

1. Reconstruction by interpolation (Erkorkmaz, 2015).
2. Reconstruction by mathematical modeling (Naldi et al., 2017).
3. Reconstruction by deep neural networks (Jin et al., 2017).

Among the methods for reconstructing EEG signals by
interpolation algorithms, such as bilinear interpolation, nearest
neighbor interpolation, and spline interpolation, several are
based on the successive assumption of signal values (Marques
et al., 2016). Such an assumption does not consider the
complexity of signals, and, therefore, it is difficult to represent
brain activity from reconstructed signals. Reconstruction based
on mathematical models, such as compressive sensing, subspace
projection, and frequency transformation, optimizes an objective
function that incorporates mathematical models and prior
information in the different domains of the signals. These
algorithms greatly improve signal performance and quality;
however, they may still lose the details representing brain activity
and suffer from artifacts. In addition, reconstruction by a single
mathematical model and a single domain has simplified the range
of applications of reconstructed EEG signals. These algorithms
greatly improve signal performance and quality (Choudhary
et al., 2016); however, they may still lose the details representing
brain activity and suffer from artifacts. Additionally, the
high computational cost of constructing mathematical models
remains another potential risk in practical applications.

In contrast to interpolation and mathematical models, the
recent explosive development of deep neural networks (DNNs)
has shed light on novel opinions and promised potential in
the field of signal reconstruction. In recent years, most DNNs
studies have focused on image signal reconstruction from the
perspective of noise, super-resolution, and denoising (LeCun
et al., 2015). A state-of-the-art image reconstruction performance
was obtained by the new game theoretic generative model
of generative adversarial networks (GANs) (Goodfellow et al.,
2014). GANs are used to generate images from artificial data,
construct high-resolution (HR) images from low-resolution (LR)
copies (Ledig et al., 2017), and denoise CT images from noisy
images (Yang et al., 2018), and such models achieve the best

Abbreviations: EEG, electroencephalography; HSS-EEG, high sampling rate and
sensitivity EEG; LSS-EEG, low sam-pling rate and sensitivity EEG; DNNs, deep
neural networks; GAN, generative adversarial network; WGAN, GAN with
Wasserstein distance; HR, high resolution; LR, low resolution; FBCSP, filter bank
common spatial pattern; PSD, power spectral density; TSF-MSE, temporal-spatial-
frequency mean square error; AO, action observation; GAL, grasp and lift; MI,
motor imagery; ReLU, rectified linear unit; BN, batch normalization; SVM, support
vector machine; SVD, singular value decomposition; ERD/ERS, event-related
desynchronization/event-related synchronization.

performance in reconstruction tasks. Inspired by the applications
of GANs in the image reconstruction field, researchers have
focused on reconstructing EEG signals using GANs. Research
on “GANs conditioned by brain signals” (Kavasidis et al.,
2017) has used GANs to generate images seen by subjects
from recorded EEG signals. Another deep EEG super-resolution
study used GANs to produce HR EEG data from LR samples
by generating channel-wise up-sampled data to effectively
interpolate numerous missing channels (Hartmann et al., 2018).
Such an algorithm produced higher spatial resolution EEG
signals to improve performance.

Although GANs have been used to reconstruct images from
EEG signals with a visualized spatial feature space, the sampling
rate and sensitivity resolution in the temporal feature space are
still two key limitations of EEG signals. To counterbalance the
performance of EEG signals and the cost of EEG amplifiers, we
propose using a GAN with the Wasserstein distance (WGAN)
model as the discrepancy measure between different sampling
rates and sensitivities and a spatial-temporal-frequency loss
function that computes the difference between EEG signals in
an established feature space. The GAN/WGAN architecture is
used to encourage the reconstructed LSS-EEG signals to share
the same distribution as the HSS-EEG signals. Because EEG
signals are multi-channels time-series data, instead of using the
mean square error by temporal features as the loss function,
we propose a novel spatial-temporal-frequency loss function,
which is robust enough for the EEG signals, to extract the
spatial-temporal-frequency features for reconstruction. By using
the GAN/WGAN architecture and the carefully designed loss
function to reconstruct HSS-EEG signals from LSS-EEG signals,
this study has made two contributions:

1. The GAN/WGAN architectures are trained by EEG signals
of different sampling rates and different sensitivities to
compare the classification performances of the reconstructed
EEG signals.

2. The spatial-temporal-frequency loss is applied to maintain
robustness of GAN/WGAN architectures training, and the
loss function helps reconstruction signals to obtain more
discriminant patterns.

2. METHODS

2.1. EEG Signal Reconstruction Model
For the reconstruction of EEG signals, let z ∈ RN×T1×S denote
the LSS-EEG signals from distribution PL, and x ∈ RN×T2×S

denote the HSS-EEG signals from the real distribution PH . In
the definition, N denotes the number of channels, and T1 and T2

denote the samples of one trial for LSS-EEG signals andHSS-EEG
signals during recordings, respectively. S denotes the number
of trials for the motor-based tasks. The reconstruction goal is
to formulate a function f (z) that projects LSS-EEG signals z to
HSS-EEG signals x:

f (z) : z → x (1)

In fact, the reconstruction function maps the LSS-EEG samples
from PL into a certain distribution PC, and our goal is to adjust a
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certain distribution PC to make it close to the real distribution
PH by varying the function f (z). The reconstruction has two
procedures with GAN. In the generation procedure, the object is
to adjust EEG samples from distribution PL to distribution PC. In
the discriminator procedure, the object is to adjust EEG samples
from distribution PC to distribution PH . The reconstruction
procedure can ultimately be treated as a procedure to adjust EEG
samples from one distribution to another.

Typically, since EEG signals are nonlinear and non-
stationary, the noise model in such signals is complicated,
and the reconstruction mapping relationship is non-uniformly
distributed across the signals. Thus, there is no clear indication
of how the distributions of LSS-EEG and HSS-EEG signals are
related to each other. It is difficult to reconstruct LSS-EEG
signals using conventional methods. However, the uncertainties
in the noise model and the reconstruction mapping relationship
can be ignored by using deep neural networks (DNNs), as the
DNNs can efficiently learn high-level features from nonlinear and
non-stationary signals and reconstruct a representation of the
data distribution from modest-sized signal patches. Therefore,
the GAN framework based on DNN is suitable for EEG
signal reconstruction. In summary, a modified GAN framework
with the Wasserstein distance and temporal-spatial-frequency
(TSF) loss is introduced to reconstruct HSS-EEG signals from
LSS-EEG signals.

2.2. GAN With Wasserstein Distance
The GAN framework consists of two opposing neural networks,
a generator G, and a discriminator D, that are optimized to
minimize a two-player min-max problem (Goodfellow et al.,
2014). The discriminator is trained to distinguish the generated
samples from the real samples, while the generator is trained
to generate fake samples that are not determined as fake by the
discriminator. For the reconstruction of EEG signals, we further
defined the discriminator DθD and the generator GθG to solve the
min-max problem:

min
θG

max
θD

LGAN(DθD ,GθG ) = Ex∼PH

[
logDθD (x)

]

+ Ez∼PL

[
log

(
1− DθD

(
GθG (z)

))]

(2)

where E(·) denotes the expectation operator. When the
discriminator meets the real data, it will satisfy DθD (x) =

1 to discriminate the real data. Here, DθD (x) = 1 reaches
the expectation for logDθD (x). When the discriminator meets
the generated data, it will satisfy DθD

(
GθG (z)

)
= 0 to

discriminate the generated data. Here, DθD

(
GθG (z)

)
= 0

reaches the expectation for log
(
1− DθD

(
GθG (z)

))
. Therefore,

the minimax optimal function is designed by the expectation
operator. The general reconstruction idea is to train a generator
for the purpose of fooling a differentiable discriminator
that is trained to distinguish reconstructed HSS-EEG signals
from real HSS-EEG signals. In constructing EEG signals,
GANs suffer from remarkable training difficulty due to the
nonlinear and non-stationary characteristics of EEG signals.
To overcome the training problem of the original GAN
framework, instead of using Jensen–Shannon divergence, the

WGAN framework uses the Wasserstein distance to compare
sample distributions (Gulrajani et al., 2017). From the definition
of WGAN, the min-max problem optimized by DθD and GθG can
be written:

min
θG

max
θD

LWGAN(DθD ,GθG ) = −Ex∼PH

[
DθD (x)

]

+Ez∼PL

[
DθD

(
GθG (z)

)]

+ λẼx∼PR

[(∥∥∇x̃(D(̃x))
∥∥
2 − 1

)2]

(3)

In the min–max problem, the Wasserstein distance is estimated
by the first two terms. The last term is the gradient penalty
for network regularization. In the penalty term, PR denotes the
distribution of uniform samples x̃ along straight lines connecting
pairs of generated and real samples. ∇x̃(·) is the gradient
calculator, and the parameter λ is a constant weighting parameter
for the penalty term. In fact, the WGAN framework removes the
log function and drops the last sigmoid layer to keep the gradient
while training the min-max problem. The discriminator DθD and
the generatorGθG are trained alternatively by optimizing one and
updating the other.

2.3. TSF-MSE Loss Function
To allow the generator to transform the data distribution from
a low sampling rate and sensitivity to a high sampling rate
and sensitivity, another part of the loss function needs to be
added to the GAN/WGAN architecture to retain the detail and
information content of the EEG signals. A widely used loss
function for signal details and information contents is the mean
square error (MSE) loss function (Yang et al., 2018). Typically,
as the common MSE is computed by minimizing the point-
wise error in image processing, the temporal MSE is computed
by minimizing the time sampling point-wise error between a
LSS-EEG patch and a HSS-EEG patch by the time step:

LT−MSE(GθG ) = E(x,z)

[
1

T2

∥∥G(z(t))− x(t)
∥∥2
F

]
(4)

where ‖·‖F denotes the Frobenius norm, LT−MSE denotes the
temporal MSE for the generator GθG , t is the time step of real
EEG signals and generated EEG signals, and T is the number
of time steps for each batch. In contrast to images, EEG signals
are multi-channel time-series data, and the spatial and frequency
features must be considered for reconstruction. Therefore, in
addition to the temporal MSE LT−MSE between time steps, the
spatial MSE LS−MSE between channels and the frequency MSE
LF−MSE between signal batches also need to be considered for
encouraging the GAN/WGAN architecture to construct more
accurate HSS-EEG signals. Recently, common spatial patterns
(CSP) have been widely used to extract spatial features from
EEG signals (Luo et al., 2018a), and power spectral density
(PSD) features are widely used to extract frequency features from
EEG signals (Petroff et al., 2016). The CSP algorithm is used to
compute the optimal projection vectors to project the original
EEG signal to a new space to obtain good spatial resolution
and discrimination between different classes of EEG signals. The
PSD algorithm is used to compute the power values on specific

Frontiers in Neuroinformatics | www.frontiersin.org 3 April 2020 | Volume 14 | Article 15

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Luo et al. EEG Reconstruction by WGAN-TSF-LOSS

frequencies to compose a spectra. Using these two algorithms, the
spatial MSE LS−MSE and the frequency MSE LF−MSE are defined
for the generator:

LS−MSE(GθG ) = E(x,z)

[
1

C2

∥∥G(CSP(z(c)))− CSP(x(c))
∥∥2
F

]
(5)

LF−MSE(GθG ) = E(x,z)

[
1

N2

∥∥G(PSD(z(n)))− PSD(x(n))
∥∥2
F

]
(6)

where CSP(·) and PSD(·) are the CSP feature and PSD feature
extractor, respectively. c is the channel of real EEG signals and the
same of the generated EEG signals, C is the number of channels,
n is the batch of real EEG signals and the same as that of the
generated EEG signals, and N is the number of batches. For
convenience, the TSF loss is computed by weighting three such
MSE losses:

LTSF−MSE(GθG ) = λT · LT−MSE(GθG )+ λS · LS−MSE(GθG )

+ λF · LF−MSE(GθG ), (7)

where λT , λS, λF are the weights of three such different MSE
losses, respectively. Datasets with different sampling rates and
sensitivities will obtain different weights, and, thus, the values of
the weights will be determined by experiments.

In addition, to confirm that the EEG signals are temporally
and spatially coherent, a regularization loss LTV (GθG ) based on
total variation is used in the generator:

LTV (GθG ) =
1

CT

C∑

c=1

T∑

t=1

∥∥∇zGθG (z)c,t
∥∥ (8)

where ∇z(·) is the gradient calculator; the gradient regularization
loss will encourage temporal and spatial coherence of the
reconstruction. Combining Equations (3), (7), and (8), the overall
joint reconstruction loss function is expressed as

min
θG

max
θD

LTSF−MSE(GθG )+ λ1LWGAN(DθD ,GθG )+ λ2LTV (GθG ) (9)

where λ1 and λ2 are the weights for controlling the trade-off
among the WGAN adversarial loss, the TSF-MSE loss and the
TV loss.

2.4. Network Structures
The proposed WGAN-EEG reconstruction framework is
illustrated in Figure 1. The WGAN-EEG framework consists
of three parts to reconstruct HSS-EEG signals from LSS-EEG
signals. For the first part of the deep generator GθG , “B residual
blocks” with an identical layout that was proposed by “Kaiming
He” (He et al., 2016) are employed in the generator network.
To facilitate the high sensitivity of EEG signals, 16 “B residual
blocks” are applied to LSS-EEG signals to extract deep features for
the generator. In each “B residual block,” following the common
usage of the deep learning community, two convolutional
layers with small 3*3 kernels, 1 stride, and 64 feature maps
(k3n64s1) are followed by a batch-normalization layer (BN)
and the ReLU activation function (Ioffe and Szegedy, 2015). To
increase the sampling rate of the input EEG signals, the trained
deconvolutional layer (stride = 0.5) is followed by “B residual
blocks” to increase the sampling rate. In real-world application,
the WGAN-EEG architecture is trained well to fit HSS-EEG
signals before usage. In the usage scenario, the recorded LSS-EEG

FIGURE 1 | The architecture of the WGAN-EEG. The WGAN-EEG framework consists of three parts to reconstruct HSS-EEG signals from LSS-EEG signals. For the

first part of the deep generator, “B residual blocks” with an identical layout are employed in the generator network. The second part of the WGAN-EEG framework is

the TSF-MSE loss calculator. The third part of the WGAN-EEG is used to discriminate real HSS-EEG signals from generated HSS-EEG samples.
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FIGURE 2 | Details of the discriminator in the WGAN-EEG. We followed the architectural guidelines for the discriminator to use the LeakyReLU activation function and

avoid max-pooling along the network. The discriminator network contains eight convolutional layers with an increasing number of filter kernels by a factor of 2. After

eight convolutional layers, there are two FCN layers, of which the first layer has 1,024 outputs with the LeakyReLU activation function, and the second layer has a

single output. Following the instructions of the WGAN, the discriminator of the WGAN-EEG has no sigmoid cross entropy layer.

signals are incorporated into the well-trained architecture to
reconstruct HSS-EEG signals to improve the sensitivity.

The second part of the WGAN-EEG framework is the
TSF-MSE loss calculator, which is realized in Figure 1. The
reconstructed output HSS-EEG signalsGθG (z) from the generator
GθG and the ground truth HSS-EEG signals x are fed into the
calculator to extract the CSP features and the PSD features. Then,
using the extracted features, the TSF-MSE loss is computed by
Equations (4), (5), (6). The reconstruction error computed by
the loss function is then back-propagated to update the generator
network’s weights.

The third part of the WGAN-EEG used to discriminate
real HSS-EEG signals from generated HSS-EEG samples, the
discriminator network DθD , is shown in Figure 2. Here, we
followed the architectural guidelines for the discriminator to use
the LeakyReLU activation function and avoid max-pooling along
the network (Zhang et al., 2017). The discriminator network
contains eight convolutional layers with an increasing number
of filter kernels by a factor of 2. In fact, the convolutional
kernels are increased from 64 to 512 kernels, and the stride is
alternatively increased from 1 to 2 to reduce the EEG signal
sampling rate when the number of features is doubled. In
the discriminator, each convolutional layer is followed by a
LeakyReLU activation function and a batch-normalization layer.
After eight convolutional layers, there are two FCN layers, of
which the first layer has 1,024 outputs with the LeakyReLU
activation function, and the second layer has a single output.
Following the instructions of the WGAN (Gulrajani et al., 2017),
the discriminator of the WGAN-EEG has no sigmoid cross
entropy layer.

The WGAN-EEG framework is trained by using EEG signal
batches and applied on the entity of each signal trial. The details
of training the WGAN have been described in the experiments.

3. RESULTS

3.1. Experimental Datasets
To explore the feasibility and performance of the proposed
algorithm, three EEG signal datasets with different sampling rates

TABLE 1 | Details of the three different EEG datasets.

Datasets Action observation Grasp and lift Motor imagery

Sampling rate/s 250 500 250

Sensitivity/bit 0.024 µV/bit 0.1 µV/bit 100 µV/bit

Channels 64 32 22

Classification

categories

2 6 4

Subject number 6 12 9

Trials/Subject 384 576 1,560

Trial duration/s 5 s 0.5 s 4 s

Device NeuroScan SymAmp2 BrainAmp Unknown

and sensitivities are applied to train and evaluate the proposed
networks. Table 1 illustrates the details of these three different
EEG datasets.

(1) Action Observation (AO) dataset (Luo et al., 2018b): The
AO dataset1 was collected from our previous research on
different speed modes during AO. The EEG signals were
acquired from the “NeuroScan SymAmp2” device with 64
channels, and the sampling rate and sensitivity were 250 Hz
and 0.024 µV/bit, respectively. In this dataset, six subjects
were invited to observe a robot’s actions at four different
speeds. Thus, the dataset had 24 subsets for each subject
in each AO speed mode. Each subset contained 384 trials
with 192 trials of left leg movements and 192 trials of right
leg movements for a binary classification, and each trial
lasted 5 s. To train the GAN/WGAN, a “leave-one-rest”
strategy is used for training. In our pre-training experiments,
more signals caused a problem of over-fitting and a large
time complexity for GAN/WGAN training. Since 13 subsets
containing 4,992 trials were enough to obtain the best
performance, we left one subset and randomly selected 13
subsets from the remaining 23 subsets for training; the left
subset was reconstructed after obtaining the well-trained

1https://pan.baidu.com/s/4gap5N4.
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GAN/WGAN. Therefore, all 24 subsets were reconstructed
through 24 rounds of the above procedure. Because the AO
dataset was acquired at a sampling rate of 250 Hz, we down-
sampled all trials of EEG samples to the sampling rate of 125
Hz for the sake of sampling rate reconstruction.

(2) Grasp and Lift (GAL) dataset (Luciw et al., 2014): The GAL
dataset2 recorded EEG signals while the subjects grasped and
lifted an object. The EEG signals were acquired using the
“BrainAmp” device with 32 channels, and the sampling rate
and sensitivity were 500 Hz and 0.1 µV/bit, respectively. In
this dataset, 12 subjects executed six movements for 1,560
trials, and each trial lasted 0.5 s; thus, the classification
of EEG signals contained six categories. To train the
GAN/WGAN, a “leave-one-rest” strategy is used for training.
The 9,360 trials carried out by six subjects were enough
to train the GAN/WGAN, and we thus left one subject’s
signals and randomly selected six subjects’ signals from
the remaining 11 subjects’ signals for training; the left
subjects’ signals were reconstructed after obtaining the well-
trained GAN/WGAN. Therefore, all 12 subjects’ signals were
reconstructed through 12 rounds of the above procedure.
In the experiment, to validate the reconstruction of the
sampling rate, all signals were down-sampled to a sampling
rate of 250 Hz.

(3) Motor Imagery (MI) dataset (Tangermann et al., 2012): The
MI dataset3 was from the “BCI competition IV dataset 2a.”
Nine subjects participated in the MI experiment during
which EEG signals were recorded while the subject imagined
his/her own leg, foot, and tongue movements, and each trial
lasted for 4 s. There were 22 channels, and the sampling rate
and sensitivity were 250 Hz and 100 µV/bit, respectively.
In this dataset, nine subjects executed four motor imagery
tasks, and each subject had 576 trials of EEG signals for a
four categories for classification.To train the GAN/WGAN,
a “leave-one-rest” strategy is used for training. The 4,032
trials carried out by seven subjects were enough to train
the GAN/WGAN, and we thus left one subject’s signals
and randomly selected seven subjects’ signals from the
remaining eight subjects’ signals for training; the left subjects’
signals were reconstructed after obtaining the well-trained
GAN/WGAN. Therefore, all nine subsets were reconstructed
through nine rounds of the above procedure. For the same
purpose, all trials of EEG signals were down-sampled at a
sampling rate of 125 Hz.

3.2. Training Details
In the training procedure, we trained six models using
the GAN/WGAN framework within three different datasets.
All down-sampled training EEG samples were fed into the
generator, and the real training EEG samples were fed into the
discriminator. The generated EEG samples and the real EEG
samples were discriminated by the TSF-MSE loss function to
update the generator and the discriminator for solving the min-
max problem. Because the AO dataset and the GAL dataset have
high sampling rates and a high number of channels, models for

2https://www.kaggle.com/c/grasp-and-lift-eeg-detection/data.
3http://www.bbci.de/competition/iv/#datasets.

these two datasets were trained over 30 epochs. However, the
MI dataset has a lower sampling rate and fewer channels, and,
therefore, this dataset was trained over 20 epochs. Each epoch
traverses all the data in the corresponding dataset. According to
the different devices used to record EEG signals, the generators
of the GAN/WGAN frameworks were specified by different
scopes of generation for different datasets. We specified the
generation scopes of [−40, 40 µV], [−50, 50 µV], and [−100,
100 µV] for the AO dataset, the GAL dataset, and the MI
dataset, respectively.

In our experiments, we randomly extracted pairs of signal
patches from down-sampled EEG signals and real EEG signals
as our training inputs and labels. The patch size is N ∗ τ ,
where N is the channel number for different datasets, and
τ is the EEG samples from the temporal domain. Since the
limited trials of EEG signals (<500 trials for one subject) and
smaller values of τ will construct more accurate sequential
relationships for the EEG signals, following our previous research
(Luo et al., 2018a), we cropped a minimal length for the
training of the deep neural network. According to the pre-
experiment, we set τ = 12 to satisfy the minimal length
for the convolution in the GAN/WGAN architecture. In the
optimization of the generator and the discriminator, according
to current research (Basu et al., 2018), the GAN models were
optimized by the Adam algorithm (Basu et al., 2018), and the
WGAN models were optimized by the RMSprop algorithm
(Mukkamala and Hein, 2017). The optimization procedure for
the GAN/WGAN architectures is shown in Figure 3. The mini-
batch size was set to 32. Following the instructions of the
GAN/WGAN frameworks (Goodfellow et al., 2014; Gulrajani
et al., 2017), the Adam optimizer’s hyperparameters were set
as α = 10−5,β1 = 0.5,β2 = 0.9, and the RMSprop
optimizer’s hyperparameters were set as α = 10−5,β =

0.9. The hyperparameter for the gradient penalty of WGAN
framework was set as λ = 10 according to the suggestion in
the reference (Gulrajani et al., 2017). The hyperparameters for
the SRGAN/SRGAN frameworks in Equation (9) were set as
λ1 = 10−3 and λ2 = 2 ∗ 10−8 by the suggestions of reference
(Ledig et al., 2017). The hyperparameters in the TSF-MSE loss
function of Equation (7) and the joint reconstruction were set
of different values according to the experimental experience of
each reconstruction round, and the average values with standard
deviations of all parameters in three datasets are given in Table 2.
The optimization processes for the GAN framework and the
WGAN framework are similar; however, some places are changed
to the corresponding optimizer and the loss functions (see
Figure 3).

The GAN/WGAN frameworks were implemented in Python
2.7 with the Tensorflow 1.8 library. Two NVIDIA 1080Ti GPUs
were used in this study.

3.3. Network Convergence
To visualize the convergence of the GAN/WGAN frameworks,
the conventional temporal MSE, frequency MSE, spatial MSE,
the proposed TSF-MSE losses, and the Wasserstein distance for
validation of three different datasets were computed according
to Equations (2), (3), (4), and (5). Figure 4 shows the averaged
temporal MSE, frequency MSE, spatial MSE, and TSF-MSE
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FIGURE 3 | The optimization procedure for the GAN/WGAN. Following the instructions of the GAN/WGAN frameworks, the Adam optimizer’s hyperparameters are

set as α = 1e− 5,β1 = 0.5,β2 = 0.9, and the RMSprop optimizer’s hyperparameters are set as α = 1e− 5,β = 0.9. The hyperparameter for the gradient penalty is

set as λ = 10 according to the suggestion in the reference. The hyperparameters in the TSF-MSE loss function and the joint reconstruction are set as

λT = 0.5, λS = 0.25, λF = 0.25, λ1 = 0.1, λ2 = 0.1 according to our experimental experience. The optimization processes for the GAN and the WGAN are similar,

except some places are changed to the corresponding optimizer and the loss functions.

losses vs. the number of epochs for different datasets within the
GAN/WGAN frameworks.

From Figures 4A–D, for a given framework and dataset,
we have compared the variations and differences between the

conventional temporal MSE, frequency MSE, spatial MSE, and
our proposed TSF-MSE. In the four figures, all of the iterative
curves are shown to have decreased rapidly within the first
10 epochs (each epoch contains 10 error recordings), and the
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TABLE 2 | The hyperparamter λT , λS, λF tuning of the novel TSF-MSE loss

function for all experiments.

Reconstruction λT λS λF

AO− > AO 0.46 ± 0.12 0.23 ± 0.06 0.30 ± 0.09

GAL− > GAL 0.44 ± 0.13 0.21 ± 0.08 0.35 ± 0.06

MI− > MI 0.53 ± 0.16 0.20 ± 0.11 0.27 ± 0.03

GAL− > AO 0.47 ± 0.12 0.18 ± 0.09 0.31 ± 0.07

MI− > AO 0.41 ± 0.13 0.31 ± 0.08 0.27 ± 0.09

AO− > GAL 0.50 ± 0.14 0.22 ± 0.09 0.33 ± 0.06

MI− > GAL 0.52 ± 0.12 0.22 ± 0.08 0.25 ± 0.08

AO− > MI 0.60 ± 0.18 0.31 ± 0.09 0.07 ± 0.01

GAL− > MI 0.58 ± 0.17 0.33 ± 0.08 0.06 ± 0.01

initial decreases indicated that these two metrics are positively
correlated for the EEG signal reconstruction. However, for
each dataset or when using GAN/WGAN frameworks, the
loss results of TSF-MSE were lower than the loss results of
conventional temporal MSE, frequency MSE, and spatial MSE.
In addition, of these four losses, the WGAN frameworks
oscillated in the convergence process, while the GAN frameworks
smoothed in the convergence process. Comparing the oscillation
of losses, the TSF loss exhibited varied smoothing for the
WGAN framework compared to the GAN framework for each
dataset. These observations of network convergence suggested
that the conventional MSE losses and our proposed TSF-MSE
loss have different focuses within the GAN/WGAN frameworks.
By applying the generators, the difference between conventional
MSE losses and our proposed TSF-MSE loss will be further
revealed in the reconstructed EEG signals.

Figure 5 illustrates the Wasserstein distance estimation
vs. the number of epochs for three different datasets. The
plotted Wasserstein values were estimated by the definition of
−Ex∼PH

[
DθD (x)

]
+Ez∼PL

[
DθD

(
GθG (z)

)]
in Equation (3). From

the figure, we have found a reduction in theWasserstein distances
as the number of epochs increased, but different datasets have
different decay rates of the reducing Wasserstein distance. For
the curves of the three datasets, we noted that the Wasserstein
distance we computed is a surrogate that has not been normalized
by the total number of EEG signal samplings, and, therefore, the
curves would have decreased to close to zero after 100 epochs by
using the normalization for the EEG signals.

3.4. Reconstruction Results
To show the reconstruction effects of the GAN/WGAN
frameworks with our proposed TSF-MSE loss function, we
considered two different aspects of the reconstruction results.
The first one was the sampling rate reconstruction by the same
sensitivity signals’ GAN/WGAN frameworks, which is shown in
Figure 6. The second one was the sensitivity rate reconstruction
by the different sensitivity signals’ GAN/WGAN frameworks,
which is shown in Figure 7. Since the proposed reconstruction
method used a novel TSF-MSE loss function for the training of
GAN/WGAN architectures, the statistical temporal, frequency,
and spatial results were also compared between the original

signals and the reconstructed signals. Figures 8–10 illustrated
the mean temporal error, mean spectra difference, and brain
electrical activity mapping on 12 Hz of a single trial compared
with the original EEG signals and all reconstructed EEG signals.

To plot the reconstruction results of different models and
situations, we chose the same trial from each dataset for the
comparison experiments. Because the number of channels differs
for each dataset, we choose the “FPz” channel for the experiments
to plot the figures. In addition, as one trial over a long period
of time will hide some details of the reconstruction signals, we
chose the 50 ms range of (500 and 550 ms) for the AO and MI
datasets and the 50 ms range of (100 and 150 ms) for the GAL
dataset to plot the details of the reconstruction results. From the
reconstruction results by the same details shown in Figure 6, we
have found that the signals’ proximity between the reconstructed
data and the original data decreased in the following order for
the three datasets: AO > GAL > MI. The difference between the
GAN framework and the WGAN framework cannot be realized
at the signal level. In the figures shown in Figure 7, the high
sensitivity EEG signals’ GAN/WGAN frameworks reconstructed
the low sensitivity EEG signals well, such as the AO andGAL data
reconstructed by the MI GAN/WGAN frameworks. However,
the low sensitivity EEG signals’ GAN/WGAN models cannot
reconstruct accurate high sensitivity EEG signals, such asMI data
reconstructed by the AO and GAL GAN/WGAN frameworks.

For the statistical results in Figures 8–10, we have found that
excepting for the temporal errors, reconstructed EEG signals
show the same regulations on frequency and spatial features.
For the reconstructions of the same sensitivity, the mean spectra
results have shown that WGAN architectures outperform than
GAN architectures, so do the brain electrical activity mapping
(BEAM) results for reconstructions of the same sensitivity. As
for the reconstructions of different sensitivity, we have found
that higher sensitivity models bring lower spectra difference and
more distinct ERS/ERD phenomenon on BEAMs, while lower
sensitivitymodels bring higher spectra difference and less distinct
ERS/ERD phenomenon on BEAMs.

3.5. Classification Results
In fact, the qualitative analysis could not yield promising
insight regarding HSS-EEG signals reconstructed by LSS-
EEG signals. Hence, a quantitative analysis was applied to
explore the performance of reconstructed EEG signals. In
this paper, because the AO dataset corresponded to action
observation, the GAL dataset corresponded to action execution,
and the MI dataset corresponded to motor imagery, these three
datasets caused the same event-related desynchronization/event-
related synchronization (ERD/ERS) phenomenon, which can be
classified by filter bank common spatial patterns (FBCSP) and
a support vector machine (SVM) (Luo et al., 2018a,b). The
ERS/ERD phenomenon from EEG signals is common on three
motor-related datasets, and such phenomena are usually used for
the motor-based BCI. Therefore, the ERS/ERD phenomenon will
be the key index with which to measure the performance of BCI
system by EEG signals. This study thus selected the ERS/ERD
phenomenon from EEG signals as a quantitative measure, and
FBCSP features with an SVM classifier were applied to explore
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FIGURE 4 | The averaged MSE and Wasserstein distance estimations for training the GAN/WGAN. In the four figures, all of the iterative curves decreased rapidly

within the first 10 epochs (each epoch contains 10 errors recording), and the initial decreases indicated that these two metrics are positively correlated for the EEG

signal reconstruction. However, for each dataset or using GAN/WGAN frameworks, the loss results of TSF-MSE are lower than the loss results of conventional

temporal, frequency, and spatial MSE. In addition, of these four losses, the WGAN frameworks oscillate in the convergence process, while the GAN frameworks are

smoothed in the convergence process. (A) Temporal-spatial-frequency loss, (B) Temporal loss, (C) Frequency loss, (D) Spatial loss.

the performances of the original signals and the reconstructed
signals. For comparison with different models and different
sensitivities, there were several hyperparameters for the FBCSP
features, SVM classifier, and deep learning classifier:

(1) Because all three datasets contain the ERD/ERS
phenomenon, which is detected on the band of [8, 30
Hz], the filter bank strategy is used to divide the whole
band to obtain universality for different subjects. In this
study, the width and overlapping ratio were set to 4 and 2
Hz for the filter bank dividing, as shown in Table 3. After
the EEG signals are filtered by the optimal filter bank, the
CSP algorithm was included to extract FBCSP features (Ang
et al., 2012).

(2) The CSP algorithm (Ang et al., 2012) is presented to
every filter result to extract the optimal spatial features by
computing a problem of maximizing the power ratio for
different AO/AE/MI tasks. Then, the maximizing power

ratio is computed by the singular value decomposition
(SVD) algorithm to obtain eigenvalues and eigenvectors.
Because different datasets have EEG signals from different
channels, the number of eigenvalues used for constructing
the CSP spatial vector were set to m = 8,m = 4, and
m = 4 for the AO dataset, the GAL dataset, and the MI
dataset, respectively.

(3) In the classification, the SVM classifier was issued to
classify the extracted FBCSP features from three different
datasets. To overcome the non-stationary and nonlinear
characteristics of EEG signals, the linear kernel with
hyperparameters was set to c = 0.01 and g = 2 for
the classifiers for all datasets. To compare the classification
performance for both the original data and the reconstructed
data, an 8*8 cross-validation strategy was applied to each
dataset, and the average classification results were recorded.

(4) In order to validate the performance improvement of
reconstructed signals, a convolutional neural networks
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FIGURE 5 | The Wasserstein distance estimation vs. the number of epochs for three different datasets. The plotted Wasserstein values are estimated by the definition

of −Ex∼PH [DθD (x)]+Ez∼PL
[
DθD

(
GθG (z)

)]
in Equation (3). For the curves of these three datasets, we note that the Wasserstein distance we computed is a surrogate

that has not been normalized by the total number of EEG signal samplings, and, therefore, the curves would have decreased to close to zero after 100 epochs by

using the normalization for the EEG signals.

based deep learning model “FBCSPNet” from reference
(Schirrmeister et al., 2017) was introduced to compare
the classification performance between original signals and
reconstructed signals. Experimental parameters were set as
the same from the reference for AO/GAL/MI datasets.

Classification results for the sampling rate reconstruction by
the same sensitivity signals’ GAN/WGAN frameworks are
shown in Tables 4–6 for AO dataset, GAL dataset, and MI
dataset, respectively. In addition, classification results for the
sensitivity rate reconstruction by the different sensitivity signals’
GAN/WGAN frameworks are shown in Tables 7–9 for AO
datset, GAL dataset, and MI dataset, respectively. In all tables,
the results are presented by classification accuracy forms, and
a paired t-test statistical technique was used to detect whether
the reconstructed EEG signals significantly outperform than the
original EEG signals. P-value of the t-test statistics are provided
in the tables, and ∗p < 0.05 and ∗∗p < 0.01 represent the results
compared among two columns are significantly different and
extremely significantly different.

Tables 4–6 illustrate the up-sampling classification results
compared with the original data, the spline reconstructed data,
the GAN reconstructed data, and the WGAN reconstructed
data. Among the three datasets, we have found that the

WGAN reconstructed data achieved the best classification
performance. In the AO dataset, the WGAN reconstructed
signals achieved the best classification accuracy (67.67%), which
was higher than those of the original data (63.57%), the
spline reconstructed data (60.91%), and the GAN reconstructed
data (65.41%). In the GAL dataset, the WGAN reconstructed
signals achieved the best classification accuracy (73.89%), which
was higher than those of the original data (69.78%), the
spline reconstructed data (68.25%), and the GAN reconstructed

data (73.63%). In the MI dataset, the WGAN reconstructed
signals achieved the best classification accuracy (64.01%), which
was higher than those of the original data (61.98%), the
spline reconstructed data (60.41%), and the GAN reconstructed
data (63.61%).

From the t-test statistical results that computed compared
signals, the reconstructed GAN/WGAN model signals exhibited
significant improvement of classification, producing a better
performance than the original signals, while spline reconstructed
signals exhibited significant reduction of classification
performance, lower that of the original signals. The significant
improvement and reduction are presented for all AO/GAL/MI
datasets (∗p < 0.05). Specifically for the WGAN model in AO
dataset and GAN/WGAN model in MI dataset, the classification
performances presented were extremely significant (∗∗p <

0.01). Therefore, we have concluded that the GAN/WGAN
models with proposed TSF-MSE loss function showed a
significant improvement for reconstructing EEG signals with the
same sensitivity.

Tables 7–9 give the classification results compared with the
GAN/WGAN models trained with different sensitivities. Table 7
gives the classification results of the AO data reconstructed by
the GAL/MI trained GAN/WGAN models. Table 8 gives the
classification results of the GAL data reconstructed by the AO/MI
trained GAN/WGAN models. Table 9 gives the classification
results of the MI data reconstructed by the AO/GAL trained
GAN/WGAN models. For the AO dataset, signals reconstructed
by the GAL-GAN model achieve the best average classification
accuracy (64.55%), which was higher than those of the original
data (63.51%) and the data reconstructed by the GAL-WGAN
(64.40%), the MI-WGAN (62.07%), and the MI-GAN (62/08%).
For the GAL dataset, signals reconstructed by the AO-GAN
model achieve the best average classification accuracy (70.60%),

Frontiers in Neuroinformatics | www.frontiersin.org 10 April 2020 | Volume 14 | Article 15

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Luo et al. EEG Reconstruction by WGAN-TSF-LOSS

FIGURE 6 | Sampling rate reconstruction by the same sensitivity GAN/WGAN frameworks. Sampling rate and sensitivity reconstruction by the same sensitivity

GAN/WGAN frameworks. The reconstruction results of one trial for AO dataset, GAL dataset, and MI dataset. Meanwhile, the detailed reconstruction results in (500,

550 ms) of AO datasets and (100, 150 ms) of GAL and MI datasets are also given. (A) One trial of AO dataset, (B) Detailed in (500, 550 ms), (C) One trial of GAL

dataset, (D) Detailed in (100, 150 ms), (E) One trial of MI dataset, (F) Detailed in (100, 150 ms).

which is higher than those of the original data (69.78%) and the
data reconstructed by the AO-WGAN (70.34%), the MI-WGAN
(69.57%), and the MI-GAN (70.21%). For the MI dataset, signals
reconstructed by the AO-GAN model achieved the best average
classification accuracy (64.93%), which was higher than those of
the original data (61.98%) and the data reconstructed by the AO-
WGAN (63.29%), the MI-WGAN (63.66%), and the MI-GAN
(63.39%). The GAN model performed better than the WGAN
model for reconstructing EEG signals by different sensitivities,
and LSS-EEG signals reconstructed by HSS-EEG models will
increase the sampling rate and sensitivity of signals, which will
increase the classification performance.

From the t-test statistical results that computed between
compared signals, the AO dataset reconstructed signals by
GAL-WGAN and GAL-GAN, showing significant improvement
of classification performance than the original signals (*p <

0.05), while other datasets reconstructed signals showed no
significant performance compared to the original signals(*p >

0.05). In addition, AO dataset reconstructed signals by MI-GAN
a classification performance that was significantly worse than the
original signals (*p < 0.05). Therefore, we have concluded that
the GAN/WGAN models with proposed TSF-MSE loss function
showed significant performance improvement with enough data
and no significant performance improvement without enough
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FIGURE 7 | Sampling rate reconstruction by different sensitivity GAN/WGAN frameworks. Sampling rate and sensitivity reconstruction by different sensitivity

GAN/WGAN frameworks. The reconstruction results of one trial for AO dataset, GAL dataset, and MI dataset. Meanwhile, the detailed reconstruction results in (500,

550 ms) of AO datasets and (100, 150 ms) of GAL and MI datasets are also given. (A) One trial of AO dataset, (B) Detailed in (500, 550 ms), (C) One trial of GAL

dataset, (D) Detailed in (100, 150 ms), (E) One trial of MI dataset, (F) Detailed in (100, 150 ms).

data for reconstructing EEG signals with the same sensitivity.
Besides, if there is a large gap of sensitivity between two EEG
signals datasets, the lower sensitivity based GANmodel will cause
significant worse performance of reconstructing high sensitivity
signals to low sensitivity signals (such as MI-GAN applied to
AO dataset).

Since this study has proposed a novel loss function to
build the GAN/WGAN architectures for reconstructions, we
have also compared the mean classification accuracy between
temporal-MSE based GAN/WGAN architectures and TSF-
MSE based GAN/WGAN architectures. Due to the single
spatial-MSE and frequency-MSE cannot reconstruct signals,

these two losses were not included in the comparison.
Table 10 illustrates the comparison results for all reconstructions
and datasets. We have also used a paired t-test statistical
technique to detect whether the TSF-MSE based GAN/WGAN
architectures significantly outperform than the temporal-MSE
based GAN/WGAN architectures. In Table 10, AO− > AO
means AO dataset reconstructed by the same sensitivity AO
dataset, GAL− > AO/MI− > AO represents AO dataset
reconstructed by the different sensitivity GAL/MI datasets, and
so forth. Experimental results have shown that no matter GAN
architecture or WGAN architecture, TSF-MSE loss function
outperformed the conventional temporal-MSE loss function (*p

Frontiers in Neuroinformatics | www.frontiersin.org 12 April 2020 | Volume 14 | Article 15

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Luo et al. EEG Reconstruction by WGAN-TSF-LOSS

FIGURE 8 | Statistical mean temporal error comparison between the same and different sensitivity GAN/WGAN frameworks.The high-sensitivity EEG signals’

GAN/WGAN frameworks reconstruct the low sensitivity EEG signals well, such as the AO and GAL data reconstructed by the MI GAN/WGAN frameworks. However,

the low sensitivity EEG signals’ GAN/WGAN models cannot reconstruct accurate high-sensitivity EEG signals, such as MI data reconstructed by the AO and GAL

GAN/WGAN frameworks. (A) Mean error of same sensitivity, (B) Mean temporal error of different sensitivity.

FIGURE 9 | Statistical mean spectra difference comparison between the same and different sensitivity GAN/WGAN frameworks. For the reconstructions of the same

sensitivity, the mean spectra results have shown that WGAN architectures outperform than GAN architectures. As for the reconstructions of different sensitivity, we

found that higher sensitivity models brought lower spectra difference, while lower sensitivity models brought higher spectra difference. (A) Mean spectra difference of

same sensitivity, (B) Mean spectra difference of different sensitivity.

< 0.05). Therefore, the novel loss function proposed by us
will significantly improve the performance of the reconstructed
EEG signals.

Classification of reconstructed signals between the
“FBCSP+SVM” classifier and “FBCSPNet” classifier
Schirrmeister et al. (2017) are illustrated in Table 11. The results
have shown average classification results of “FBCSP+SVM”
and “FBCSPNet” for both GAN and WGAN models on three
datasets. The improved ratios have shown that the GAN
model and WGAN model bring 3.75 and 5.25% improvement
on the average, respectively, to all three datasets for the
“FBCSP+SVM” classifier. In addition, the GAN model
and WGAN model bring 1.68 and 2.21% improvement on
average, respectively, for all three datasets for “FBCSPNet”
classifier. Therefore, we have concluded that EEG signals

reconstructions by GAN/WGAN model are advantageous
to the classification performance for different classifiers. If
the classifier exhibits the a better performance, it has the
ability to obtain more discriminant ERD patterns, so the
improvement of the deep learning classifier is less than the
conventional classifier.

In order to intuitively represent the differences between
EEG signals reconstruction by the same sensitivities or
different sensitivities of EEG signals, Figure 11 illustrates
the average results of these comparisons. In Figure 11,
the Figure 11A shows the average results of Tables 4–6
and Figure 11B shows the average results of Tables 7–9.
From the average figures, the disciplines of EEG signals
reconstruction by the GAN/WGAN models analyzed above can
be found.
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FIGURE 10 | A single reconstruction trial BEAM on 12 Hz comparison between the same and different sensitivity GAN/WGAN frameworks. For the reconstructions of

the same sensitivity, the BEAM results have shown that WGAN architectures outperform GAN architectures. As for the reconstructions of different sensitivity, we have

found that high-sensitivity models bring more distinct ERS/ERD phenomenon on brain electrical activity mappings (BEAMs), while low-sensitivity models bring less

distinct ERS/ERD phenomenon on BEAMs. (A) BEAMs of AO datasets with same and different sensitivity reconstruction. (B) BEAMs of GAL datasets with same and

different sensitivity reconstruction.
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TABLE 3 | The optimal division of bandpass filters.

Sub-bands fb1 fb2 fb3 fb4 fb5

Frequency (Hz) [8, 12] [10, 14] [12, 16] [14, 18] [16, 20]

Sub-bands fb6 fb7 fb8 fb9 fb10

Frequency (Hz) [18, 22] [20, 24] [22, 26] [24, 28] [26, 30]

TABLE 4 | Classification results of GAN/WGAN frameworks for the sampling rate

reconstruction of the same sensitivity signals in AO dataset.

Subjects Original

data (a)

Spline

data (b)

GAN

up-sampling (c)

WGAN

up-sampling (d)

AO-1 62.83 58.72 64.51 69.52

AO-2 53.12 51.67 52.83 55.61

AO-3 70.31 68.92 73.96 72.66

AO-4 75.26 71.78 73.96 80.99

AO-5 59.12 58.27 61.28 64.22

AO-6 74.22 70.30 73.96 76.82

AO-7 55.43 54.28 60.72 59.83

AO-8 58.27 55.42 59.82 59.73

AO-9 77.08 76.07 83.85 84.37

AO-10 68.49 68.78 75.26 70.57

AO-11 79.17 74.64 87.76 89.85

AO-12 73.44 66.15 66.67 75.53

AO-13 55.83 59.42 61.42 63.49

AO-14 61.82 55.23 63.83 65.72

AO-15 55.49 53.82 56.29 58.73

AO-16 62.42 57.59 63.86 65.82

AO-17 64.58 57.81 58.59 67.44

AO-18 53.28 53.28 55.87 57.89

AO-19 52.82 51.87 55.89 57.63

AO-20 63.83 62.57 68.59 67.83

AO-21 70.31 61.98 61.98 72.91

AO-22 57.55 55.73 57.29 59.37

AO-23 61.83 58.89 63.82 63.58

AO-24 59.27 58.73 62.82 63.93

AVG 63.57 60.91 65.41 67.67

T-test – a vs. b c vs. a d vs. a

p-value – **p < 0.01 *p < 0.05 **p < 0.01

The bold text is the best performance.

4. DISCUSSION

4.1. Reconstruction by Using GAN/WGAN
Frameworks and TFS-MSE Loss
The purpose of this paper is to reconstruct HSS-EEG signals
from LSS-EEG signals by using GAN/WGAN frameworks with
a carefully designed loss function. In this paper, among the
experiments of three different EEG datasets, we have compared
the performance of GAN/WGAN frameworks for up-sampling
with the same sensitivity and reconstruction with different
sensitivities. The classification performances show significant
improvement in terms of reconstructions of the same sensitivity.
For AO dataset, the classification performances also show

TABLE 5 | Classification results of GAN/WGAN frameworks for the sampling rate

reconstruction of the same sensitivity signals in GAL dataset.

Subjects Original

data (a)

Spline

data (b)

GAN

up-sampling (c)

WGAN

up-sampling (d)

GAL-1 69.23 68.71 72.81 75.63

GAL-2 65.06 65.42 68.93 68.72

GAL-3 74.04 71.69 79.83 80.54

GAL-4 59.17 58.66 62.82 61.93

GAL-5 79.94 74.48 83.61 82.83

GAL-6 69.04 69.76 74.63 75.59

GAL-7 74.33 68.79 68.67 68.27

GAL-8 79.81 77.62 79.82 80.42

GAL-9 64.04 63.48 72.24 72.68

GAL-10 65.38 65.48 74.81 75.61

GAL-11 63.21 62.52 72.60 72.07

GAL-12 74.10 72.42 72.85 72.36

AVG 69.78 68.25 73.63 73.89

T-test – a vs. b c vs. a d vs. a

p-value – *p < 0.05 *p < 0.05 *p < 0.05

The bold text is the best performance.

TABLE 6 | Classification results of GAN/WGAN frameworks for the sampling rate

reconstruction of the same sensitivity signals in the MI dataset.

Subjects Original

data (a)

Spline

data (b)

GAN

up-sampling (c)

WGAN

up-sampling (d)

MI-1 60.59 57.82 61.62 62.81

MI-2 70.31 68.58 71.18 73.35

MI-3 53.47 53.82 54.93 56.81

MI-4 59.38 56.71 61.83 60.62

MI-5 72.22 70.49 73.88 76.57

MI-6 67.36 65.73 68.72 68.81

MI-7 56.25 55.41 58.83 57.61

MI-8 57.81 56.43 58.81 57.69

MI-9 60.42 58.67 62.73 61.85

AVG 61.98 60.41 63.61 64.01

T-test – a vs. b c vs. a d vs. a

p-value – **p < 0.01 **p < 0.01 **p < 0.01

The bold text is the best performance.

significant improvement by reconstructions of GAL-WGAN
and GAL-GAN. However, other datasets reconstruction signals
with different sensitivity have no significant improvement than
original signals. There are two possible reasons for the statistical
results. One possible reason is that the AO dataset has enough
subsets (a total of 24) to compute the t-test index. However,
datasets GAL and MI with 12 subsets and nine subsets,
respectively, are not sufficient to compute the t-test index.
Another possible reason may be due to the signal amplitude
range for the GAN/WGAN reconstruction. In our experiments,
the reconstructed signals amplitude range was set as the same
as the original signals, and the amplitude range may have
prevented the variations of reconstructed signals brought by
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TABLE 7 | Classification results for the sensitivity rate reconstruction of AO

dataset by the different sensitivity signals’ GAN/WGAN frameworks.

Subjects Original

data (a)

GAL-WGAN

(b)

GAL-GAN

(c)

MI-WGAN

(d)

MI-GAN (e)

AO dataset reconstructed by the gal and mi models

AO-1 62.83 64.81 64.57 60.73 61.82

AO-2 53.12 55.82 56.18 53.27 52.63

AO-3 70.31 72.13 73.18 69.53 70.83

AO-4 75.26 73.44 75.78 67.71 69.53

AO-5 59.12 61.73 62.16 58.83 56.76

AO-6 74.22 76.56 77.87 76.82 75.26

AO-7 55.43 57.61 56.89 55.43 54.68

AO-8 58.27 59.46 58.83 56.27 56.29

AO-9 77.08 76.56 77.34 72.14 73.44

AO-10 68.49 72.66 70.57 75.26 71.09

AO-11 79.17 83.07 83.85 78.91 81.51

AO-12 73.44 71.62 72.57 70.57 66.93

AO-13 55.83 56.73 56.94 54.87 55.16

AO-14 61.82 62.73 63.81 60.57 60.81

AO-15 55.49 56.81 56.43 55.36 55.61

AO-16 62.42 63.55 64.31 61.28 61.37

AO-17 64.58 61.72 60.03 55.47 56.25

AO-18 53.28 53.89 53.61 52.13 52.28

AO-19 52.82 53.61 54.18 52.36 53.17

AO-20 63.83 64.81 63.76 62.67 62.89

AO-21 68.72 63.59 62.18 57.62 58.73

AO-22 57.55 59.11 59.55 60.42 61.46

AO-23 61.83 62.81 63.75 62.19 61.68

AO-24 59.27 60.73 60.81 59.36 59.81

AVG 63.51 64.40 64.55 62.07 62.08

T-test – b vs. a c vs. a d vs. a e vs. a

p-value – *p < 0.05 *p < 0.05 p =

0.0738

*p < 0.05

The bold text is the best performance.

the signals with different sensitivity. Therefore, in future works,
more experiments for different ranges are also needed for a same
dataset to confirm the relationship between signal amplitude
range and patterns classification performance. For the average
classification accuracy for all experiments, the up-sampled EEG
signals performed better than the original data, and we think
this might be due to the fact that the reconstruction procedure
obtains more discriminant signals. In addition, the original
temporal-MSE and the proposed TSF-MSE as loss functions
were also compared.

The up-sampling reconstruction with the same sensitivity
results have demonstrated that using the WGAN helps to
improve signal qualities and statistical properties. Comparing
the reconstruction HSS-EEG signals and the original real HSS-
EEG signals in Figures 6, 8A, 9A, 10A, we can see that the
WGAN framework helps to solve the problem of the over-
smoothing effect suffered by the conventional temporal-MSE
signal generators (Aydin et al., 2015). Although the reconstructed
HSS-EEG signals shared a similar result, as in Figures 6,

TABLE 8 | Classification results for the sensitivity rate reconstruction of GAL

dataset by the different sensitivity signals’ GAN/WGAN frameworks.

Subjects Original

data (a)

AO-WGAN

(b)

AO-GAN

(c)

MI-WGAN

(d)

MI-GAN (e)

GAL dataset reconstructed by the ao and mi models

GAL-1 69.23 73.53 72.76 72.56 70.19

GAL-2 65.06 63.21 62.88 61.86 61.03

GAL-3 74.04 59.74 66.03 61.99 58.59

GAL-4 59.17 59.74 66.03 61.99 58.59

GAL-5 79.94 76.28 80.96 76.15 77.18

GAL-6 69.04 73.33 72.56 73.21 76.35

GAL-7 74.33 69.77 66.25 64.82 66.91

GAL-8 79.81 78.53 74.17 81.92 79.49

GAL-9 64.04 65.58 65.58 64.30 67.63

GAL-10 65.38 62.76 62.24 60.64 67.50

GAL-11 63.21 85.13 85.00 85.51 85.38

GAL-12 74.10 76.47 72.76 69.94 73.72

AVG 69.78 70.34 70.60 69.57 70.21

T-test – b vs. a c vs. a d vs. a e vs. a

p-value – p = 0.821 p = 0.731 p = 0.937 p = 0.870

The bold text is the best performance.

TABLE 9 | Classification results for the sensitivity rate reconstruction of MI dataset

by the different sensitivity signals’ GAN/WGAN frameworks.

Subjects Original

data (a)

AO-WGAN

(b)

AO-GAN

(c)

GAL-WGAN

(d)

GAL-GAN

(e)

MI dataset reconstructed by the gal and ao

GAN/wgan models

MI-1 60.59 61.63 59.90 58.33 67.53

MI-2 70.31 71.70 69.10 75.00 73.26

MI-3 53.47 58.16 54.17 53.99 55.03

MI-4 59.38 68.58 68.58 64.41 66.67

MI-5 72.22 68.92 76.22 73.09 66.67

MI-6 67.36 70.49 70.49 69.62 68.75

MI-7 56.25 58.68 73.44 58.85 60.07

MI-8 57.81 54.34 54.51 63.54 56.60

MI-9 60.42 57.12 57.99 56.08 55.90

AVG 61.98 63.29 64.93 63.66 63.39

T-test – b vs. a c vs. a d vs. a e vs. a

p-value – p = 0.380 p = 0.215 p = 0.175 p = 0.215

The bold text is the best performance.

8A, 9A, and 10A,B, the quantitative analysis of classifying
signals by a machine learning model, as given in Tables 4–6,
Figure 11A, have shown that the WGAN framework yields a
higher classification accuracy and obtains more reliable statistical
properties due to more discriminant patterns. However, if
we use GAN/WGAN frameworks alone, the critical ERD/ERS
of brain activity characteristics in the EEG signals will be
reduced along with the single temporal loss. Theoretically, the
GAN/WGAN frameworks are based on generative models, and
such models generate naturally appearing HSS-EEG signals but
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FIGURE 11 | Reconstruction results comparison between the same and different sensitivity GAN/WGAN frameworks. In order to intuitively represent the differences

between EEG signals reconstruction by the same sensitivities or different sensitivities of EEG signals, the average results of such compared experiments are illustrated

to show the disciplines of EEG signals reconstruction by the GAN/WGAN models analyzed above. (A) Average results of the same sensitivities, (B) Average results of

different sensitivities.

TABLE 10 | The comparison results between Temporal-MSE and TSF-MSE of

constructing GAN/WGAN architectures for reconstruction.

Reconstruction Temporal-GAN

(a)

TSF-GAN

(b)

Temporal-WGAN

(c)

TSF-WGAN

(d)

AO− > AO 64.86 65.41 64.32 67.67

GAL− > GAL 71.43 74.64 72.68 73.89

MI− > MI 62.43 63.61 63.83 64.01

GAL− > AO 64.16 64.55 63.85 64.40

MI− > AO 62.31 62.07 61.84 62.08

AO− > GAL 68.84 70.60 68.73 70.34

MI− > GAL 68.93 70.21 69.29 69.57

AO− > MI 62.35 64.93 62.86 63.29

GAL− > MI 62.19 63.39 62.28 63.66

T-test – b vs. a – d vs. c

p-value – **p < 0.01 – *p < 0.05

The bold text is the best performance.

TABLE 11 | The comparison average results of three datasets between

FBCSP+SVM classifier and FBCSPNet classifier.

FBCSP+SVM FBCSPNet

Datasets Original

data

TSF-

GAN

TSF-

WGAN

Original

data

TSF-

GAN

TSF-

WGAN

AO dataset 63.57 65.41 67.67 67.29 68.41 68.84

GAL dataset 69.78 73.63 73.89 73.61 74.82 75.23

MI dataset 61.98 63.61 64.01 65.47 66.64 66.86

Average 65.11 67.55 68.52 68.79 69.95 70.31

Improved

Ratio

– 3.75% 5.25% – 1.68% 2.21%

cause severe distortion of the ERD/ERS characteristics in the EEG
signals (Choi et al., 2017). Therefore, an additive loss function
should be included to guarantee that the ERD/ERS characteristics
remain the same for the reconstruction.

Beyond the above analysis, the TSF-MSE loss function was
introduced to guarantee the ERD/ERS characteristics during the
training of the GAN/WGAN frameworks, and the classification
performance of ERD/ERS characteristics can be found in the
compared results in Table 10. As is well known, the temporal-
MSE loss was the basis of the time-series data, and such loss
will guarantee the reconstructed shape of the temporal domain.
However, EEG signals are multi-channel time-series data, and
the spatial domain is thus also important in the reconstruction.
In addition, most ERD/ERS characteristics are reflected in the
frequency domain, making the frequency domain also important
in the reconstruction. Therefore, the TSF-MSE constructed by
the original signals from the temporal domain, the FB-CSP
features from the spatial domain, and the PSD features from
the frequency domain have been introduced in this paper
to guarantee the EEG signals temporal characteristics, spatial
characteristics, and ERD/ERS characteristics (Strohmeier et al.,
2016). Additionally, the TSF-MSE-based GAN/WGAN models
cause lower losses than the temporal MSE, frequency MSE, and
spatial MSE-based GAN/WGAN models (see Figure 4). Our
proposed TSF-MSE-based WGAN framework outperformed the
other models in reconstructing up-sampled EEG signals with
the same sensitivity. These results demonstrate that we can use
this method to increase the sampling rate of EEG signals to
achieve higher performance in brain-computer interfaces (BCIs)
or EEG-based rehabilitation treatments.

4.2. EEG Signal Reconstruction With
Different Sensitivities
In this paper, in addition to reconstructing HSS-EEG signals
from the same sensitivity, we also reconstructed HSS-EEG
signals from different sensitivities. In fact, if EEG signals
with low sensitivity can be reconstructed into high-sensitivity
signals, the reconstructed HSS-EEG signals will contain more
details of the ERD/ERS characteristics, which will improve the
classification performance for many applications. Among the
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experimental results shown in Tables 4–9, we can conclude that
the average classification accuracies of WGAN framework are
higher than GAN framework for reconstruction with the same
sensitivity on all datasets, while the GAN framework obtained
better average classification accuracies for reconstruction with
different sensitivities on all datasets. In addition, a larger
gap in the sensitivity will significantly increase the average
classification accuracies of all datasets, while a smaller gap in
the sensitivity will result in a smaller difference in the average
classification accuracies of all datasets (see the comparison results
in Tables 7–9, Figure 11B). We can also find indicators for
different sensitivity gaps in Figure 7. For example, considering
the AO data reconstructed by the MI-GAN and MI-WGAN
models (see Figure 7B), a high-sensitivity signal reconstructed
by the low-sensitivity GAN/WGAN models caused the signals
to be overfitted and exceed the original data range. Hence, the
reconstructed results contained fewer ERD/ERS characteristics
to classify the EEG signals, and the classification accuracy was
lower than the results using the original data. Conversely,
for the MI data reconstructed by the AO-GAN and AO-
WGAN models (see Figure 7F), we can see that the low-
sensitivity MI data reconstructed by the high sensitivity models
presented more variations in the temporal domain. Because the
variations in the time-series represented detailed characteristics
of ERD/ERS, the reconstructed high sensitivity EEG signals
performed better in the classification of ERD/ERS characteristics.
Therefore, in practical applications, we can train a high-
sensitivity GAN model for EEG signal reconstruction. By
applying the GAN/WGAN models, the ERD/ERS characteristics
extracted from low sensitivity devices can be enhanced for use in
real-time and real-application BCI or rehabilitation treatment.

In contrast to the results of reconstructing HSS-EEG signals
with the same sensitivity, the GAN framework performed
better than the WGAN framework for reconstructing HSS-
EEG signals with different sensitivities. An approaching value
range caused a smaller difference between the GAN framework
and the WGAN framework (the AO dataset and the GAL
dataset), but a separated value range caused a large difference
between the GAN framework and the WGAN framework.
Therefore, the difference in the classification performance was
caused by the different value ranges of different sensitivities.
We suggest two reasons for this difference: first, the WGAN
framework contained a gradient penalty, and such a penalty
would be out of the value ranges for different value ranges.
The penalty then influenced the convergence of the WGAN
framework (Mescheder et al., 2018), and, thus, the results of
the WGAN framework were lower than the results of the GAN
framework. Second, the WGAN framework used an RMSprop
optimizer to train deep neural networks, but the GAN framework
used an Adam optimizer (Basu et al., 2018). In fact, the Adam
optimizer has a momentum gradient procedure, which will be
fitted for regressing different value ranges. Hence, the different
value ranges can be reconstructed by the Adam optimizer (Zou
et al., 2018). In all of these, if we have recorded the highest
sensitivity EEG signals, we must also record low-sensitivity
EEG signals. We can use the highest sensitivity EEG signals to
train a GAN/WGAN model to reconstruct the low sensitivity
EEG signals, and the reconstructed EEG signals can be used

to improve classification performance for the construction of
real-time and real-application BCIs or rehabilitation treatment.

4.3. The Application of Reconstructed EEG
Signals by GAN/WGAN Frameworks
Over the past decade, most EEG-based studies have been
focused on constructing BCIs or developing rehabilitation
treatments (Ang et al., 2015). However, there are two main
limitations to the application of EEG signals when constructing
such systems, namely, the cost and portability of EEG recording
devices. In fact, HSS-EEG signals will yield the best performance
in BCIs and rehabilitation treatments, although HSS-EEG
signals are usually recorded by expensive devices, posing an
inconvenience. For example, in the “NeuroScan SymAmp2”
device (Chu et al., 2016), the recording system consists of two
computers and one device to link them together. One computer is
used to present a stimulus for the BCI or rehabilitation treatment,
and the other computer is used to record and store the EEG
signals for computing the BCI or rehabilitation results. Subjects
must sit in a room to wear a “NeuroScan Quik Cap” to collect
data. The collection procedure is complex, and the resistance
must be maintained under 5 k� by using conductive paste on
each electrode (Agnew et al., 2012). Because the resistance is
kept low and the device has a high sensitivity, the recorded
EEG signals will have the ERD/ERS characteristics required for
classification in BCI and rehabilitation treatment.

In general, the “NeuroScan SymAmp2” device is expensive,
and the EEG signals must be recorded indoors in a limited
environment (e.g., a dimly lit, sound-attenuated room). Hence,
it is difficult to implement the results of the “NeuroScan
SymAmp2” device (the same sensitivity as signals in AO
dataset) in applications such as BCI and rehabilitation treatment.
Nevertheless, low-cost and portable devices, such as “Emotiv”
(the same sensitivity as signals in MI dataset), have high
electrode resistance and a low sampling rate and sensitivity for
recording EEG signals. The device only provides poor ERD/ERS
characteristics for classification in BCI and rehabilitation
treatment applications. The “Emotiv” device can be worn at
any time via a simple process without requiring the resistance
to be kept level (Neale et al., 2017). The energy supply
for the device is a battery, and the device uses WiFi or
Bluetooth communication. These advantages allow the device
to be inexpensive, portable, and convenient for constructing
BCIs and developing rehabilitation treatment. These mutual
contradictions for signal precision and signal cost and portability
inspire us to train a model to reconstruct HSS-EEG signals from
LSS-EEG signals. The trained model meets the requirements of
high precision and portability with low cost and can be used to
improve EEG-based applications.

In fact, signal reconstruction is a difficult problem in digital
signal processing, but an effective and feasible reconstruction
method could significantly promote the application of signals.
In this study, by using a GAN framework with Wasserstein
distance and the carefully designed TSF-MSE loss function,
well-trained reconstruction models have been shown to be
able to reconstruct HSS-EEG signals from LSS-EEG signals.
Experimental results reveal that LSS-EEG signals (just like
those recorded by “Emotiv”) reconstructed by the HSS-EEG
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signals (just like those recorded by “NeuroScan SymAmp2”)
trainedmodels and enhanced the average classification accuracies
of ERD/ERS characteristics for action observation, action
execution, and motor imagery. These results inspire new ways
to construct BCIs or develop novel rehabilitation treatments,
but more researches need to be done to explore significant
enhancement reconstruction methods across EEG signals with
different sensitivities.

Based on the method of this paper, the improvement of
sampling rate and sensitivity will improve the specific ERD/ERS
phenomenon of MI, AO, and AE, so as to improve the
performance of the BCI system. Although the CNN- based
GAN/WGAN architectures will take a significant amount of
time to build an available GAN/WGAN architecture, once the
reconstruction model is built, the use of such a model will
not take long, and the reconstructed EEG time series can be
obtained within a specific time (<1 s for a trial). In future
works, we can either reduce the complex of GAN architecture
or improve the computational efficiency to reduce the usage
time for reconstructing GAN/WGAN architecture. Then, the
GAN/WGAN architectures will be used for real-time inference.
In general, we used a low-cost, portable device to collect LSS-
EEG signals for use in BCI or rehabilitation treatment. Before
analyzing the collected data, the GAN/WGAN reconstruction
models were applied to reconstruct HSS-EEG signals. The
reconstructed HSS-EEG signals can significantly improve the
classification performance and information transfer rate for use
in BCIs or rehabilitation treatments.

5. CONCLUSION

In this paper, we have proposed a contemporary deep neural
network that uses a GAN/WGAN framework with a TSF-
MSE-based loss function for LSS-EEG signal reconstruction.
Instead of designing a complex GAN framework, this work
has been dedicated to designing a precise loss function that
guides the reconstruction process so that the reconstructed HSS-
EEG signals are as close to the ground truth as possible. Our
experimental results suggest that the GAN/WGAN frameworks
give a significant improvement on the classification performance
of EEG signals reconstruction with the same sensitivity, but
the classification performance improvements of EEG signal
reconstructions with different sensitivity were not significant,
which further exploration. The carefully designed TSF-MSE-
based loss function solves the well-known over-smoothing

problem and seems to result in more discriminant patterns than
the original EEG signals; this will improve the classification
performance of EEG signals. The reconstructed HSS-EEG signals
will be beneficial for use in BCI and rehabilitation treatment
applications. Future studies will focus on the reconstruction
signal amplitude ranges of EEG signals with different sensitivity
and selection of datasets to confirm the required number of
signals and to explore the significant performance improvement
of EEG signal reconstruction with different sensitivity. In
addition, the efficiency of EEG signal reconstruction by the
GAN/WGAN frameworks will be studied further in the future.
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