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Abstract

This work focuses on the extremely low-light image enhance-
ment, which aims to improve image brightness and reveal
hidden information in darken areas. Recently, image enhance-
ment approaches have yielded impressive progress. However,
existing methods still suffer from three main problems: (1)
low-light images usually are high-contrast. Existing methods
may fail to recover images details in extremely dark or bright
areas; (2) current methods cannot precisely correct the color
of low-light images; (3) when the object edges are unclear,
the pixel-wise loss may treat pixels of different objects
equally and produce blurry images. In this paper, we propose
a two-stage method called Edge-Enhanced Multi-Exposure
Fusion Network (EEMEFN) to enhance extremely low-light
images. In the first stage, we employ a multi-exposure fusion
module to address the high contrast and color bias issues. We
synthesize a set of images with different exposure time from
a single image and construct an accurate normal-light image
by combining well-exposed areas under different illumination
conditions. Thus, it can produce realistic initial images with
correct color from extremely noisy and low-light images.
Secondly, we introduce an edge enhancement module to
refine the initial images with the help of the edge information.
Therefore, our method can reconstruct high-quality images
with sharp edges when minimizing the pixel-wise loss. Ex-
periments on the See-in-the-Dark dataset indicate that our
EEMEFN approach achieves state-of-the-art performance.

Introduction

High-quality images are critical to computer vision tasks,
e.g., video surveillance, and object detection. However,
images captured in extremely low-light conditions may lose
information in the dark region and receive unexpected noise
and color bias. The low-quality images may significantly
reduce the performance of computer vision methods (Zhu
et al. 2017; Long, Shelhamer, and Darrell 2015), which rely
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heavily on the quality of input images. Therefore, low-light
image enhancement has attracted growing attention in the
computer vision field. This work focuses on solving the low-
light image enhancement problem, which aims to reduce
color bias and reveal hidden information from dark regions.

There have been numerous attempts in the literature to ad-
dress the low-light image enhancement problem. Traditional
techniques (Lee, Lee, and Kim 2013; Land 1977) enhance
pixels with low values to obey a natural distribution. Deep
learning-based methods design deep models to recover high-
quality images (Chen et al. 2018; Lore, Akintayo, and Sarkar
2017). Though these methods achieve significant progress,
enhancing extremely low-light images is still challenging
due to three main problems. Firstly, when a low-light im-
age is high-contrast with under-exposed or over-exposed
regions, it is difficult to find a one-to-one mapping from
raw sensor data to images. Existing methods fail to recover
well-exposed image details from extremely dark or bright
areas. The generated images are always blurry and noisy.
Secondly, without well-exposed image information, existing
models may suffer from color distortion due to the color bias
between low-light images and ground truth images. Thirdly,
pixel-wise loss tends to blur edges, destroy image details
when object edges are unclear in low-light images. Pixel-
wise loss weights all pixels equally regardless of their spatial
distribution. For instance, l1 or l2 loss will be minimized by
averaging nearby pixels or choosing the median of possible
colors (Isola et al. 2017).

In this paper, we propose the Edge-Enhanced Multi-
Exposure Fusion Network (EEMEFN) to enhance extremely
low-light images and recover realistic image details. Our
EEMEFN decomposes the image enhancement process into
two stages. In the first stage, we propose a multi-exposure
fusion (MEF) module to solve the high contrast and color
bias issues. To recover a well-exposed image from a high-
contrast low-light image, we need to assign different ex-
posure time to different regions. For instance, bright areas
require a shorter exposure time than dark areas. We generate
a set of multi-exposure images with different exposure times
from one single low-light image. Specifically, fusion blocks
are proposed to combine well-exposed regions of the multi-
exposure image set in a complementary way. Thus, the MEF
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module can produce high-quality initial images and reason a
color distribution closer to the ground truth. In the second
stage, we introduce an edge enhancement (EE) module
to address the edge issue. We predict edge information
with fine structures from the initial image generated by
the first stage. Then, the EE module enhances the initial
image by taking advantage of global features from the
image contents and local features from the edge information.
We evaluate our proposed EEMEFN on the See-in-the-
Dark dataset (Chen et al. 2018). Quantitatively, our method
outperforms state-of-the-art methods. For instance, the Peak
Signal-to-Noise Ratio (PSNR) of our approach on the Sony
subset is 29.60 dB, compared to 28.88 dB by (Chen et
al. 2018). Our approach improves the Structural SIMilarity
(SSIM) on the Fuji subset from 0.680 to 0.723. Besides,
qualitative results indicate that our EEMEFN achieves a
more natural result with abundant textures and sharp edges.

In summary, we make the following contributions:

• We propose a novel multi-exposure fusion module to-
gether with fusion blocks to combine generated images
with different light conditions so that the high contrast
and color bias issues can be addressed.

• We introduce an edge enhancement module to enhance
images with sharp edges and fine structures.

• The experimental results demonstrate that the proposed
approach achieves state-of-the-art performance. Further-
more, we conduct an ablation study to demonstrate the
effectiveness of each module.

Related Work

Low-Light Image Enhancement

Low-light images captured in extremely low-light condi-
tions will undoubtedly reduce the performance of computer
vision algorithms (Ying et al. 2017). Thus, various low-
light image enhancement approaches have been proposed
to recover a high-quality image. Traditional approaches
can be categorized into two main categories: histogram-
based methods (Lee, Lee, and Kim 2013) and retinex-based
methods (Land 1977). For example, histogram equalization
(Cheng and Shi 2004) tries to map the histogram of the
whole image as a simple mathematical distribution. How-
ever, these methods recover each pixel individually with-
out considering surrounding pixels. Retinex-based methods
(Guo 2016) first estimate an illumination map according
to the retinex theory and then enhance each pixel using
the well-constructed illumination map. Ying, Li, and Gao
(2017) proposed to dynamically adjust exposure time based
on a single image and fuse images using the illumination
estimation techniques. However, it is difficult to estimate the
illumination map of extremely low-light images with severe
noise.

Recently, deep learning-based methods have achieved
significant improvements in image enhancement, such as
deblurring (Aittala and Durand 2018), denoising (Godard,
Matzen, and Uyttendaele 2018) and low-light image en-
hancement (Lv et al. 2018). LLNet (Lore, Akintayo, and
Sarkar 2017) consists of a contrast enhancement module

and a denoising module. LLCNN (Tao et al. 2017) applies a
special-designed convolutional module to utilize multi-scale
feature maps for image enhancement. Retinex-Net (Wei et
al. 2018) consists of a Decom-Net for decomposition and
an Enhance-Net for illumination adjustment. CAN (Chen,
Xu, and Koltun 2017) approximates a variety of processing
operators. Different from existing methods operate on sRGB
images, Chen et al. (2018) employed a fully-convolutional
network (Long, Shelhamer, and Darrell 2015) for extremely
low-light image enhancement based on raw sensor data.
Although these methods may produce a satisfying result
sometimes, they may generate low-quality images due to
high contrast and serious color bias of extremely low-
light images. In addition to single-image enhancement,
multiple-image methods can address these issues since more
information is collected (Mildenhall et al. 2018; Hasinoff et
al. 2016). For instance, (Godard, Matzen, and Uyttendaele
2018) introduced a parallel recurrent network to combine
images. These methods focus on how to integrate the infor-
mation of all frames in the burst. In this paper, we propose
the multi-exposure fusion module, which generates images
with different light-conditions from a single image and
intelligently combines well-exposed information. The multi-
exposure fusion network can reduce color bias and produce
a high-quality image.

Edge Detection

Edge detection is one of the most fundamental computer
vision tasks. Existing methods can be roughly categorized
into three groups. The first one usually produces an edge
map by designing various filters manually. For instance,
(Canny 1986) introduced the Gaussian smoothing in the
process of extracting the image gradient. The second cat-
egory predicts edges using data-driven models according
to human-designed features. Structured Edges (Dollár and
Zitnick 2015) employs random decision forests to learn the
structure of edge patches. Third, deep learning methods
learn complex feature representations from raw data and
have achieved considerable progress. HED (Xie and Tu
2015) is an end-to-end edge detection model that combines
side outputs from multiple scales. Deepedge (Bertasius, Shi,
and Torresani 2015) averages the outputs of a classification
branch and a regression branch to produce the final outputs.
Deepcontour (Shen et al. 2015) divides edge data into
subclasses and fits each subclass using different model
parameters. RCF (Liu et al. 2017) uses rich features from
all the convolution layers to perform an image-to-image
prediction task in real-time. Liu et al. (2018) proposed
the diverse deep supervision which minimizes different
loss functions for high-level and low-level feature learning.
Image enhancement methods with l1 and mean squared
error loss tend to blur sharp edges, destroy lines, and other
fine image details. Given that the human visual system is
highly sensitive to edges, preserving structure information
is crucial to the performance of the image reconstruction
task. Inspired by previous works, we propose the edge
enhancement module to reconstruct a high-quality image
with abundant textures and rich local structures using edge
information for the low-light image enhancement task.
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Figure 1: Demonstration of our framework for low-light image enhancement. The proposed EEMEFN consists of two stages: (a)
multi-exposure fusion and (b) edge enhancement. The multi-exposure fusion module first generates several images in different
light conditions and then fuses images into one high-quality initial image. The edge enhancement module obtains an edge map
from the initial image and combines edge information to yield the final enhanced image.

Method

The Edge-Enhanced Multi-Exposure Fusion Network
(EEMEFN) aims to recover well-exposed image details,
reduce noise and color bias, and maintain sharp edges for
extremely low-light image enhancement. As illustrated
in Figure 1, our EEMEFN approach consists of two
components: multi-exposure fusion and edge enhancement.

Stage-I: Multi-Exposure Fusion

The multi-exposure fusion (MEF) module is introduced to
fuse images with different exposure ratios into one high-
quality initial image. As shown in Figure 1 (a), the MEF
module includes two main steps: generation and fusion. In
the generation step, we produce a set of multi-exposure
images in different light conditions by scaling the pixel
value with different amplification ratio. The synthesized
images may be well-exposed in the regions where the
original image is under-exposed. In the fusion step, we fuse
partial information from synthesized images into an initial
image that holds well-exposed information. Specially, we
propose fusion blocks to share the image features obtained
by different convolution layers to fully exploit valuable
information from the synthesized images.

Generation. Given an raw image Ilow ∈ R
H×W×1 and

a set of exposure ratios {k1, k2, ..., kN}, we can generate a
set of multi-exposure images I = {I1, I2, ..., IN}. The i-th
image is defined as follows:

Ii = Clip(Ilow ∗ ki), (1)

where the Clip(x) = min(x, 1) function performs per-pixel
clipping of the image. We denote k∗ as the ratio of exposure
times between the low-light image and the reference image.
Note that Chen et al. (2018) only generated one image by
specifying the exposure ratio as k∗. Considering the infor-
mation redundancy in the multi-exposure images, feeding
all images into our model may not improve the performance
but increase the computational cost.

Fusion. In this step, the MEF module combines well-
exposed regions from the generated multi-exposure images
I = {I1, I2, .., IN} to obtain an initial image Inormal:

Inormal = MEN(I0, I1, ..., IN ). (2)

Figure 1 (a) illustrates the architecture of our MEF module,
which is fed with images in different light conditions. Our
architecture can easily scale to multiple images. We take two
images as an example to demonstrate our framework.
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Firstly, each image is processed by a U-net branch with
the same architecture (Ronneberger, Fischer, and Brox
2015). We add skip connections in the U-net to aid the
reconstruction of details at different scales.

Secondly, we propose fusion blocks to combine the image
features obtained by different branches to fully exploit
valuable information in a complementary way (see Figure
2). The fusion block is build up a permutation-invariant
technique (Aittala and Durand 2018) with more aggregation
operations between features. Therefore, the MEF module
can recover accurate image details from dark regions and
push the color distribution closer to the ground truth. Each
fusion block takes N image features f1, f2, ..., fN ∈ R

c×hw

from N branches as inputs and performs max and average
operations to extract valuable information.

fmax = max(f1, f2, ..., fN ), (3)

favg = (f1 + f2 + ...+ fN )/N. (4)

Then, we transform features fmax and favg into the input
feature space and seed them back to each branch.

f = W ∗ [fmax, favg], f ∈ R
c×hw,W ∈ R

c×2c, (5)

where [·, ·] denotes the concatenation operation, f is the
output feature, and W is the learned weight matrix.

Finally, the last features of all branches are concatenated
together and fed into a 1 × 1 Conv layer to produce the
desired output by jointly learning from all branches.

The loss function is defined as l1 loss between the output
Inormal of our MEF module and the ground truth:

lossFusion = ‖Inormal − Igt‖1. (6)

fmax
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1
×
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o
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m
ax
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f

Figure 2: The architecture of the proposed fusion block.

Stage-II: Edge Enhancement

The edge enhancement (EE) module aims to enhance the
initial image generated by the MEF module. As shown in
Figure 1 (b), the EE module consists of two main steps:
detection and enhancement. In the detection step, we firstly
produce an edge map from the initial image instead of
the input image. The input image and the multi-exposure
images are extremely noisy, which makes it challenging to
extract edges. The MEF module effectively removes noise
and generates clear normal-light images with accurate edge
maps. In the enhancement step, the EE module enhances

the initial image by leveraging the edge information. With
the help of the predicted edge map, the EE module can
generate more smooth object surfaces with consistent color,
and recover abundant textures and sharp edges.

Detection. In this step, we employ the edge detection
network (Liu et al. 2017) to predict edges E ∈ R

H×W×1

of Inormal, E = Detection(Inormal). Then the edge
information is utilized to guide the reconstruction of high-
quality images. The edge detection network consists of
five stages, each of which makes use of all the activation
of convolution layers to perform the pixel-wise prediction
(E1, E2, E3, E4, E5). Finally, a fusion layer is employed to
combine CNN features of all the stages carefully. The edge
detection network can obtain an accurate edge map E.

Considering the fact that the distribution of edge/non-
edge pixels is heavily unbalanced, we employ two class-
balancing weights α and β to offset such unbalance. The
edge loss between predicted edge map Ei and ground truth
Egt = (ej , j = 1, ..., |Egt|), ej = {0, 1} is defined as a
weighted cross entropy loss with respect to the pixel label:

ledge(Ei, Egt) =− α
∑

j∈E
+

gt

log Pr(ej = 1|i)

− β
∑

j∈E
−

gt

log(1− Pr(ej = 1|i)),
(7)

α =
|E−

gt|

|E+
gt|+ |E−

gt|
, β =

|E+
gt|

|E+
gt|+ |E−

gt|
, (8)

where |E+
gt| and |E−

gt| denote the size of the edge and non-
edge ground truth label sets, ej = 1 represents an edge point
at pixel j and Pr(ej = 1|i) is the predicted value of pixel j
at stage i. The loss function is computed by aggregating the
loss function from different stages and the fusion layer:

lossDetection =

5∑

i=1

ledge(Ei, Egt) + ledge(E,Egt). (9)

To train the edge detection network, we generate a set of
input-output pairs. The input is the initial images generated
by our MEF module. We use the Canny edge detector
(Canny 1986) to compute the output as the corresponding
edge map of the ground truth image. Compared with Canny,
our EE module can extract useful edges from blurry initial
images and achieves better performance.

Enhancement. The enhancement step adopts an U-
Net architecture, which takes multi-exposure images
I = {I1, I2, ..., IN}, initial image Inormal and edge map E
as inputs and integrates these images to produce the final
enhanced image I+normal.

I+normal = Enhancement(I, Inormal, E). (10)

The Enhancer takes advantage of global pixel information
from images and local edge information from the edge map.
The loss function of the enhancement step is defined as:

lossEnhancement = ‖I+normal − Igt‖1. (11)

We also evaluated other auxiliary loss, such as edge-
preserving loss and perceptual loss. However, edge-
preserving loss significantly reduces performance and the
perceptual loss cannot improve performance.
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Experiments

In this section, to demonstrate the capability of our proposed
method, we evaluate the EEMEFN model quantitatively and
qualitatively on the See-in-the-Dark dataset (Chen et al.
2018) for extremely low-light image enhancement. We im-
plemented our method based on the Tensorflow framework
and the Paddlepaddle framework.

Dataset. The See-in-the-Dark dataset consists of two
image sets: Sony set and Fuji set. The Sony set captured
by Sony α7S II includes 2697 raw short-exposure images
and 231 long-exposure images. The Fuji set captured by
Fujifilm X-T2 contains 2397 raw short-exposure images and
193 long-exposure images. The resolution is 4240×2832 for
the Sony Set and 6000×4000 for the Fuji set. The exposure
time of the raw images was set between 1/30 and 1/10
seconds. The corresponding long-exposure images (ground
truth) were captured with 100 to 300 times longer.

Implementation Details. We train EEMEFN for 5000
epochs using ADAM (Kinga and Adam 2015) optimizer
with an initial learning rate of 10−4, which is decreased to
5 ∗ 10−5 after 2500 epochs and 10−5 after 3500 epochs.
Following Chen et al. (2018), we preprocess all raw images
by subtracting the black level. The MEF module generates
two images with exposure ratios {1, k∗/2}. Our model takes
these two images and their corresponding long-exposure
image as an input-output pair to train the model. In exper-
iments, we pretrain the edge detection network using long-
exposure images as inputs and fine-tune the network using
images generated by the MEF module. With this training
strategy, our model converges much faster than the one
started from scratch and achieves better performance.

Quantitative Evaluation

We compare our approach with the state-of-the-art methods,
including CAN (Chen, Xu, and Koltun 2017) and the U-net
used by Chen et al. (2018). We also introduce a baseline
that has the same U-net and is fed with concatenated multi-
exposure images. The results reported in this paper are based
on Tensorflow because most of the comparisons (Chen, Xu,
and Koltun 2017; Chen et al. 2018) used this framework.

Table 1 reports quantitative results for low-light im-
age enhancement. It can be seen that the baseline model
outperforms CAN and Chen et al., which demonstrates
the effectiveness of using multi-exposure low-light images.
Besides, thanks to the fusion block, better performance
can be achieved by MEF method when compared with the
baseline model. In addition, our EEMEFN method is 0.54
dB and 0.43 dB higher than the baseline on the Sony and
Fuji set with respect to PSNR. It suggests that exchanging
partial information and combining edge information enable
our EEMEFN model to make full use of global features from
the raw images and local features from the edge information.
As this table shows, our approach achieves state-of-the-art
performance over other methods on both Sony and Fuji set.
For the comparison with (Chen et al. 2018), our EEMEFN
improves PSNR from 28.88 dB to 29.60 dB on the Sony set
and from 26.61 dB to 27.38 dB on the Fuji set. The SSIM
is improved from 0.787 to 0.795 on the Sony set and from

0.680 to 0.723 on the Fuji set. We employ the LPIPS metric
(Zhang et al. 2018) to measure the perceptual distance.
Compared with (Chen et al. 2018), we reduce the LPIPS
distance from 0.476 to 0.458 on the Sony set and from
0.586 to 0.547 on the Fuji set. Overall, the experimental
results demonstrate that our proposed EEMEFN achieves
the best performance in terms of PSNR and SSIM for low-
light image enhancement.

Table 1: Quantitative evaluation of low-light image enhance-
ment algorithms in terms of PSNR/SSIM. The best results
are highlighted in bold.

Model Sony set Fuji set

CAN 27.40 / 0.792 25.71 / 0.710
Chen et al. 28.88 / 0.787 26.61 / 0.680
baseline 29.06 / 0.787 26.95 / 0.717
MEF 29.43 / 0.791 27.21 / 0.719
EEMEFN 29.60 / 0.795 27.38 / 0.723

Qualitative Evaluation

Figure 3 shows some representative results for visual com-
parison. We show the processed input image, the ground
truth, the results by Chen et al. (2018) and EEMEFN, and the
error map between the enhanced image and the ground truth.
Note that the input image is processed by the traditional
pipeline and linearly scaled to match the reference image
for better visual representation. We employ the error map to
visualize pixel-level l1 distance in RGB space. The red and
green rectangles represent where the corresponding zoomed
sub-images were taken from.

As we can see, the input image captured in extremely low-
light condition suffers from information loss, high contrast,
and color bias. Although the model by Chen et al. (2018)
handles the noise effectively, the output image is blurry. The
severely distorted content, e.g., colors and edges, can not be
well restored. For instance, the general edges of the train are
not clear enough and the green color standing for virescence
is missing in Figure 3(c). When the edges of different objects
are unclear, it is challenging to reduce such distortion. In
contrast, the proposed EEMEFN method reconstructs high-
quality images and preserves the local structures by leverag-
ing edge information. Figure 3(f) shows that our approach
produces error maps with small values. The error maps
demonstrate that our EEMEFN model produces images with
higher quality and smaller color distortion. By checking the
details from the green rectangle of Figure 3 (d) and (f), it
is clear that our method recovers more correct colors and
pushes the color distribution closer to the ground truth.

In summary, our proposed model can recover colors by
fully exploiting valuable information from multi-exposure
images and preserve sharper edges such as the structure of
objects and the boundary between objects.

Ablation Studies

For a comprehensive understanding of our model, we con-
duct ablation experiments to demonstrate the improvements
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(a) input image (0.04s) (b) ground truth (10s) (c) Chen et al.  (22.99 / 0.599) 

(d) error map of (c) (e) EEMEFN (23.40 / 0.605) (f) error map of (e)

0.05 0.3

Figure 3: Qualitative results for extremely low-light image enhancement by U-net and our EEMEFN. The numbers in
parentheses represent the PSNR and SSIM values.

(a) baseline (21.72 / 0.309) (b) MEF (22.51 / 0.310) (c) EEMEFN (22.73 / 0.312) (d) ground truth

Figure 4: Qualitative comparison of baseline, MEF and EEMEFN.

obtained by each component.

Exposure Ratio. The choice of exposure ratios is essen-
tial to our MEF module. Firstly, we evaluate the impact of
the exposure ratios. As shown in Table 2, we can achieve
higher performance when more multi-exposure images are
generated. Though the image generated by exposure ratio
k = 1 achieves the worst performance, this image can
provide more under-exposed information. The exposure ra-
tio set, which includes k = 1, leads to better results. We
find that both MEF and EEMEFN models with exposure
ratios {1, k∗/2} or {1, k∗/2, k∗} can achieve the best per-
formance. However, taking three images into consideration
is a waste of computation resources and cannot improve the
performance significantly. Therefore, we choose the expo-
sure ratios as {1, k∗/2} during the rest of our experiments.

Fusion Block. Secondly, we study the effectiveness of the
fusion block and its variant. To this end, we perform the

following experiments:

(1) baseline, which employs the U-net architecture. We
concatenate multi-exposure images before feeding them into
the network.

(2) basic MEF, which represents a basic multi-exposure fu-
sion module without fusion blocks, such that the information
of two U-net branches are fused at the last layer.

(3) MEF (max), which employs fusion blocks with the max
operation.

(4) MEF (avg), which employs fusion blocks with the
average operation.

(5) MEF (max + avg), which employs the max and average
operations in the fusion block.

Table 3 shows the evaluation results of the fusion block
and its variant. Note that all models take two multi-exposure
images with exposure ratios {1, k∗/2} as input. We can
see that basic MEF achieves a slightly better performance
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Table 2: Ablation study on the choice of exposure ratios. The
best results in terms of PSNR/SSIM are highlighted in bold.

Exposure ratio Model Sony set Fuji set

{1} U-net 22.46 / 0.732 20.51 / 0.654
{k∗/2} U-net 28.90 / 0.785 26.61 / 0.711
{k∗} U-net 28.88 / 0.786 26.66 / 0.712

{1, k∗/2} MEF 29.43 / 0.791 27.21 / 0.719
{1, k∗} MEF 29.41 / 0.792 27.05 / 0.718
{k∗/2, k∗} MEF 29.27 / 0.791 27.04 / 0.715
{1, k∗/2, k∗} MEF 29.41 / 0.792 27.22 / 0.720

{1, k∗/2} EEMEFN 29.60 / 0.795 27.38 / 0.723
{1, k∗} EEMEFN 29.58 / 0.795 27.29 / 0.723
{k∗/2, k∗} EEMEFN 29.44 / 0.795 27.24 / 0.719
{1, k∗/2, k∗} EEMEFN 29.56 / 0.796 27.36 / 0.723

than baseline because basic MEF processes each image
individually which can increase the width (number of chan-
nels) of image features. Furthermore, MEF (max) and MEF
(avg) perform better than basic MEN, because they transmit
information between two branches to make full use of the
partial information. By combining two aggregation opera-
tions, MEF (max + avg) can further improve performance.

Table 3: Ablation study on the design of fusion block. The
best performance is highlighted in bold.

Model Sony set Fuji set

baseline 29.06 / 0.787 26.95 / 0.717
basic MEF 29.18 / 0.788 26.97 / 0.717
MEF (max) 29.28 / 0.790 27.15 / 0.718
MEF (avg) 29.30 / 0.791 27.16 / 0.718
MEF (max + avg) 29.43 / 0.791 27.21 / 0.719

Edge Enhancement. Thirdly, we study the network de-
sign of the edge enhancement module, e.g, the importance
of edge map and the initial image. We perform the following
experiments:
(1) MEF, which is the first stage of our EEMEFN model.
(2) MEF + edge loss, which is a MEF module followed by
an edge-preserving loss and a l1 loss:

loss = ‖Inormal − I
gt‖1 +λ ∗ ledge(Detection(Inormal), Egt).

(3) EEMEFN (E+ Inormal), which only takes as input edge
information and the initial image.
(4) EEMEFN (E + I), which only takes as input edge
information and multi-exposure images.
(5) EEMEFN (E+ I+ Inormal), which takes edge informa-
tion, multi-exposure images and the initial image as input.

Table 4 shows the evaluation results of EE module in
terms of PSNR/SSIM. We can see that considering edge
information is able to improve performance further. Enhanc-
ing the initial image with edge information outperforms an
edge-aware smoothing loss, which demonstrates that the
edge enhancement module can extract more information
using edge maps. The comparison between EEMEFN mod-
els shows that the initial image is a very critical element

Table 4: Ablation study on the design of edge enhancement
network. The best performance is highlighted in bold.

Model Sony set Fuji set

MEF 29.43 / 0.791 27.21 / 0.719
MEF + edge loss 28.44 / 0.766 26.96 / 0.689
EEMEFN (E+Inormal) 29.56 / 0.795 27.32 / 0.722
EEMEFN (E+I) 29.15 / 0.790 27.03 / 0.716
EEMEFN (E+I+Inormal) 29.60 / 0.796 27.38 / 0.723

which has a significant impact on performance. By feeding
the network with multi-exposure images, the network can
extract more information with the help of edge maps and
initial images. The improvement achieved by our proposed
EEMEFN demonstrates the effectiveness of edge enhance-
ment module, which enhances the initial images according
to the edge information.

Visual Comparison. Finally, we illustrate a visual com-
parison among baseline, MEF, EEMEFN and the ground
truth in Figure 4. We can see that the baseline method
suffers from color bias, e.g., the color of the books. Besides,
the book titles and the general edges are not clear enough
(Figure 4(a)). MEF utilizes fusion blocks to reduce color
bias by fusing high-quality image features among multi-
exposure images (Figure 4(b)). However, the result of MEF
still suffers from blurry vision, because MEF may average
nearby pixels of different objects when the object edge
is unknown. The EEMEFN model can reconstruct high-
quality images with sharp edges and smooth surfaces under
the guidance of the edge map (Figure 4(c)). In summary,
the experimental results demonstrate the effectiveness of
MEF and EE, which leads to consistent improvement in
recovering details, reducing color bias, and enhancing edges.

Conclusions

In this work, we propose a novel edge-enhanced multi-
exposure fusion network for low-light image enhancement.
The multi-exposure fusion module recovers well-exposed
image details and decreases noise variance and color bias
by generating and fusing multi-exposure images with dif-
ferent illumination conditions. Also, we introduce an edge
enhancement module that yields high-quality images by
merging low-light images and the edge information. Our
experimental results have shown that our model outperforms
against the state-of-the-art approaches in terms of PSNR and
SSIM. The proposed method generates high-quality images
with abundant textures and sharp edges. In the future, we
plan to develop a more powerful architecture for real-time
processing and apply the model to other enhancement tasks
(e.g., low-light video enhancement).
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