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Abstract

The recent past years have seen a noticeable increase of interest for electroencephalography (EEG) to analyze functional
connectivity through brain sources reconstructed from scalp signals. Although considerable advances have been done both
on the recording and analysis of EEG signals, a number of methodological questions are still open regarding the optimal
way to process the data in order to identify brain networks. In this paper, we analyze the impact of three factors that
intervene in this processing: i) the number of scalp electrodes, ii) the combination between the algorithm used to solve the
EEG inverse problem and the algorithm used to measure the functional connectivity and iii) the frequency bands retained to
estimate the functional connectivity among neocortical sources. Using High-Resolution (hr) EEG recordings in healthy
volunteers, we evaluated these factors on evoked responses during picture recognition and naming task. The main reason
for selection this task is that a solid literature background is available about involved brain networks (ground truth). From
this a priori information, we propose a performance criterion based on the number of connections identified in the regions
of interest (ROI) that belong to potentially activated networks. Our results show that the three studied factors have a
dramatic impact on the final result (the identified network in the source space) as strong discrepancies were evidenced
depending on the methods used. They also suggest that the combination of weighted Minimum Norm Estimator (wMNE)
and the Phase Synchronization (PS) methods applied on High-Resolution EEG in beta/gamma bands provides the best
performance in term of topological distance between the identified network and the expected network in the above-
mentioned cognitive task.
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Introduction

Neuroimaging techniques can be used to identify brain

networks involved in normal brain functions (learning, memory,

behavior adaptation to stimuli or emotions) as well as in

neurological disorders like epilepsy, autism or schizophrenia [1–

3]. In this context, functional MRI has considerably developed

during the past two decades and is now commonly used to

characterize brain connectivity [4]. In the meantime, a number of

studies reported that electro-/magneto-encephalography (EEG/

MEG) associated with appropriate signal processing techniques

might also bring relevant information about normal networks

activated during cognitive activity [5] or about disrupted networks

associated for instance with tumors [6]).

Actually, over the last three decades, a large variety of methods

aimed at solving the EEG/MEG inverse problem in order to

localize and reconstruct the sources of brain activity have been

proposed (see review in [7,8]). Meanwhile, methods devoted to the

characterization of functional [9–11] and effective ([12], see review

in [13]) connectivity from EEG/MEG signals have considerably

developed.

Interpretation of connectivity measures from sensor level

recordings is not straightforward, as these recordings suffer from

a low spatial resolution and are severely corrupted by effects of

field spread [14]. To overcome these difficulties, several attempts

to apply connectivity methods on the temporal dynamics of brain

sources reconstructed from scalp EEG/MEG signals have been

reported [5,15–23], see [14] for review). This approach is

conceptually very appealing as networks are directly identified in

the source space, typically in the neocortex. However, it raises a

number of methodological issues. First, it requires i) to solve the ill-

posed EEG/MEG inverse problem. Second, a functional connec-

tivity method must be chosen among the many available ones.

Third, volume conduction effects can never be completely

abolished in source space.

Intuitively, it is expected that the final result, i.e. the identified

networks, will directly depend on the chosen information

processing methods. Consequently, the central question raised

here is related to the choice of the best combination of methods

(EEG/MEG inverse problem solution + the functional connectiv-

ity estimation) which is likely to reveal the actual networks that

activate during the considered brain process. In addition, in both
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steps of the signal processing procedure, some key parameters are

also expected to influence the results such as the threshold applied

to the adjacency matrices or the considered delay between the

time courses of reconstructed sources, among others.

In this paper, we report a quantitative comparison of methods

aimed at identifying brain networks from scalp EEG data. We

focus on functional connectivity estimated from evoked responses

[5,17]. The novelty of the paper is threefold: first, the evaluation

methodology is based on a well-controlled cognitive task (picture

recognition and naming) for which a solid background is available

regarding the topology of activated networks that are therefore

used as a ground truth. Second, scalp recordings were performed

using a high-resolution EEG (hr-EEG) system characterized by an

excellent temporal resolution (1 ms) and by an improved spatial

resolution (256 electrodes), as compared to more classical systems

(32–64 electrodes). Third, the comparison consisted in a ‘‘two-

dimensional’’ analysis allowing for quantifying the joint effect of

the inverse and connectivity methods. In addition, we also

addressed three corollary issues related to i) the impact of the

number of scalp electrodes used to solve the inverse problem, ii)

the influence of frequency bands in which the functional

connectivity is estimated and iii) the contamination of functional

connectivity measures by the leakage of sources.

The paper is organized as follows. The connectivity and inverse

algorithms we retained for evaluation are described in the methods

section along with details about the cognitive task performed by

subjects. Results obtained from the quantitative comparison of

analyzed methods are then presented. They show that fairly

different networks are identified from the same EEG data set when

different methods are being used. However, they also suggest that

some combinations (inverse + connectivity methods) could lead to

the identification of networks topologically close to the expected

ones, as reported in the literature based on neuroimaging data

recorded during the same cognitive task.

Our evaluation methodology involves three main aspects:

a. The inverse algorithm used to estimate the cortical sources

and reconstruct their temporal dynamics.

b. The connectivity method used to assess statistically significant

functional relationships between the temporal dynamics of

sources.

c. The cognitive task performed by the subject, which is

supposed to activate relatively well-defined brain networks.

Regarding the first aspect, several approaches have been

proposed to solve the inverse problem and these have been widely

used in the context of brain source localization either in normal or

pathological conditions. Among the methods especially designed

for distributed brain sources, the most popular algorithms include

(but are not limited to) the Minimum Norm Estimate (MNE) and

its weighted version (wMNE) [24] [25,26], Low resolution brain

electromagnetic tomography (LORETA) and standardized low

resolution brain electromagnetic tomography (sLORETA)

[27,28]. In addition, some efforts have been done to evaluate

inverse algorithms in the view of localizing the brain sources in

specific applications [29,30].

Regarding brain connectivity methods applied to EEG/MEG,

bi- or multi-variate approaches proposed so far can be divided into

two main categories depending on the assumptions made about

the statistical coupling between signals. The first category includes

linear methods such as the linear cross-correlation (R2) [31] or the

coherence function [32]. The second category includes nonlinear

methods based on mutual information (MI) [33], nonlinear

regression (h2) [34,35], generalized synchronization (GS) [36]

and phase synchronization (PS) [37]. Recently, some efforts have

been made to evaluate the performance of some of these measures

in different scopes. An evaluation of the connectivity methods

conducted on different synthetic and physiological models

highlighted the high variability in the results provided by these

methods, depending on the model that generates analyzed signals

[9,10]. Interestingly, a conclusion from these studies is that

regression-based methods show the best performance, as opposed

to more sophisticated methods which may be blind to coupling

changes. Finally, methods were also reported to reduce the effect

of source leakage on functional connectivity measures. The

general idea is to assume that a zero (or even very low) time lag

is likely to correspond to a ‘‘volume conducted’’ activity as

opposed to a ‘‘functionally related’’ activity for which a delay is

expected due to synaptic transmission for instance. A method

based on the imaginary part of the coherence function, often

referred to as Imaginary Coherence (ImC), was initially proposed

by Nolte et al. [38] and was further improved regarding the bias

inherent to the coherence estimation [39].

To our knowledge, very few attempts to evaluate the

connectivity measures at the source level were reported so far.

The work of David et al. [18] on functional connectivity in neural

mass models showed that methods can detect coupling but with

different sensitivity profiles depending on the frequency band

(broad vs. narrow band) and on the type of the connection (linear

vs. nonlinear) [18]. Reported results suggest that the PS methods

are the most sensitive ones with regard to nonlinear couplings and

that the MI method shows the highest sensitivity in broadband

analysis. Another comparison between connectivity measures at

source level was reported by Astolfi et al. but this study focused on

effective connectivity [40]. For the purpose of this study, we

retained five commonly -used functional connectivity methods

based on R2, MI, ImC and two PS indexes.

A crucial parameter in functional connectivity estimation is the

threshold that has to be defined to get the connectivity matrix.

This factor affects directly the resulting network. As our main

concern is to standardize the comparison between methods and as

there is no consensus about the optimal way to set this threshold,

we kept the 10% of the strongest functional connections for each

method, as discussed in [41].

Finally, as far as the cognitive task is concerned, it is worth

mentioning that picture recognition and naming has been a topic

of large interest. Many studies were devoted to the identification of

brain regions and/or networks activated during this task, mainly

from fMRI and PET data. The main advantage of this task in the

particular context of our study is that the activated network is

relatively well described, and involves the bilateral occipito-

temporal cortex, the left parietal, the left inferior temporal and

bilateral inferior frontal cortices, as described in [42–49].

MEG-based analyses conducted in the same task revealed that

the activation proceeds from the occipital cortex (,200 ms) to left

parietal and bilateral temporal areas (.200 ms) and further to

frontal regions (.400 ms) [50–54]. Using acute electro-stimulation

techniques, Mandonnet et al. showed that the information flow is

going from the left occipital to the left temporal region during

picture naming [55].

A conclusion from this synthetic review of the literature is that

no attempt has been made so far to evaluate the joint capacity of

inverse/connectivity methods applied to EEG to disclose brain

networks involved in a specific cognitive task. This evaluation is

the main objective of our study in which some of the above-

described methods are evaluated on EEG signals recorded during

the picture recognition and naming task, as detailed in the next

section.

EEG Source Connectivity: From Dense Array Recordings to Brain Networks
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Materials and Methods

Connectivity measures
For the purpose of the paper, we selected five methods that have

been widely used to estimate functional brain connectivity from

electrophysiological signals (local field potentials, depth-EEG or

EEG/MEG).

A. Cross-correlation coefficient (R2). This is one of most

classical measures of interdependence between two time series.

The cross-correlation coefficient measures the linear correlation

between two variables X and Y as a function of their time delay

(t ). The linear correlation coefficient is defined as:

R2
~max

t

cov2(X (t),Y (tzt))

(sX (t)sY (tzt))
2

where s and cov denote the standard deviation and the

covariance, respectively. R2 ranges from 0 (X and Y are

independent) to 1 (Y is a linear function of X).
B. Mutual information (MI). The information theory was

proposed nearly 60 years ago [56]. The theory is based on the

concept of entropy, which can be defined as the average total of

information necessary to encode a discrete variable X with M
possible outcomes Xi with probability pi. The Shannon entropy is

then defined as:

IX~{

X

M

i~1

pXi logp
X
i

The mutual information (MI) between signal X and Y is defined

as:

MI~
X

pXY
ij

log
pXY
ij

pX
i
pY
j

where pXY
ij

is the joint probability of X=Xi and Y= Yj. If there is

no relationship between them, pXY
ij

= pX
i
pY
j
, so that the MI is

zero for independent processes. The mutual information computes

the statistical dependence between X and Y, with no assumption

about their generating process (linear or nonlinear). It can be

shown that the estimation of MI is biased when some bins contain

no point pXi ~ 0. To overcome this difficulty we used the

corrected algorithm initially proposed by Roulston et al. [57]. The

same computation way of MI has been adopted by [18] which is

different than [58] where a temporal embedding is used.

C. Phase synchronization (PS). It is well known that the

phases of two oscillators may synchronize even if their amplitudes

stay uncorrelated [59]. The general principle of the phase

synchronization (PS) method is to detect the existence of a phase

locking between two systems defined as:

Q(t)~DWX (t){WY (t)DƒC

where WX(t), WY(t) are the unwrapped phases of the signals (X and

Y) representative of the two systems at time bins t and C a constant.

The first step for estimating the phase synchronization is to extract

the instantaneous phase of each signal. Two different techniques

can be used: the Hilbert transform and the wavelet transform. As

the application of both approaches produces close results [58], we

are using the method based on Hilbert transform in our study.

The second step is the definition of an appropriate index to

measure the degree of synchronization between estimated

instantaneous phases. Several measures have been proposed in

the literature where two of them are selected in the paper. The first

one [60] called the single-trial phase locking value (sPLV) defined

as:

sPLV~DSeiQ(t)TD

where S :T denotes average over time. The second phase

synchronization measure is using the Shannon entropy IQ of the

distribution of Q ( t) . The entropy is normalized according to the

maximal entropy Imax obtained in the case of a uniform

distribution of the phase difference (Q ( t) is random). The

second measure [61] is called Phase Entropy (PE) and defined as:

PE~
Imax{IQ

Imax

The two above-described indexes sPLV and PE have the same

range of variation: they are close to 0 for uncorrelated signals,

whereas they tend to 1 for strong phase synchronization.

D. Imaginary coherence (ImC). The coherence (C) func-

tion gives the linear correlation between two signals X and Y as a

function of the frequency. It is defined as their cross-spectral

density function CXY normalized by their individual auto-spectral

density functions CXX and CYY . Nolte et al. [38] have showed that

the use of the imaginary part of the coherence function can reduce

the effect of the volume conduction. In this paper, we evaluate the

imaginary coherence (ImC) defined as:

ImC(f )~
DImCXY (f )D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DCXX (f )DDCYY (f )D
p

Signals are subdivided into overlapping segments and the

corresponding spectra are averaged to estimate the (cross) spectral

density functions (averaged periodogram, Welch’s method, over-

lapping = 50%).

Frequency bands
Connectivity methods can be applied either on broad band or

narrow band signals obtained from the filtering of raw signals,

typically in the classical EEG frequency bands (delta, theta, alpha,

beta and gamma). It has already been shown that the frequency

parameter has a dramatic impact on the connectivity values [10].

In the present study, we restricted our analyses to two different

frequency bands, namely beta (14–30 Hz) and low gamma (30–

45 Hz). Indeed, these two bands are the most relevant ones in the

context of the cognitive task performed by the subjects, as reported

in [18,62].

EEG inverse problem
According to the linear discrete equivalent current dipole

model, EEG signals S(t) measured from M channels can be

expressed as linear combinations of P time-varying current dipole

sources D(t):

S~G:DzN

EEG Source Connectivity: From Dense Array Recordings to Brain Networks
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where G and N(t) are respectively the matrix containing the lead

fields of the dipolar sources and the additive noise.

In the general case, the inverse problem consists in finding an

estimate D̂D(t) of the dipolar source parameters (typically, the

position, orientation and magnitude), given the EEG signals S(t)

and given the gain matrix G. This matrix can be computed from a

multiple layer head model (volume conductor) and from the

position of electrodes. For instance, the Boundary Element

Method is a numerical method classically used in the case of

realistic head models.

As this problem is ill-posed (P..M), physical and mathemat-

ical constraints have to be added to obtain a unique solution

among the many solutions that minimize the residual term in the

fitting of measured EEG signals. For instance, using segmented

MRI data, the source distribution can be constrained to a field of

current dipoles homogeneously distributed over the cortex [63],

and normal to the cortical surface.

Technically, in the source model, we assumed that EEG signals

are generated by macro-columns of pyramidal cells lying in the

cortical mantle and aligned orthogonally with respect to its surface

[64]. Thus, the electrical contribution of each macro-column to

scalp electrodes can be represented by a current dipole located at

the center of gravity of each triangle of the 3D mesh and oriented

normally to the triangle surface. Using this source space, the so-

called distributed approaches described below only estimate the

moment of dipole sources.

A. Minimum Norm Estimate (MNE). Minimum norm

estimates [24,65] are based on a search for the solution with

minimum power using the L2 norm to regularize the problem.

This type of estimators is well appropriate to distributed source

models where the dipole activity is likely to extend over some areas

of the cortical surface.

D̂DMNE~(GTGzlI){1GTS

where I is the identity matrix and l is the regularization

parameter that weights the influence of priors in the solution.

B. Weighted Minimum Norm Estimate (wMNE). The

weighted MNE algorithm compensates for the tendency of MNE

to favor weak and surface sources. This is done by introducing a

weighting matrix WS:

D̂DwMNE~(GTWSGzlI){1GTWSS

where matrix WS adjusts the properties of the solution by reducing

the bias inherent to MNE solutions. Classically, Ws is a diagonal

matrix built from matrix G with non-zero terms inversely

proportional to the norm of the lead field vectors.

C. Low resolution Brain Electromagnetic Tomography

(LORETA). In Low resolution electromagnetic tomography

(LORETA) the main feature is to hypnotize that neighbor dipoles

are strongly correlated. Therefore, a spatial smoothness constraint

is explicitly promoted by applying a Laplacian operator to the

sources in the regularization term. Moreover, as in wMNE, the

columns of G are normalized to compensate for the misestimating

of deep sources. In this method, for constrained number, position

and orientation of dipolar sources, the estimate of the dipole

moments is given by:

D̂DLORETA~(GTGzlBDT
DB){1GTS

where B is a diagonal matrix for the column normalization of G

and D is a Laplacian operator.

D. Standardized low resolution brain electromagnetic

tomography (sLORETA). Despite its name, sLORETA [28] is

not based on LORETA but rather on MNE. Indeed, sLORETA

uses the source distribution estimated from MNE and standardizes

it a posteriori by the variance of each estimated dipole source.

D̂DsLORETA~D̂DT
MNE,l DVD̂DDll

� �

{1
D̂DMNE,l

where D̂DT
MNE, l is the current density estimate at the lth voxel

given by the minimum norm estimate and D VD̂D D
ll

� �

is the lth

diagonal block of the resolution matrix VD̂D (variance of the

estimated current density) defined as GT GGT
z l I

� � { 1
.

Therefore, contrarily to LORETA, MNE wMNE, sLORETA

does not estimate intensity of a given source, but rather the

probability of this source to disclose high amplitude as compared

to the other ones.

LORETA and sLORETA inverse methods have been originally

described using the whole brain volume as source space [28,66].

For the present study, in order to ease the comparison with MNE

and wMNE, we have implemented these methods by restricting

the source space to the cortical surface.

The choice of l is important and many approaches have been

proposed to estimate it. Although there is no agreement on any

optimal solution [19], As the main purpose of our study is to

compare different approaches based on both inverse solutions and

connectivity estimates, we chose to limit the number of intrinsic

factors. Consequently, we used the same value of l =1 for the

four inverse algorithms based on the signal to noise ratio of our

signals. Note that the same threshold was applied to both intensity

(MNE, wMNE, LORETA) and probability (sLORETA)

approaches.

Comparison method
The different steps of the comparative analysis are summarized

in figure 1. In step 1, the lead field matrix G is estimated using the

BEM based on i) a high-resolution 3D mesh of the white/grey

matter interface for the source model and on a realistically-shaped

head model (3 layers) for the volume conductor, both obtained

from MRI data segmentation.

In step 2, the temporal dynamics of dipolar sources D̂D(t) are

estimated from scalp EEG signals S(t) recorded during the picture

recognition and naming task. An example of EEG signals and

corresponding activation maps at different instants are shown in

figure 2A. The activation maps show an argument about the

concordance between our data and the state-of-the-art concerning

the activated regions during the analyzed task. The figure shows

also an example of the reconstructed sources in each of the ROIs

(figure 2B). The window of analysis used to compute the functional

connectivity is also presented.

The four above-described methods (MNE, wMNE, LORETA,

sLORETA) are used to estimate D̂D(t) with retaining only 10% of

the highest energy sources. More precisely, the relative energy of

each estimated source is calculated, these values are sorted in

decreasing way and the sources corresponding to the highest 10%

are retained. This calculation has been done on the whole window

and then applied to all time points.

Four montages were used to analyze the effect of the number of

electrodes on the inverse solution/connectivity results. The

montages used here are the 32, 64, 128 and hr-montage. The

electrodes are selected based on the universal 5–5 system [67]. In

the high-resolution montage, we excluded the electrodes located

on the face as well as the few electrodes showing too high

EEG Source Connectivity: From Dense Array Recordings to Brain Networks
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impedance. Overall, in this hr montage, 180 electrodes were found

to provide excellent quality signals over all subjects (see Figure 2A

where we present the 2D positions of the selected 180 electrodes).

Then, in step 3 the functional connectivity among cortical

sources is computed according to a pair-wise approach using the

methods described above (R2, sPLV, MI, ImC and PE). The time

series of reconstructed sources are then filtered in the two

frequency bands beta (14–30 Hz) and low gamma (30–45 Hz).

Functional connectivity is calculated in these bands over the (.

200 ms) time window that typically corresponded to the end of the

recognition process and to the start of the naming process [54]. A

thresholding procedure is applied on the functional connectivity

values in order to retain a small fraction (10%) of the strongest

functional connections, as discussed in [41].

Finally, in step 4, the performance of each method (source

reconstruction+functional connectivity) is evaluated against its

capacity to identify a network ‘‘topologically close’’ to that

expected in the considered task. For this purpose, we proposed

two criteria based on the definition of 7 (4 left and 3 right) distinct

regions of interest (ROIs) reported to be involved in the cognitive

task performed by the subjects. Table 1 provides detailed

information about these ROIs.

The intuitive idea behind these two criteria is to quantify the

extent to which the topology of an identified network fits with pre-

defined ROIs. Qualitatively, a ‘‘correct’’ network is a network for

which the significant connections involve sources distributed

within and across these ROIs. Conversely, a network for which

these connections only link sources outside these ROIs would

reveal that the corresponding EEG signal processing is inappro-

priate.

The Localization Index (LI) is defined as the ratio between the

number of connections identified inside all regions of interest (NV )

and the total number of identified connections:

LI~
NV

NVzN�VV

where V ~ ROI1 | ROI2 ::: | ROIL (L is the number of

predefined ROIs) and N�V is the number of connections detected

by the method outside these regions. This criterion is a ‘‘global’’

estimation of the performance of the inverse/connectivity com-

bined approach. It is computed over the 7 pre-defined ROIs. The

LI values range from 0 (poorest performance: all the edges are

identified outside the ROIs) to 1 (highest performance: all the

edges are identified inside the ROIs).

Figure 1. The different steps of the comparative study. hr-EEG: high-resolution EEG, MNE: Minimum norm estimate, wMNE: Weighted
Minimum norm estimate, LORETA: Low resolution Brain Electromagnetic Tomography, sLORETA: Standardized Low resolution Brain
Electromagnetic Tomography, sPLV: single-trial Phase Locking Value, PE: Phase Entropy, R2: linear correlation coefficient, MI: Mutual Information,
ImC: Imaginary Coherence ROIs: Regions of Interest, LO: Left Occipital; RO: Right Occipital, LT: Left Temporal, RT: Right Temporal, LF: Left Frontal,
RF: Right Frontal, LP: Left Parietal.
doi:10.1371/journal.pone.0105041.g001

EEG Source Connectivity: From Dense Array Recordings to Brain Networks

PLOS ONE | www.plosone.org 5 August 2014 | Volume 9 | Issue 8 | e105041



The second criterion (Ri) represents the percentage of identified

edges within each ROIi:

Ri~
N i

ROI

NV

|100

where i represents each of the 7 predefined ROIs (i: LO, RO, LP,

LT, LF or RF, see figure 1). This criterion R is a ‘‘local’’ indicator

about the distribution of identified edges in each ROI. This can be

very important because the brain regions activated during the

analyzed task are supposed to be distinct and because localization

results are known to be dependent on the anatomical location of

sources. Ri varies from 0% (no edges are identified in the region i)
and 100% (all the identified edges are localized in i).

Factor analysis
In order to study the relationships between the three classes of

factors (five connectivity measures, four inverse problem solutions

and four EEG montages), we carried out a Multiple Factor

Analysis (MFA) based on the Principal Component Analysis. This

analysis was performed using XLSTAT software �. The main

goal is to understand how the different factors affect the LI values

and which factor seems to be the most important one.

High-resolution EEG Data
Twelve subjects were shown pictures (n = 148) on a screen using

E-Prime 2.0 software (Psychology Software Tools, Pittsburgh, PA)

[68]. They were asked to name the displayed pictures. The 148

images were selected from a database of 400 pictures standardized

for French [69] and were used during two sessions (about eight

minutes each) of 74 stimuli. The brain activity was recorded using

a hr-EEG system (EGI, Electrical Geodesic Inc.). The unique

feature of this system is the large coverage of the subject’s head by

surface electrodes allowing for the improved analysis of the

intracerebral activity from non-invasive scalp measurements, as

compared with 32 -to 128- electrodes standard systems. EEG

signals were collected with a 1 kHz sampling frequency and band-

pass filtered between 3 and 45 Hz. Each trial was visually

inspected, and epochs contaminated by eye blinking, movements

or any other noise source were rejected and excluded from the

analysis performed using the EEGLAB open source toolbox [70].

Statistical analyses of performance criteria were done using the

Wilcoxon rank-sum test which is well suited for small sample sizes.

To analyze the statistical differences in results obtained from tested

combinations (inverse + connectivity), we used the Kruskal-Wallis

test combined with a Bonferroni correction. The test was applied

to the 20 possible combinations. This study was approved by the

National Ethics Committee for the Protection of Persons (CPP),

conneXion study, agreement number (2012-A01227-36), promot-

er: Rennes University Hospital). All participants provide their

written informed consent to participate in this study. The ethics

committee has approved the consent procedure.

Figure 2. EEG signals and its reconstructed sources. A) The recorded evoked responses for a given subject, B) the corresponding reconstructed
sources and C) an example of the sources in each of the ROIs. The window of analysis is illustrated in transparent blue rectangle.
doi:10.1371/journal.pone.0105041.g002

EEG Source Connectivity: From Dense Array Recordings to Brain Networks

PLOS ONE | www.plosone.org 6 August 2014 | Volume 9 | Issue 8 | e105041



Results

A typical example of the connectivity graphs obtained for the 20

different combinations of the source reconstruction and functional

connectivity methods is presented in figure 3, for the two

montages (32 and hr). The qualitative visual inspection of the

identified networks shows that results are highly dependent on the

chosen algorithms used to solve the EEG inverse problem and to

measure the functional connectivity. In addition, another source of

variability comes from the number of electrodes retained for the

analysis, as results also differ when the same combination (source

reconstruction/connectivity estimate) is used either on classical or

hr montage. In particular, when using 32 electrodes, the

connections were found to be less dense especially in the occipital

region (figure 3, upper box vs. lower box).

Regarding the connectivity measures, results were found to be

fairly similar for a given inverse algorithm but strongly depend on

the number of electrodes. Conversely, for a given brain

connectivity method, the identified graphs strongly differed

depending on the algorithm used to solve the inverse problem.

For instance, using MNE with 180 electrodes (figure 3, upper box,

first column), the sPLV, R2, PE, ImC and MI methods identified

the same regions, but the activation in the right prefrontal region

was more prominent when using the sPLV method. Qualitatively,

and conversely to the four other methods, one can also notice that

the graphs identified with ImC (whatever the inverse method)

disclose a higher (resp. lower) number of long- (resp. short-) range

connections.

Concerning the inverse algorithms, results showed higher

variability as mentioned above. For instance, when using the

sPLV method with 180 electrodes (figure 3, upper box, first line),

Table 1. A summary of the previously published functional imaging studies of picture naming used to define the ROIs.

ROI Location in the brain Reference Modality BA

LO Left [48] PET 17/19

Occipital [88] fMRI 18/19

lobe [44] PET 18

[55] Electrostimulation –

[42] MEG/fMRI –

[89] ECoG –

RO Right [88] fMRI 18/19

occipital [90] fMRI –

lobe [91] fMRI 18/19

[45] PET/fMRI 18

[42] ECoG –

LT Left [54] MEG –

temporal [91] fMRI 37

lobe [92] DWI/PWI 21/22/37/38

[44] PET 20/37/39

[93] PET 20

[55] Electrostimulation –

[89] ECoG –

RT Right [54] MEG –

temporal [90] fMRI –

lobe [94] PET –

[92] MEG 38

LF Left [44] PET/fMRI 46

frontal [92] DWI/PWI 44/45

lobe [42] MEG/fMRI –

[95] fMRI –

RF Right [92] DWI/PWI 44/45

frontal [46] PET –

lobe [95] fMRI –

LP Left [88] fMRI 7

parietal [51] MEG –

lobe [42] MEG/fMRI –

[89] ECoG –

BA: Brodmann Area, fMRI: functional Magnetic Resonance Imaging, MEG: Magnetoencephalography, ECoG: Electrocorticography, PET: Positron emission
tomography, DWI: diffusion-weighted imaging, PWI: perfusion-weighted imaging.
doi:10.1371/journal.pone.0105041.t001
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Figure 3. Connectivity graphs obtained by using the different inverse and connectivity methods for hr-EEG (Up) and classical EEG
montage (Bottom). Red and blue lines denote the functional connectivity as measured in the gamma (.30 Hz) and beta (14–30 Hz) frequency
band respectively.
doi:10.1371/journal.pone.0105041.g003
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MNE found an extended network in the left occipital lobe, as

compared with the other methods. Along the same line, some

regions identified with MNE, wMNE and LORETA, such as the

right mesial frontal area, were not retrieved with sLORETA.

As far as the frequency band is concerned, the spatial

distributions of the most significant edges computed either in the

beta (24–30 Hz) or low gamma (30–45 Hz) bands were in

relatively good agreement. Indeed, although discrepancies be-

tween graphs were evidenced depending on the methods

employed, a general trend was found independently from the

combination of algorithms: indeed, the highest gamma functional

connectivity was obtained among sources located in the occipital

lobe(s) while more significant beta connectivity was found among

sources located in the other brain areas.

Factor analysis
To quantify the qualitative observations reported in figure 3, a

factor analysis was conducted. We summarize the whole analysis

by describing only the interactions between the different factors/

combinations and the variability of each factor. When analyzing

the connectivity/inverse combination, we observed that the

combinations with the same connectivity measure have lower

correlation values (0.75 for R2/LORETA vs. R2/MNE and 0.8

for PE/MNE vs. PE/sLORETA) than combinations with the

same inverse algorithm (0.97 for sPLV/wMNE vs. ImC/wMNE

and 0.98 for MI/sLORETA and ImC/sLORETA) (i.e. stronger

effect of inverse method). However, when analyzing the inverse

problem/number of electrodes combination, the results showed

that the correlations are relatively low for all the combinations (i.e.

strong effect of both factors). We observed higher correlation

values when changing the inverse method (0.54 for wMNE/32 vs.

sLORETA/32 and 0.5 for LORETA/128 vs. MNE/128) than the

number of electrodes (0.223 for wMNE/128 vs. wMNE/180 and

0.23 for MNE/128 vs. MNE/180). Regarding the connectivity/

number of electrodes combination, results showed a low correla-

tion when changing the number of electrodes (0.62 for ImC/64 vs.

ImC/32 and 0.69 for PLV/64 vs. PLV/32) and slightly higher

correlation when changing the connectivity method (0.79 for PE/

180 vs. R2/180 and 0.8 for PE/64 vs. ImC/64) (i.e. stronger effect

of number of electrodes).

Additionally, the variability of the LI values of each class of

factors was then analyzed. The values showed that the EEG

montages have the highest variability followed by the inverse

problem algorithm and the connectivity measures. sPLV and ImC,

128 and 180 electrode montage and MNE/wMNE showed the

highest effect among each class.

From these results, we can conclude that the connectivity

measures have the lowest effect on the LI values; conversely to the

number of electrodes that strongly impacts the LI values.

Number of electrodes
Figure 4 reports the values of the performance criterion LI for

the different inverse (MNE, LORETA, wMNE and sLORETA)

and connectivity (sPLV, R2, PE, ImC and MI) methods, in the

case of 32, 64, 128 channels and 180 channels EEG signals. As a

general inspection, for all combinations of inverse/connectivity

algorithms the LI values were higher for a large number of scalp

EEG electrodes. The results of the Wilcoxon rank-sum test on the

LI values (over subjects) are represented (* for p,0.05). The results
don’t show any significantdifference between the 32 and 64

montages. A significant difference is obtained when increasing the

number of electrodes up to 128 such as the case of MI/MNE

(p=0.021), R2/LORETA (p,0.01) and PE/LORETA (p=0.04)/

wMNE (p,0.01). The use of 180 channels has significantly

increased the network identification in the case of R2/sLORETA

(p=0.021), sPLV/wMNE (p=0.03)/LORETA (p=0.022)/MNE

(p=0.02) and ImC/wMNE (p=0.033)/LORETA (p=0.34).

In addition, the results also indicated that the use of 32 or 64

electrodes only may provide a sub-estimation of the co-activated

sources in the ROIs or/and an over-estimation of sources outside

the ROIs, as revealed by the low LI values – obtained for some

combinations such as LORETA/MI (LI = 0.35) and LORETA/

R2 (LI = 0.37) - respectively. Figure 4 shows that the increase of

the number of electrodes used in the source estimation improves

the final result in term of identified brain networks at the source

level. In addition, it also provides quantitative results regarding the

differences between the inverse algorithms, for a given number of

electrodes.

As depicted, for 180 electrodes, one can notice that wMNE

combined with a phase synchronization method (sPLV) provided

the highest average LI value (LI = 0.88). This result indicates that

this combination (wMNE/sPLV) was able to localize 88% of

significant connections distributed over the expected ROIs. Two

other combinations (wMNE/ImC) and (wMNE/PE) also led to

relatively high LI values (0.82 and 0.82, respectively). These values

are in contrast with the poorer results obtained for LORETA/

sPLV (LI= 0.69) and LORETA/PE (LI= 0.62) using the same

number of electrodes (180). The results of the Wilcoxon rank-sum

test indicates also that sPLV/wMNE is significantly different than

sPLV/MNE (p=0.035), sPLV/LORETA (p=0.03), ImC/LOR-

ETA (p=0.028), ImC/wMNE (p=0.048) and R2/sLORETA

(p=0.034).

Source reconstruction/functional connectivity
combination
In this section, we report the results obtained from the

quantitative comparison of the performance of the inverse

algorithms and connectivity methods, according to the R criterion

(% of network connections in each ROI). In Figure 5, the R value

curves obtained for the five connectivity methods are superim-

posed and plotted for each source reconstruction algorithm.

Results suggest that all connectivity methods identified a

comparable percentage of significant connections for all inverse

methods. When the sLORETA algorithm was used, the MI

method provided slightly different results than the other connec-

tivity methods. Regarding the different ROIs, a higher perfor-

mance of MNE, LORETA, wMNE and sLORETA was observed

in the left than in the right hemisphere except the occipital part

where we observe marginally higher values in the right

hemisphere. For the ROI in the left parietal (LP) region,

comparable R values were obtained for the five connectivity

methods and for the inverse solution algorithms (MNE, WME and

LORETA). Finally, the highest R values were obtained on ROIs

located in the left frontal (LF) and the right frontal (RF) lobes.

Interestingly, a trend in increasing R values was observed for most

of the combinations (inverse/connectivity), suggesting that there

may exist a posteroanterior gradient (occipito-temporo-frontal) of

the density of connections within brain regions belonging to the

network involved during picture recognition and naming.

Typical example of brain networks obtained with the
wMNE/sPLV combination
Table 2 provides the LI values computed for the 20 combina-

tions of inverse solution and connectivity algorithms using 180

electrodes and averaged over the 12 subjects. The multiple

comparisons between all combinations using the Kruskal-Wallis

test combined with the Bonferroni correction method lead to

EEG Source Connectivity: From Dense Array Recordings to Brain Networks
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conclude that the combination of wMNE/sPLV (with p= 0.05)

has the best performance in term of topological correspondence

between identified networks and ROIs defined from results

reported in the literature for the same task (picture recognition

and naming). In this part, we show a typical example of the

identified networks obtained with this particular combination of

methods. In figure 6A (top view), the functional network displayed

in red color (as obtained when the sPLV method was applied to

EEGs filtered in the gamma frequency band) is likely to

correspond with the activation of the left visual areas (both

primary and secondary). Figure 6B shows also an activated

network in the right temporal gyrus. Figure 6B (left lateral view)

shows that the identified networks involve the left inferior parietal

region, the left superior temporal gyrus (posterior part) and the left

inferior and middle temporal gyri. Finally, figure 6C (frontal view)

indicates the presence of functional networks in the frontal pole

(particularly the mesial part) with connections with the right

parieto-temporal regions. We can observe also that the functional

connections measured in the gamma frequency band (red) are

more prominent in the occipital region while the other significant

connections (within and across the parietal, temporal and frontal

regions) were measured in the beta frequency band.

Discussion

The accurate identification, from noninvasive data, of brain

networks related to specific cognitive functions is a major

challenge. In this scope, EEG source localization techniques on

the one hand and connectivity methods on the other hand have

considerably developed over the past decades. However, the joint

use of these two approaches is still recent and is recognized as

relatively delicate regarding the number of methodological and

technical issues that have to be solved to obtain relevant results. In

this paper, we presented a novel comparative analysis of the results

obtained from the possible combinations between four algorithms

to solve the EEG inverse problem (estimating the extended

sources) and five methods to estimate the functional connectivity.

In addition, the influence of two key factors that intervene in both

steps was also addressed, namely i) the number of electrodes used

to solve the inverse problem and ii) the frequency bands retained

to estimate the functional connectivity among neocortical sources.

A general result from this comparative study is that rather different

networks are identified from the same data when different

combinations of methods are being used. Therefore, cautiousness
is required regarding the (too) rapid interpretation of results.

Nevertheless, some combinations identified brain networks con-

cordant with those expected in the considered task, i.e. the picture

Figure 4. Comparison between the 32, 64, 128 and hr-montage for different inverse and connectivity methods. Asterisk above boxes
indicates significant difference (p,0.05). LI: Localization Index.
doi:10.1371/journal.pone.0105041.g004
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recognition and naming. More specific discussions about the

results are highlighted hereafter.

Inverse/connectivity combination
We proposed a joint comparison of the inverse and connectivity

methods, which has never been done so far. The results show that

the choice of the inverse algorithm and the connectivity method is

crucial and can strongly alter the results and their interpretation. It

is remarkable that starting from the exact same EEG recordings,

different networks can be identified. Results showed that the final

result (i.e. the functional connectivity network identified at source

level) strongly depends on the method that is chosen to solve the

EEG inverse problem andon the functional connectivity method.

By proposing a quantitative comparison procedure, we were able

to retain one combination that showed the best performance in

identifying the brain networks supposed to be activated during the

picture recognition and naming task. Nevertheless, we have to

mention that some other inverse algorithms (like MUSIC-based

algorithms and beamforming) as well as some connectivity

measures (like generalized synchronization and envelope based

methods [23]) were not included in the study.

The number of electrodes
The effect of the number of electrodes on the connectivity

analysis has not received enough attention in the identification of

cognitive networks underlying picture naming. Here, we tackled

Figure 5. The mean and standard variations of the R (percentage of identified edges for within each ROI) values obtained for the
different functional connectivity methods (computed over the 12 subjects).
doi:10.1371/journal.pone.0105041.g005

Table 2. Mean and standard deviations of LI values (over the 12 subjects) for the tested inverse and connectivity methods.

MNE LORETA WMNE sLORETA

MI 0.6260.11 0.6160.1 0.7560.08 0.6860.13

R2 0.6560.07 0.6160.12 0.7160.03 0.7360.07

PE 0.7160.12 0.6260.08 0.8260.11 0.6960.14

sPLV 0.7660.09 0.6960.06 0.88±0.06 0.7160.08

ImC 0.6860.08 0.6360.06 0.8260.1 0.6960.13

doi:10.1371/journal.pone.0105041.t002
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this issue by comparing activated sources in pre-defined regions of

interest (those reported in the literature) by using either 32 or 180

electrodes. Our results show a clear improvement of the brain

network identification when increasing the number of channels.

Other montages (with 64 or 120 electrodes) could also be tested,

but the overall message will remain the same. This finding is in

agreement with a number of studies that already reported that

source localization results can be improved when the number of

electrodes is increased [8,71–74].

Connectivity at two different frequency bands
The frequency bands used to compute the functional connec-

tivity is also a critical parameter as reported by [10,18]. Our results

suggest that significantly high correlation values are mainly found

between oscillations in the beta band (14–30 Hz) generated at the

level of relatively distant sources as well as oscillations in the low

gamma band (30–45 Hz) but for closer sources, as typically

observed in the occipital cortex. These results are in line with

several studies suggesting that beta oscillations are related to long-

range synchronization while gamma oscillations are more related

to short range synchronization [75–77]. It is noteworthy that our

quantitative comparison did not account for the other EEG

frequency bands, as there is no solid ‘‘ground truth’’ about the

functionality of the delta, theta and alpha bands in the considered

task. In addition, we chose to restrict the gamma band to 30–

45 Hz to avoid any contamination of connectivity measures by the

power-line noise (50 Hz in France) or by any stop-band filtering

effect.

Identification of brain networks involved in picture
recognition and naming
In the example provided at the end of the paper (Figure 6), we

showed that using the best combination of inverse (wMNE)/

connectivity (sPLV) methods, the optimal number (180) of

electrodes and the two frequency bands (gamma and beta), we

were able to identify networks topologically close (in term of

involved brain networks) to that activated in picture recognition

and naming task (as reported in the literature). A difficulty we

faced in this study is that the regions activated during picture

recognition and naming may differ among reported studies as

based on different protocols and neuroimaging techniques.

Nevertheless, the identified network includes three main regions

that are commonly reported as being activated in the considered

cognitive task: the bilateral occipital, the left temporal and the left/

right frontal regions. It also includes the left parietal and right

temporal which were less described in the literature. The detailed

analysis showed that this identified functional network involves the

left occipital region which is well known to play a capital role in

the processing visual information [78,79]. Results also revealed an

implication of the right temporal gyrus which is characteristic of

living pictures [80]. The other regions, namely the left inferior

parietal region, the left superior temporal gyrus (posterior part),

the frontal pole and the left inferior temporal middle temporal

gyrus could also be identified by the wMNE/sPLV procedure.

These regions were reported to be related, respectively, to the

representation of objects, to working memory, to visual analysis/

associations respectively and to working memory/memory retriev-

al [81–85]. Finally, a very dense network was found in the left

Figure 6. Typical example of the brain network identified using wMNE and sPLV in the picture recognition and naming task. A:
lateral view B: Top view C: frontal view.
doi:10.1371/journal.pone.0105041.g006
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inferior temporal lobe which has been recently reported as the

‘‘semantic hub’’ of the brain [86].

Most important factors
In the paper, we achieved a MFA to investigate the impact of

the different factors. We also analyzed the variability of each

factor. Results showed that the EEG montages and the inverse

problem methods have high impact on the results. However, the

connectivity measures have lower effect. This MFA confirmed that

cautiousness is needed in the choice of the inverse problem

method and in the number of electrodes when performing EEG

source connectivity analysis.

Open issues
A classical and still unsolved difficult question relates to the

setting of threshold values applied on the reconstructed sources as

well on the connectivity measures. In this comparative study, the

same threshold value was used for each combination of methods

10%, [41]. Other approaches can be explored like those based on

surrogate data [62], although requiring a higher computation

time. In future investigations, the influence of this parameter will

be assessed in the MFA.

Another issue is related to the effect of field spread on the source

connectivity analysis which has been reported by several recent

studies (see [14]). The biggest challenge in EEG/MEG measures

of functional connectivity is that the ill posed nature of the inverse

problem means that spatially separate localized sources are not

necessarily independent. This consideration led us to add the

imaginary coherence (as reported in [38]) to our comparative

study. Results showed some topological differences as compared

with the other connectivity methods, especially in term of ratio

between long- and short- range connections in the identified

network. A more detailed investigation of these differences could

be performed using some other approaches based on the use of

beamformer and envelope connectivity analysis [87], for instance.

Conclusion

EEG source connectivity can be a valuable method to identify

brain networks underlying specific cognitive function. However,

results are highly dependent on the choice of processing methods.

In this study, we assessed the variability of results with respect to

methodological issues in a cognitive task (picture recognition and

naming) for which some ‘‘ground truth’’ can be put forward based

on the collected literature on the topic. Our results suggest that the

combination of wMNE and sPLV techniques applied to hr-EEG

leads to a relevant result when compared to results reported in this

same task. We have evaluated several inverse solutions and

connectivity measures. Our results suggest that the estimation of

the EEG source connectivity is a difficult issue and that one should

be careful when studying functional connectivity at the level of

reconstructed sources. Our findings show a high variability

between methods. Thus, a main outcome of this study is a

message of cautiousness when analyzing EEG source connectivity.

An optimal combination of inverse/connectivity methods in

additional to a large number of electrodes must be chosen to

best identify brain networks involved in cognitive tasks and very

likely during pathological processes.
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22. Supp GG, Schlögl A, Trujillo-Barreto N, Müller MM, Gruber T (2007) Directed

cortical information flow during human object recognition: analyzing induced

EEG gamma-band responses in brain’s source space. PloS one 2: e684.

23. Brookes MJ, Hale JR, Zumer JM, Stevenson CM, Francis ST, et al. (2011)

Measuring functional connectivity using MEG: methodology and comparison

with fcMRI. Neuroimage 56: 1082–1104.
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synchronization: from theory to data analysis. Handbook of biological physics 4:
279–321.

38. Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, et al. (2004) Identifying true
brain interaction from EEG data using the imaginary part of coherency. Clinical
neurophysiology 115: 2292–2307.

39. Drakesmith M, El-Deredy W, Welbourne S (2013) Reconstructing Coherent
Networks from Electroencephalography and Magnetoencephalography with
Reduced Contamination from Volume Conduction or Magnetic Field Spread.
PloS one 8: e81553.

40. Astolfi L, Cincotti F, Mattia D, Marciani MG, Baccala LA, et al. (2007)
Comparison of different cortical connectivity estimators for high-resolution EEG
recordings. Human brain mapping 28: 143–157.

41. Sporns O (2013) Structure and function of complex brain networks. Dialogues
Clin Neurosci 15: 247–262.

42. Liljeström M, Hultén A, Parkkonen L, Salmelin R (2009) Comparing MEG and
fMRI views to naming actions and objects. Human brain mapping 30: 1845–
1856.

43. Liljeström M, Tarkiainen A, Parviainen T, Kujala J, Numminen J, et al. (2008)
Perceiving and naming actions and objects. Neuroimage 41: 1132–1141.

44. Price C, Moore C, Humphreys G, Frackowiak R, Friston K (1996) The neural
regions sustaining object recognition and naming. Proceedings of the Royal
Society of London Series B: Biological Sciences 263: 1501–1507.

45. Price CJ, Devlin JT, Moore CJ, Morton C, Laird AR (2005) Meta-analyses of
object naming: Effect of baseline. Human brain mapping 25: 70–82.

46. Murtha S, Chertkow H, Beauregard M, Evans A (1999) The neural substrate of
picture naming. Journal of cognitive neuroscience 11: 399–423.

47. Smith C, Andersen A, Kryscio R, Schmitt F, Kindy M, et al. (2001) Differences
in functional magnetic resonance imaging activation by category in a visual
confrontation naming task. Journal of Neuroimaging 11: 165–170.

48. Martin A, Wiggs CL, Ungerleider LG, Haxby JV (1996) Neural correlates of
category-specific knowledge. Nature 379: 649–652.

49. Etard O, Mellet E, Papathanassiou D, Benali K, Houdé O, et al. (2000) Picture
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