
  

  

Abstract—The electroencephalogram (EEG) is necessary for 

the diagnosis of epilepsy. To make a diagnosis of epilepsy 

exactly, a full EEG recording for a long stretch of time is needed. 

The observation for a long record is a big burden for a doctor. 

To reduce this burden, a computer aid is important. This paper 

presented classifications of EEG patterns using the ensemble 

TPunit NNs for the diagnosis of epilepsy. The classification 

accuracy rates of the proposed classifiers were found to be 

higher than that of stand alone neural network. In addition, the 

classification accuracy was higher than previous study. The 

ensemble of the TPUnit neural networks is highly effective in 

classification problem. 

 
Index Terms—Neural network, epilepsy, EEG, TPUnit. 

 

I. INTRODUCTION 

The electroencephalogram (EEG) is necessary for the 
diagnosis of epilepsy. The EEG appears as epileptic EEG 
abnormality by hyper excitability of neurons to cause 
epileptic seizures. Therefore, if such abnormal EEG appears, 
it can be diagnosed with epilepsy in many cases. To make a 
diagnosis of epilepsy exactly, a full EEG recording for a long 
stretch of time is needed. The observation for a long record is 
a big burden for a doctor. To reduce this burden, a computer 
aid is important. Neural networks have been used in medical 
diagnosis decision support systems because of the belief that 
they have high prediction ability [1]-[3]. Many report have 
been shown that combing the predictions of several models 
often results in a prediction accuracy that is higher than that 
of the individual models [4]-[6]. From this point of view, a 
classification of EEG patterns using a neural network has 
been reported [7]. It presented the use of neural networks to 
combine the predictions of ensemble neural networks for 
classification of the EEG signals. The classification accuracy 
rate by the ensemble neural network was higher than that by 
the stand-alone neural network. 

On the other hand, we have proposed a new neuron unit 
whose activation function is trigonometric polynomial. We 
call proposed neuron unit as Trigonometric Polynomial Unit 
(TPUnit). We have showed that 1) the neural network using 
TPUnits (TPUnit NN) can learn in a smaller number of 
hidden units than conventional neural network with sigmoid 
output and 2) it has high generalization ability in some 
computational experiments [8]. In this study, we improve the 
classification capability by using an ensemble TPUnit NN 
instead of conventional neural network with sigmoid output. 
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II. COMBINED TPUNIT NEURAL NETWORK  

A. TPUnit Neural Network 

Fig. 1 shows proposed neural network diagram with 
TPunits (TPUnit NN). As shown in Fig. 1, the TPUnit NN 
has three layers. The TPUnit NN has TPUnits on the hidden 
layer (Fig.2). While a typical neural network, we call it 
sigmoid neural network (Sigmoid NN), has neuron units with 
sigmoid activation function. Where, the input layer units 
have a linear activation function and the output layer unit has 
sigmoid activation function. 

 
Fig. 1.  TPUnit neural network 

 
Fig. 2.  Trigonometric polynomial unit (TPUnit) 

 

B. Trigonometric Polynomial Unit    

Fig. 2 shows the configuration of TPUnit. The output 
function of the TPUnit is expressed as follows: 
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where An and Bn are adjustable parameters. N is a number of 
terms and T is period. N and T are constant. An , Bn and 
weight parameters are modified by back propagation 

algorithm using ∂E / ∂A
n
 , ∂E / ∂B

n
. 

A neuron unit with sigmoid function can only divide 
n-dimensional space linearly. In contrast, a TPUnit has 
nonlinear separation ability. Because the TPUnit has high 
spatial separation ability compared with a sigmoid neuron 
unit, it is expected to reduce the hidden units. We had shown 
that 1) the TPUnit NN can learn in a smaller number of 
hidden units than conventional neural network with sigmoid 
output (Sigmoid NN) and 2) TPUnit NN has high 
generalization ability in some computational experiments [8]. 

A back-propagation algorithm is used for modification of 
weight parameters and adjustable parameters An and Bn in 
order to reduce the following learning error E. 
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where, ym is output of the output layer units. tpm is target 
signals. M is a total number of output units. P is a total 
number of learning patterns. 
∂E / dw   is calculated from equation (2). After that, the 
weight parameters are modified by the following equation: 

w[l +1] = w[l]− η
∂E

∂w
+γ w[l]− w[l −1]( )

      
(3) 

where, l is learning times. Third term in equation (3) is the 
momentum term. η is learning coefficient. γ is momentum 
coefficient. When the weight parameters from the input layer 

to the hidden layer are modified, it is noted that ∂yTPUnit / ∂x  
(eq. (4)) is used in calculating the ∂E / ∂w  . 
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Similarly, adjustable parameters An and Bn in the TPUnits 
are modified by the following equation: 
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where, l is learning times. Third term in equation (3) is the 
momentum term. α is learning coefficient of TPUnit. β is 
momentum coefficient of the TPUnit. 

C. An Ensemble TPUnit Neural Networks 

In order to improve the generalization ability, the ensemble 
learning to integrate the individual responses of multiple 
learning machines has been proposed [4]-[6]. In the ensemble 
learning using neural networks, improvement of 
generalization capability have been made on the basis of 
variety of neural network that depends on the initial value of 
weights etc. for the training [7]. 

We perform the classification of the EEG using the T 
ensemble TPUnit NNs of two types. The configuration 
diagrams of classifiers with the ensemble TPUnit NNs are 
showed in Fig. 3. As shown in Fig. 3(a), the multiple TPUnit 
NNs are set at the first level. Each TPUnit NNs are learned 
with the different initial values of weights. At second level, 
the outputs of the TPUnit NN are processed as simple 
ensemble. The arithmetic mean of each TPUnit NN outputs 
corresponding to the classification category is calculated. We 
call classifier in Fig.3 (a) a Type I. Fig. 3 (b) shows a 
classifier type II. As with the type I, the multiple TPUnit NNs 
are set at the first level and are learned by the different initial 
value. At second level, one TPUnit NN is set. All of the 
outputs of the TPUnit NNs in the first level are input to the 
TPUnit NN at the second level. 

 

(a) Type I 

 

(b) Type II 

Fig. 3. The configuration diagrams of classifiers with the ensemble TPUnit 
NNs 
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III. EXPERIMENT 

In this study, we perform the classification of the following 
three classes of EEG. 

1.  EEG signals recorded from healthy volunteers with eyes 
open 

2.  EEG signals recorded from epilepsy patients in the 
epileptogenic zone during a seizure-free interval 

3.  EEG signals recorded from epilepsy patients during 
epileptic seizures 

 
(a) healthy volunteers with eyes open 

 
(b) epilepsy patients in the epileptogenic zone during a seizure-free interval 

 
(c) epilepsy patients during epileptic seizures 

Fig. 4. An example of a waveform of the EEG time series 
 

The figure X shows an example of a waveform of the EEG 
time series described above. 

The data described in Ref.[9], which is publicly available 
(http://epileptologie-bonn.de/cms/front_content.php?idcat=1
93&lang=3&changelang=3) ,was used. The sampling rate of 
the data was 173.61 Hz. The spectral bandwidth of the time 

series is from 0.5 Hz to 40 Hz by filtering.  
In this experiment, we used signals processed by the filter 

bank of 256 sample points for time series of EEG waveform. 
The Filter bank divided into 12 bands from 0.5 Hz to 40 Hz. 
Therefore, the number of input units of each the TPUnit NNs 
in the first level is set to 12. The number of hidden units is set 
to 15. The number of output units is set to 3 in order to 
classify the EEG patterns into three classes. The number of 
the TPUnit NNs in the first level is set to 10. For each TPUnit 
NN, learning was performed with different initial values 
(weights etc.). The initial values of weights, An and Bn were 
set randomly in the range -0.1 to 0.1. 

At the second level of the type II, the TPUnit NN has 30 
input units (3 output units per TPUnit NN at the first level × 
10 TPunit NNs), 15 hidden units and 3 output units (in order 
to classify into three classes). The initial values of weights,  

An and Bn were set randomly in the range -0.1 to 0.1. In 
the all of the TPUnits, the number of terms is N=7 and 
the period is T=15. 

The number of data patterns used in the learning phase was 
3600 patterns (Healthy segment: 1200 patterns, 
Epileptogenic zone segment: 1200 patterns, Epileptic seizure 
segment: 1200 patterns). We evaluated classifiers using 
unlearned data patterns (Healthy segment: 400 patterns, 
Epileptogenic zone segment: 400 patterns, Epileptic seizure 
segment: 400 patterns). 

IV. RESULT 

The confusion matrixes showing the classification results 
of the type I and the type II are given in Table I. The test 
performance of the classifiers can be determined by the 
computation of specificity, sensitivity and total classification 
accuracy. The specificity, sensitivity and total classification 
accuracy are defined as: 

Specificity: number of true negative decisions/number of 
actually negative cases;� 

Sensitivity: number of true positive decisions/number of 
actually positive cases;� 

Total classification accuracy:  

Number of correct decisions/total number of 
cases. 

TABLE I: CONFUSION MATRIX 
TYPE I 

Output/desired 
Healthy 
segment 

Seizure free 
epileptogenic zone 
segment 

Epileptic 
seizure 
segment 

Healthy segment 395 1 19 
Seizure free 
Epileptogenic zone 
segment 

0 398 10 

Epileptic seizure 
segment 

5 1 371 

TYPE II 

Output/desired 
Healthy 
segment 

Seizure free 
epileptogenic zone 
segment 

Epileptic 
seizure 
segment 

Healthy segment 387 0 6 
Seizure free 
epileptogenic zone 
segment 

1 393 2 

Epileptic seizure 
segment 

12 7 392 
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A true negative decision occurs when both the classifier 
and the physician suggested the absence of a positive 
detection. A true positive decision occurs when the positive 
detection of the classifier coincided with a positive detection 
of the physician. 

The classification accuracies (specificity, sensitivity, total 
classification accuracy) on the test sets are presented in Table 
II. As it is seen from Table II, the type I classified healthy 
segments, seizure free epileptogenic zone segments, epileptic 
seizure segments with the accuracy of 98.75%, 99.50%, 
92.75%, respectively. The healthy segments, seizure free 
epileptogenic zone segments, epileptic seizure segments 
were classified with the accuracy of 97.00%. The type II 
classified healthy segments, seizure free epileptogenic zone 
segments, epileptic seizure segments with the accuracy of 
96.75%, 98.25%, 98.00%, respectively. The healthy 
segments, seizure free epileptogenic zone segments, epileptic 
seizure segments were classified with the accuracy of 97.67%. 
High classification accuracy was obtained in the type I and 
the type II. In addition, the classification accuracy was higher 
than ref. [7] although not directly comparable. In particular, 
improvement of the total classification accuracy of about 3% 
was obtained in type II.  

TABLE II: THE CLASSIFICATION ACCURACIES 

Statistical parameters Type I Type II Ref. [7]

Specificity 98.75% 96.75% 96.00%
Sensitivity (seizure free epileptogenic 
zone segment) 

99.50% 98.25% 94.50%

Sensitivity (epileptic seizure segment) 92.75% 98.00% 94.00%

Total classification accuracy 97.00% 97.67% 94.83%

 
The classification accuracy rates of the type I and the type 

II were found to be higher than that of stand alone TPUnit NN. 
This may be attributed to several factors including the 
estimation of the network parameters and the scattered and 
mixed nature of the features.  

 

V. CONCLUSION 

This paper presented classifications of EEG patterns using 
the ensemble TPunit NNs for the diagnosis of epilepsy.  The 
type I used the simple ensemble, which is the arithmetic mean 
of each TPUnit NN outputs corresponding to the 
classification category is calculated. The type II is the 
ensemble by the TPUnit NN to combine the predictions of the 
TPUnit NNs at the first level. From experimental results, high 
classification accuracy was obtained in the type I and the type 
II. In addition, the classification accuracy was higher than 
previous study [7] although not directly comparable. 

The classification accuracy rates of the type I and the type 
II were found to be higher than that of stand alone TPUnit NN. 
The ensemble of TPUnit NNs is highly effective in 
classification problem. 
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