
EF-Train: Enable Efficient On-device CNN Training on FPGA
Through Data Reshaping for Online Adaptation or
Personalization

YUE TANG, University of Pittsburgh, USA
XINYI ZHANG, University of Pittsburgh, USA
PEIPEI ZHOU, University of Pittsburgh, USA
JINGTONG HU, University of Pittsburgh, USA

Conventionally, DNN models are trained once in the cloud and deployed in edge devices such as cars, robots,
or unmanned aerial vehicles (UAVs) for real-time inference. However, there are many cases that require the
models to adapt to new environments, domains, or new users. In order to realize such domain adaption or
personalization, the models on devices need to be continuously trained on the device. In this work, we design
EF-Train, an efficient DNN training accelerator with a unified channel-level parallelism-based convolution
kernel that can achieve end-to-end training on resource-limited low-power edge-level FPGAs. It is challenging
to implement on-device training on resource-limited FPGAs due to the low efficiency caused by different
memory access patterns among forward, backward propagation, and weight update. Therefore, we developed
a data reshaping approach with intra-tile continuous memory allocation and weight reuse. An analytical
model is established to automatically schedule computation and memory resources to achieve high energy
efficiency on edge FPGAs. The experimental results show that our design achieves 46.99 GFLOPS and 6.09
GFLOPS/W in terms of throughput and energy efficiency, respectively.

CCS Concepts: • Hardware → Integrated circuits; Reconfigurable logic and FPGAs; Hardware accel-
erators.

Additional Key Words and Phrases: on-device training, edge FPGAs, data reshaping

1 INTRODUCTION
Deep Neural Networks (DNNs) have been widely used in edge devices such as cars, robotics [1],
and unmanned aerial vehicles (UAVs) [2], to accomplish various tasks, including autonomous
driving, object detection, etc. FPGAs are promising platforms with higher computational density,
communication bandwidth, and energy efficiency, and can be configured based on different tasks.
Nowadays, FPGAs have been widely used in various edge device domains. For example, edge-scale
FPGAs are commonly utilized in object detection tasks with high frames per second and low
power consumption [3]. The Corazon-AI built on Xilinx Zynq is a perfect fit for various computer-
vision-based applications including video surveillance, advanced driver-assistance systems (ADAS),
medical robotics, industrial automation, and augmented reality [4]. Combinedwith reconfigurability,
FPGAs have been adopted in several autonomous platforms such as pony.ai [5] and ZF ProAI [6].
In medical applications, an FPGA-based low-latency multi-layer perception (MLP) processor for
real-time cancer detection has been developed, since FPGA-based design can directly interface with
sensors, display devices, and reduce data movement delays [7]. Burger et al. applied an FPGA-based
embedded device to monitor users’ electrocardiograms (ECGs) in a pervasive internet-of-things
(IoT) system [8]. FPGAs have also been well performed in other areas such as agricultural robots [9],
UAVs [10], etc.
In traditional FPGA-based edge device applications, DNNs are pre-trained in the cloud before

being deployed in FPGAs, which is not efficient for domain adaption. When the environments, tasks,

Authors’ addresses: Yue Tang, University of Pittsburgh, Pittsburgh, USA, yut51@pitt.edu; Xinyi Zhang, University of
Pittsburgh, Pittsburgh, USA, xinyizhang@pitt.edu; Peipei Zhou, University of Pittsburgh, Pittsburgh, USA, peipei.zhou@
pitt.edu; Jingtong Hu, University of Pittsburgh, Pittsburgh, USA, jthu@pitt.edu.

, Vol. 1, No. 1, Article . Publication date: February 2022.

ar
X

iv
:2

20
2.

10
93

5v
1

 [
cs

.L
G

]
 1

8
Fe

b
20

22

2 Tang and Hu, et al.

or users change, data needs to be collected from the edge FPGAs and transmitted to the cloud. Then,
the cloud retrains a new model, transmitting the model back to the edge devices. The whole process
is inefficient and time-consuming. Therefore, it is often desirable for edge FPGAs to continuously
and locally learn from new data. Such on-device learning can directly improve model accuracy
and adapt to new environments. Currently, several algorithms have been proposed to enable edge
devices to achieve domain adaption locally. For example, a MobileDA framework [11] has been
developed to allow a novel teacher network trained in the server to distill the knowledge for a
student network running in the edge device, and the algorithm was employed on an embedded GPU
and NVIDIA Jetson TX2. A transductive transfer learning model HDCNN [12] has been proposed
to allow adaptation without requiring collecting large volumes of labeled training data in the target
domain, and the algorithm was tested on 1080 Ti GPU. To implement these complex and fantastic
software-level algorithms on FPGA-based edge devices, an FPGA-based training accelerator is
indispensable. However, traditional FPGA-based edge device applications lack such hardware-level
designs for training operations, which prevents FPGA-based devices from applying these algorithms
directly.

Furthermore, directly training Convolutional Neural Network (CNN) models on local FPGAs can
facilitate personalization. For example, in some medical applications such as home monitoring [13],
long-term ECG monitoring [14], etc., the distinction of different users’ physical conditions will
impact data distribution, so models need to be fine-tuned based on specific users. The system in [8]
utilized cloud services to log a user’s condition over time and continuously improve the system’s
performance. It would be more effective if models could be directly updated on the FPGA device.
Besides, learning at the edge can provide better privacy since users do not need to upload data into
the central cloud [15].
However, it has been challenging to implement on-device training on FPGAs. Previous works

mainly focused on implementing CNN inference on FPGAs. For example, Zhang et al. [16] exploited
various optimization techniques including loop unrolling, loop tiling, and loop transformation
on the FPGA accelerator, and proposed a roofline model to quantitatively analyze its computing
throughput and required memory bandwidth. Various designs [17, 18] have been proposed to
map well-trained neural networks on FPGAs for inference with high throughput and low latency.
Compared with CNN inference, it is more complex to efficiently implement CNN training on FPGAs
in terms of the following aspects. First, the inference process only includes forward propagation
(FP), whereas the training process includes FP, backward propagation (BP), and weight update (WU),
which leads to a 3X computation operation count with more types of operations [19]. Second, the
large volume of activation data in FP needs to be used in BP and WU, and the loss data generated
in BP is also required in WU. Such data dependency across multiple layers makes it difficult for
on-board memory management and data reusing in dynamic random access memory (DRAM) in
an end-to-end training system [20]. Third, since FP, BP, and WU have different memory access
patterns, simply using the memory optimizations of FP in the whole training process leads to low
memory access efficiency in BP and WU. Because of the above-mentioned challenges, CNN training
on FPGAs has not been comprehensively investigated.
Recently, several FPGA-based architectures have been designed to accelerate training on large

scale FPGAs. F-CNN [21] first performed FP and BP on a Maxeler MPC-X dataflow FPGA node
but WU on CPU. Designs such as [22, 23] aimed to further reduce the CNN training latency and
improve throughput. However, these works mainly focused on cloud-level devices with abundant
resources. A straightforward training implementation on edge FPGAs is still challenging.
To tackle the challenges in implementing on-device training on edge-level FPGAs, we propose

EF-Train, a new efficient FPGA-based training accelerator with a unified channel-level parallelism-
based convolution kernel to handle the computation complexity. The unified kernel means that

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 3

it processes convolution operations of FP, BP, and WU in the training phase utilizing the same
computation resources on the FPGA chip. The channel-level parallelism means that the kernel
allocates these computation resources to process multiple channels of feature maps in parallel.
We also propose a data reshaping approach to solve the communication bottleneck in realistic
end-to-end training processes. The overview of the design framework is shown in Fig. 1. The data
reshaping approach is a compile-time optimization that achieves intra-tile and inter-tile memory
access continuity and weight reuse in mini-batch training. The proposed design can be implemented
on resource-limited FPGAs without sacrificing precision. Neural networks can be trained on both
small batches and large batches. Since training and inference are conducted separately in realistic
applications, and FPGAs are configurable to implement different designs on the same hardware
platform for different applications, our design can be applied to those well-developed FPGA-based
inference devices. In a relatively long life cycle of the inference phase, the original design can
guarantee high throughput and low latency. If users or the environments change, the device can be
switched to implement our design immediately to learn from local data for online adaptation or
personalization rather than transmitting data to the cloud centers and waiting for the cloud centers
to transmit the well-trained model back to the device. Our main contributions are as follows.

• We propose EF-Train, an efficient FPGA-based CNN training accelerator with a unified
convolution kernel to process FP, BP, and WU with full precision. The accelerator exploits
channel-level parallelism to achieve high computation utilization for both small and large
batch sizes. Our accelerator supports end-to-end CNN training with convolutional (Conv)
layers, fully connected (FC) layers, batch normalization (BN) layers, rectified linear unit
(ReLU) layers, and pooling layers (Section 3).

• We propose a data reshaping approach to solve the off-chip communication bottleneck.
The features and weights are stored in off-chip memory with intra-tile continuous memory
allocation to remove discontinuous memory accesses within a tile. We also reduce inter-tile
discontinuous memory accesses by scheduling loop orders between tiles. We further exploit
weight reuse among multiple images in a mini-batch to improve communication efficiency
when the batch size is larger than one (Section 4).

• We build a performance and resource model for the proposed accelerator. Based on the model,
a computation and memory resources scheduling tool is established to determine design
parameters for different FPGA devices and different neural networks (Section 5).

• We deploy the training process on PYNQ-Z1 and ZCU102 for various CNNs on both Cifar-10
and ImageNet datasets. Experimental results show that our design can achieve 46.99 GFLOPS
and 6.09 GFLOPS/W in terms of throughput and energy efficiency, respectively (Section 6).

2 BACKGROUND ANDMOTIVATIONS
2.1 CNN Training
The training process of a five-layer CNN is shown in Fig. 2, including the FP process (red arrows),
the BP process (black arrows), and the WU process (yellow arrows). The network includes two
Conv layers, one FC layer, one BN layer, one ReLU layer, and one pooling layer which are practical
and can make up most neural networks in real-world scenarios.
In the FP process, activation is propagated layer by layer. In a Conv layer such as layer 1, the

input activation 𝐴1 conducts multiply-accumulate (MAC) operations with the weights𝑊1. A BN
layer is always followed by a Conv layer. In layer 2, the inputs of the BN layer include the input
activation𝐴2 and learnable parameters 𝛾2 and 𝛽2. The immediate outputs include _2,𝐴2, and output
activation 𝐴3. 𝐴3 then goes through the ReLU and pooling layers. Finally, the FC layer provides
classification results for the input image.

, Vol. 1, No. 1, Article . Publication date: February 2022.

4 Tang and Hu, et al.

Challenges for On-device Training on Edge-level FPGAs

Computation Complexity:

• Involves FP, BP, and WU with more
types of operations.

Communication Bottleneck:

• On-board memory management
difficulties.

• Low memory access efficiency in FP,
BP, and WU

Section 3
Section 4 Data Reshaping Approach

Section 5

Performance and Resource Model

Computation and Memory Resources
Scheduling Tool

Unified Channel-level

Parallelism-based

Convolution Kernel

Fig. 1. Overview of our design framework.

layer 1 layer 3 layer 4 layer 5

A1 Conv

W1

A2 Relu A4 Pool A5 Conv

W5

A6

f Label

L6ConvL5

Conv

dW5

PoolL4ReluL2

Conv

dW1

FP

BP

WU

layer 6

FC

W6

FC

FC

dW6

A7

L7

layer 2

BN A3

L3BN

γ2

β2

λ2

Â2

Fig. 2. CNN training process.

In the BP process, the loss will be calculated and propagated back to the first layer. The loss
of the last layer is calculated by the loss function 𝑓 . This paper adopts the most commonly used
cross-entropy loss function. The stochastic gradient descent (SGD) is applied in CNN training. In
a Conv layer, layer 5 for example, the loss 𝐿6 needs to be padded first to ensure the size of the
convolution results 𝐿5 is the same as the size of 𝐴5. The tensors for weights𝑊5 are transposed on
dimensions for output channels and input channels. The original kernel tensors need to be flipped.
Then, 𝐿5 is calculated by the convolution operation between the transposed weights and 𝐿6. In the
maximum pooling layer, layer 4, 𝐴4 is compared with 𝐴5 to determine which element on 𝐿4 should
obtain the value from the corresponding position on 𝐿5. If layer 4 is an average pooling layer, the
values for each element of each patch in 𝐿5 will be directly accumulated and propagated to 𝐿4. In
the ReLU layer, layer 3, an element of 𝐿3 will return zero if the value in the same position of 𝐴3 is
less than zero. Otherwise, the value of the corresponding position in 𝐿4 will be propagated back. In
the BN layer, layer 2, 𝛾2 and 𝛽2 are updated according to the value of _2, 𝐴2, and 𝐿3. Then the loss
is propagated back to 𝐿2.

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 5

The gradients of weights in layer 𝑖 is calculated after the loss of layer 𝑖 + 1 is propagated. In layer
5, 𝑑𝑊5 is calculated by conducting MAC operations for 𝐴5 and 𝐿6. The gradients are accumulated
inside a batch. In a mini-batch, after the above-mentioned operations are conducted for all images,
𝑊5 will be updated by subtracting 𝑑𝑊5 × 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 .

2.2 Related Works
DRAM Access Issues for Current FPGA-based Inference Accelerators: Currently, FPGAs
have been widely adopted in edge domains thanks to the well-developed FPGA-based inference
accelerators [16, 17]. Among the inference accelerators, many works [16, 24, 25] mainly focused
on selecting optimal design parameters to improve the acceleration performance for individual
Conv layers. Optimizing techniques such as loop tiling, loop unrolling are adopted by these
works. Although the proposed algorithms achieved higher performance efficiency on a given Conv
layer, the proposed designs only presented isolated accelerators without completing end-to-end
inference where all layers of a neural network are tested continuously. In an end-to-end system,
the layers’ intermediate results are usually transferred between on-chip buffer and off-chip DRAM
due to the limited on-chip storage size, so the impact of off-chip memory accesses should be
considered in realistic scenarios. For most edge-level FPGAs, direct memory access (DMA) is a
commonly used effective data swapping way for continuous address data reading. However, in
current FPGA-based DNN deployments, when the on-chip memory cannot hold all the features and
weights of a Conv layer, data need to be fetched and processed in tiles based on the computation
pattern. Such tiling schemes break the continuity of data addresses in DRAM and thus reduce the
DMA transmission efficiency. The detailed analysis will be further discussed in Section 4. This
discontinuity can degrade the DMA transferring speed from about 8GB/s to around 1GB/s [26].
The optimal algorithms proposed in the above-mentioned accelerators are based on the assumption
that data are well pre-allocated between adjacent layers so tiles can be loaded from and stored back
to the DRAM continuously. However, in actual end-to-end systems, such allocation overhead is
extremely large compared to the acceleration time.
Solutions for The DRAM Access Issues in The Inference Phase: Issues related to DRAM
memory access have been addressed in recent works. For example, ROMANet [27] proposed a
design space exploration (DSE) by searching for the appropriate data partitioning and scheduling for
each layer of a network to reduce the number of memory accesses. DRMap [28] proposed a generic
DRAMmapping policy and a DSE to reduce the DRAM access latency and energy. These two works
were implemented on Tensor Processing Units (TPUs). [29] defined a multi-bank on-chip memory
management (MOMM) problem to minimize the DRAM access overhead in the processing of CNNs
on a neural processing unit (NPU) with a multi-bank on-chip memory. However, since FPGAs have
different hardware architecture with TPUs or NPUs, their optimizing algorithms cannot be directly
applied to FPGA-based designs. For example, in the TPU-based designs [27, 28], the architecture of
the on-chip accelerator is already fixed, with fixed MAC arrays and fixed on-chip buffers for input
features, output features, and weights, respectively. In FPGA-based designs, only the total number
of DSPs and on-chip memory sizes are given, and the allocation and connection of MAC arrays
and individual buffers are configured by the designer. Therefore, optimizations on FPGA-based
designs should not only reduce DRAM access latency or frequency based on the off-chip DRAM
access policy but also be comparable to support the on-chip acceleration designs.
A few FPGA-based works reorganized the DRAM layout to relieve the memory access discon-

tinuity and validated the approaches on realistic end-to-end tests. For example, [26] compared
three different layout schemes of input features in the inference phase and finally found that the
channel-major scheme where the input features are fetched and stored along the input channel
direction first could improve access continuity and reduce data duplication. Caffeine [30] combined

, Vol. 1, No. 1, Article . Publication date: February 2022.

6 Tang and Hu, et al.

both on-chip and off-chip data reorganizations for the convolutional matrix-multiplication rep-
resentation to maximize the underlying memory bandwidth utilization. FlexCNNe [31] further
optimized data layout optimizations on the concatenation layers.

However, all these works [26]-[31] are based on the computation and memory access pattern in
the inference phase which only has FP. The training phase involves FP, BP, and WU where their
data access pattern for output features, input features, and weights are different. Therefore, the
above-mentioned approaches cannot be directly applied in CNN training, and a new optimized
design considering FP, BP, and WU together is required.
FPGA-based Training Accelerators: As mentioned in Section 1, CNN training on FPGAs has
not been comprehensively investigated. The training process is much more complicated than the
inference process, so it is sub-optimal to directly adopt the frameworks of inference accelerators
for training.

Due to the computation complexity and communication bottleneck, currently, only a few works
aim to achieve efficient FPGA-based training. With FPGA clusters, FPDeep explored layer-level
parallelism for training a CNN model in a fine-grained pipeline [32], which has superior scalability
to a large number of FPGAs. However, such larger clusters are not suitable to be adopted on edge-
level applications. For training on a single FPGA, an automatic compiler for training accelerator on
Stratix 10 was developed in the precision of 16-bit fixed-point [22]. DarkFPGA adopted batch-level
parallelism using 8-bit integers for training a VGG-like network on the Maxeler MAX5 platform [23].
It achieved high throughput when the batch size is large. A sparse CNN training accelerator was
designed on VCU1525. The accelerator was implemented on a pre-trained CNN model with 85%
parameters pruned [33]. However, these existing works mainly focused on cloud-level devices with
abundant computation and memory resources.
Besides, even with cloud-level resources, reduced precision and pruning approaches have also

been utilized to decrease computation intensity and communication bottleneck. Although quantiza-
tion adopted in prior training accelerators [23, 34] led to remarkable benefits in terms of resource
usage and power consumption, these works have not provided any evidence that such quantiza-
tion techniques can remain high accuracy on a large dataset (e.g. ImageNet) with dense neural
networks. Currently, training with full precision is still preferred in most realistic applications,
and its high computation and memory overhead should be faced directly. However, none of the
above-mentioned state-of-art training accelerators targeted resource-limited edge FPGAs with full
precision, which is more challenging to implement end-to-end CNN training but is more practical in
real-world scenarios. Therefore, an optimized design is necessary to implement on-device training
on resource-limited FPGAs without sacrificing precision.
Implementation of BN layers: Apart from the computation-intensive Conv layer, the BN layer is
also a key component and is essential for the training process. In inference, a BN layer can be folded
into the adjacent CONV layer, since it just performs a simple linear transformation [35]. However,
the batch normalization process in the training phase is much more complex. It needs to calculate
the expected value and variance of the data in the whole mini-batch, which involves lots of on-chip
and off-chip data transmission. Lu et al. [35] optimized the computation flow of BN layers during
FP and BP, and implement BN layers in their CNN training accelerator. Unlike [35] which adopts
the 8-bit fixed-point in Conv layers and FP16 in BN layers, our work supports BN layers with full
precision, which brings more challenges for computation and transmission requirements.

2.3 Motivations of The Proposed Design
To implement on-device training on resource-limited FPGAs, we need to solve the computation
complexity and communication bottleneck illustrated in Fig. 1.

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 7

In the training phase, the FP, BP, and WU processes are conducted iteratively and need to be
completed on the same accelerator. Edge FPGAs have limited computational resources. Using
separate kernels for FP, BP, and WU leads to resource underutilization and low energy efficiency.
Therefore, to efficiently process the complex computation for FP, BP, and WU, we need to design a
training accelerator that can handle the three processes in a unified convolution kernel and can
achieve a high parallelism degree considering the flexibility of DNN architectures. For a Conv
layer, there are three levels of parallelism that are adopted in FPGA-based accelerators: batch-level
parallelism, feature-map-level parallelism, and channel-level parallelism. Fig. 3 (a) illustrates the
process of batch-level parallelism, where 𝑇𝑏 nominates the number of output feature maps (OFMs)
of images in a mini-batch that are processed in parallel. Fig. 3 (b) shows the process of feature-map-
level parallelism, where 𝑇 𝑓 ×𝑇 𝑓 features of OFMs are processed in parallel. Fig. 3 (c) shows the
process of channel-level parallelism, where 𝑇𝑚 nominates the number of output channels of OFMs
that are processed in parallel, and 𝑇𝑛 nominates the number of input channels of input feature
maps (IFMs) that are processed in parallel. The degree of parallelism depends on the amounts of
utilized computation units on the hardware. Table 1 shows the comparisons of the three levels of
parallelism. Considering a Conv layer with 𝐵 images in a mini-batch, it is assumed that the number
of input channels is 𝑁 , the number of output channels is𝑀 , the size of an OFM is 𝑅×𝐶 , and the size
of a weights kernel is 𝐾 ×𝐾 .𝑇𝑚𝑜𝑝𝑠 = 𝐵 ×𝑀 ×𝑁 ×𝑅 ×𝐶 ×𝐾 ×𝐾 multiply operations are required
to process such a layer. For the batch-level parallelism, it takes ⌈ 𝐵

𝑇𝑏
⌉ ×𝑀 × 𝑁 × 𝑅 × 𝐶 × 𝐾 × 𝐾

cycles to complete the Conv layer. Such parallelism can achieve high throughput when the batch
size is large, and the size of the feature map and the number of channels have little impact on the
performance. For example, in previous works, DarkFPGA [23] built its accelerator with batch-level
parallelism and achieved high throughput when the batch size is 128. However, when the batch
size is small or even 1 (online learning), most computation units will remain idle. For example,
when 𝐵 < 𝑇𝑏, completing the Conv layer costs 𝑇𝑚𝑜𝑝𝑠 cycles, and 𝑇𝑏−𝐵

𝑇𝑏
of computation resources

remain idle. It leads to a low parallelism degree and such under-utilization of resources makes the
performance sub-optimal. For the feature-map-level parallelism which has been adopted by works
like [22], it takes 𝐵 ×𝑀 × 𝑁 × ⌈ 𝑅

𝑇 𝑓
⌉ × ⌈ 𝐶

𝑇 𝑓
⌉ × 𝐾 × 𝐾 cycles to finish a Conv layer. The batch size

and the number of channels have little impact on such parallelism. The parallelism will benefit
from layers with large feature map size but has under-utilization for layers with small feature map
size. For example, when 𝑅 < 𝑇 𝑓 and 𝐶 < 𝑇 𝑓 , completing the Conv layer costs 𝑇𝑚𝑜𝑝𝑠 cycles, and
𝑇 𝑓 −𝑅
𝑇 𝑓

× 𝑇 𝑓 −𝐶
𝑇 𝑓

of computation resources will remain idle. However, in CNN training, the size of a
feature map may vary from large size (like 224 × 224 for the input image of the ImageNet) to 1 × 1
for the FC layer. The feature-map-level parallelism will be inefficient to process the layers with a
small feature map. For channel-level parallelism, it takes 𝐵 × ⌈ 𝑀

𝑇𝑚
⌉ × ⌈ 𝑁

𝑇𝑛
⌉ × 𝑅 ×𝐶 × 𝐾 × 𝐾 cycles

to complete the Conv layer. It acquires a high parallelism degree with a large channel number, and
the batch size and feature map size have little impact on it. When the channel number is small,
for example, when 𝑁 < 𝑇𝑛, completing the Conv layer costs 𝐵 × ⌈ 𝑀

𝑇𝑚
⌉ × 𝑁 × 𝑅 × 𝐶 × 𝐾 × 𝐾

cycles, and 𝑇𝑛−𝑁
𝑇𝑛

of computation resources will remain idle. However, for most neural networks,
only the first layer has a small input channel number (𝑁 = 3). For other layers, the channel size
(for example 32, 64, etc.) is usually larger than the maximum degree of parallelism that an edge
FPGA can achieve. Therefore, channel-level parallelism is widely adopted by FPGA-based inference
accelerators [16, 24]. Generally speaking, the channel-level parallelism can achieve a constantly
high degree of parallelism across multiple layers, so it is adopted in the proposed design as shown
in Fig. 1. The proposed accelerator with a channel-level parallelism-based convolution kernel to
process FP, BP, and WU will be introduced in detail in Section 3.

, Vol. 1, No. 1, Article . Publication date: February 2022.

8 Tang and Hu, et al.

(a)

OFM of Image 1 OFM of Image Tb

Tb

...

Tf

(b) (c)

Tn

OFM of An Image IFM of An Image

Tm

OFM of An Image

Fig. 3. Three levels of parallelism. (a) Batch-level parallelism, (b) Feature-map-level parallelism, (c) Channel-
level parallelism.

Table 1. Comparisons of the three levels of parallelism

Parallelism Batch-level
Parallelism

Feature-map-level
Parallelism

Channel-level
Parallelism

Large Batch Size advantaged little impact little impact
Small Batch Size disadvantaged little impact little impact

Large Feature Map Size little impact advantaged little impact
Small Feature Map Size little impact disadvantaged little impact
Large Channel Number little impact little impact advantaged
Small Channel Number little impact little impact disadvantaged

Furthermore, the communication bottleneck is also challenging for edge-level FPGAs in end-
to-end training. As illustrated in Fig. 2, the activation data in FP needs to be used in BP and WU,
and the loss data generated in BP is also required in WU. The length and heterogeneity of the
data dependency paths in different layers make external memory accesses inevitable [20]. Previous
training accelerators attempted to avoid external memory accesses. For example, FPDeep [32] scaled
CNN computations to larger clusters so that only on-chip memory is needed for the CONV layers.
However, such larger clusters cannot be used on edge devices. [36] implemented LeNet-10 on an
FPGA and stored the inputs and outputs of one layer on the chip. Such design can only support
small networks, but for many larger networks (e.g. Vgg-16, AlexNet, etc.), the on-chip memory of
an edge FPGA is not big enough to hold weights or features in every Conv layer. Therefore, several
works [23, 33, 34] applied quantization or pruning to reduce off-chip memory access. However,
unlike inference where compressed networks cause little accuracy decrease [37], these training
works have not proved that their compression techniques can remain high accuracy on large
datasets with dense networks. To guarantee accuracy, it is necessary to implement CNN training
with full precision. Our goal is to design a general accelerator supporting end-to-end training with
both dense and small networks without sacrificing precision, so it is necessary to appropriately
manage external memory access and allocate on-chip buffers. As mentioned in Section 2.2, the
tiling schemes involved in on-chip accelerator design break the continuity of data addresses in
DRAM and thus reduce the DMA transmission efficiency. Therefore, it is necessary to improve the
address continuity of data to improve the efficiency of data swapping considering the complex data
patterns in FP, BP, and WU altogether. To solve this communication issue, as shown in Fig. 1, a
data reshaping approach is proposed and will be introduced in detail in Section 4.

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 9

3 FPGA-BASED CNN TRAINING ACCELERATOR
In this section, we propose an FPGA-based accelerator exploiting channel-level parallelism to deal
with the training process. A unified convolution kernel is designed to process FP, BP, and WU with
full precision.

3.1 The Architecture of The Training Accelerator
The proposed training accelerator is shown in Fig. 4. We implement our accelerator on an end-to-
end training system. At first, the CPU transmits labels, initial weights, the activation data of the
first layer, layer parameters, initial parameters for BN layers, and the DMA start addresses for each
layer to the off-chip DRAM. The layer parameters include computation type (e.g. Conv, ReLU, BN,
or pooling) and the shape information. The DMA start addresses are calculated off-line according
to the off-chip memory layout based on our data reshaping approach mentioned in Section 4. Our
accelerator executes computation-intensive kernels based on data dependencies within a CNN
model, while the entropy loss function is computed on the off-chip ARM core.

Weights

Off-chip Memory (DRAM)

Activation data Loss dataLabels Indexes

IFM
DMA

WEI
DMA

OFM
DMA

OUT
DMA

IFM
buffer

Weight
buffer

Pooling
Indexes

OFM
buffer

Pooling
Kernel

 Conv
 Kernel

PEPE PE

PE PE PE

PE PE PE

On-Chip Memory and Data Flow Tn
IFM

Weights

Tm×Tn

Tn IFM

OFM

Tm

Weights Tm×Tn

②
Tm OFM

①

Labels, Initial weights, Activation data of the first layer, Initial

BN parameters, Layer parameters, DMA start addresses CPU

BN
Kernel

BN
Parameters

Parameters
for BN

Fig. 4. Accelerator architecture.

As illustrated in Fig. 4, the off-chip memory (DRAM) stores data for activation, loss, weights,
labels, indexes for pooling, and parameters for BN. Data are transmitted through the DMA AXI-
stream bus to on-chip memory for computation. There are 4 DMA stream channels: IFM DMA,
OFM DMA, WEI DMA, and OUT DMA. These 4 channels are independent and can work in parallel.
On the FPGA chip, a unified Conv kernel is designed to process FP, BP, and WU with the same
computation resources, i.e. the digital signal processors (DSPs). The Conv kernel is composed of
multiple processing elements (PEs) to implement MAC operations. The adder tree structure is
adopted for the proposed kernel since it is flexible to support different computation patterns for FP,
BP, and WU. The connection of each multiplier and adder for FP and BP is shown in 1○ of Fig. 4,
while the connection of each multiplier and adder for WU is shown in 2○ of Fig. 4. The Pooling
Kernel focuses on the pooling operation. The BN Kernel achieves batch normalization and updates
BN parameters during FP and BP. ReLU is always followed by a Conv or BN layer. The accelerator
compares the output features with 0 when storing output features back to the DRAM in Conv
or BN layers, so ReLU does not need a unique functional unit. Five types of on-chip block RAMs
(BRAMs) are used to buffer IFMs, weights or weights gradients, OFMs, pooling indexes, and BN

, Vol. 1, No. 1, Article . Publication date: February 2022.

10 Tang and Hu, et al.

Table 2. Definitions of Symbols

Notation Description

𝑖 , 𝑗 Index of a Conv layer
𝐵 Batch size
𝑁 𝑖 Number of the input channels of the 𝑖th Conv layer
𝑀𝑖 Number of the output channels of the 𝑖th Conv layer
𝑅𝑖 Number of the rows of the OFMs for the 𝑖th Conv layer
𝐶𝑖 Number of the columns of the OFMs for the 𝑖th Conv layer
𝐾𝑖 Size of the weights kernel for the 𝑖th Conv layer
𝑆𝑖 Stride for the 𝑖th Conv layer

𝐴𝑖 [𝑏,𝑚, 𝑟, 𝑐] Activation for the 𝑖th Conv layer in FP
𝐿𝑖 [𝑏, 𝑛, 𝑟, 𝑐] Loss for the 𝑖th Conv layer in BP

𝑊𝑖 [𝑛,𝑚, 𝑘𝑟, 𝑘𝑐] Weights for the 𝑖th Conv layer
𝑑𝑊𝑖 [𝑛,𝑚, 𝑘𝑟, 𝑘𝑐] Weights gradients for the 𝑖th Conv layer in WU

𝑇𝑚 Number of the output channels in a tile of output features
in each Conv layer

𝑇𝑛 Number of the input channels in a tile of input features in
each Conv layer

𝑇𝑟 𝑖 Number of the rows in a tile of output features in the 𝑖th Conv layer
𝑇𝑐𝑖 Number of the columns in a tile of output features in the 𝑖th Conv layer
𝑀𝑖_𝑜𝑛 Number of the output channels of the weights that stored on-chip in

the 𝑖th Conv layer
𝑅 𝑗_𝑖𝑛 Number of the rows of the IFMs for the 𝑗th Conv layer
𝐶 𝑗_𝑖𝑛 Number of the columns of the IFMs for the 𝑗th Conv layer
𝑇𝑟 𝑗_𝑖𝑛 Number of the rows in a tile of input features in the 𝑗th Conv layer
𝑇𝑐 𝑗_𝑖𝑛 Number of the columns in a tile of input features in the 𝑗th Conv layer

parameters. We adopt double-buffer designs so that data transmission and computation can be
conducted in parallel.

3.2 The Forward and Backward Propagation of A Convolutional Layer
Our accelerator adopts channel-level parallelism, loop unrolling, and loop tiling. The symbols are
defined in Table 2. In channel-level parallelism,𝑇𝑛 and𝑇𝑚 are determined by available computation
resources (i.e. DSPs) on the FPGA chip and are fixed for all Conv layers. The degree of parallelism
is determined by 𝑇𝑛 ×𝑇𝑚.

Our accelerator achieves SGD in CNN training. The forward and backward propagation processes
of a Conv layer processing the 𝑏th image in a mini-batch can be formulated in Eq. (1) and (2),
where𝑊 ′

𝑖 is the transposed and flipped tensor of𝑊𝑖 . As illustrated in 1○ of Fig. 4, in FP and BP,
the Conv Kernel conducts MAC operations for weights and input features from activation or loss.
The IFM buffer stores a tile of activation or loss transmitted via the IFM DMA channel, and the
Weight buffer stores weights transmitted via the WEI DMA channel. The OFM buffer stores a tiled
of MAC outcomes. Computation results are transmitted to the DRAM via the OUT DMA channel.
If a Conv layer is followed by a ReLU layer, for FP, the data in the OFM buffer will be compared
with 0 before entering into the OUT DMA channel. For BP, the activation of the previous layer
will be transmitted via the OFM DMA channel, and the accelerator decides which value should be

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 11

propagated according to Eq. (3).

𝐴𝑖+1 [𝑏,𝑚, 𝑟, 𝑐] =
𝑁 𝑖∑︁
𝑛=1

𝐾𝑖∑︁
𝑘𝑟=1

𝐾𝑖∑︁
𝑘𝑐=1

𝐴𝑖 [𝑏, 𝑛, 𝑆𝑖 × 𝑟 + 𝑘𝑟, 𝑆𝑖 × 𝑐 + 𝑘𝑐] ×𝑊𝑖 [𝑚,𝑛, 𝑘𝑟, 𝑘𝑐] (1)

𝐿𝑖 [𝑏, 𝑛, 𝑟, 𝑐] =
𝑀𝑖∑︁
𝑚=1

𝐾𝑖∑︁
𝑘𝑟 ′=1

𝐾𝑖∑︁
𝑘𝑐′=1

𝐿𝑖+1 [𝑏,𝑚, 𝑆𝑖 × 𝑟 + 𝑘𝑟 ′, 𝑆𝑖 × 𝑐 + 𝑘𝑐 ′] ×𝑊 ′
𝑖 [𝑛,𝑚, 𝑘𝑟 ′, 𝑘𝑐 ′] (2)

𝐿𝑖 [𝑏,𝑚, 𝑟, 𝑐] =
{
𝐿𝑖+1 [𝑏,𝑚, 𝑟, 𝑐], 𝐴𝑖 [𝑏,𝑚, 𝑟, 𝑐] > 0,
0, 𝑜𝑡ℎ𝑒𝑟𝑠

(3)

3.3 The Weight Update of A Convolutional Layer
The gradients of weights can be calculated in Eq. (4). The generated hardware implementation of
the PE architecture processing WU operations in the Conv kernel is shown in 2○ of Fig. 4. During
the WU, the Conv Kernel conducts MAC operations for the activation data transmitted via the
IFM DMA channel and the loss data transmitted via the OFM DMA channel. The gradients are
stored in the Weight buffer. Once the Conv Kernel completes the computation for the last image in
a mini-batch, the original weights are transmitted via the WEI DMA channel. Then, weights are
updated by deducting the product of the gradients and learning rate. New weights are sent back to
DRAM via the OUT DMA channel.

𝑑𝑊𝑖 [𝑚,𝑛, 𝑘𝑟, 𝑘𝑐] =
𝐵∑︁
𝑏=1

𝑅𝑖∑︁
𝑟=1

𝐶𝑖∑︁
𝑐=1

𝐿𝑖+1 [𝑏,𝑚, 𝑟, 𝑐] ×𝐴𝑖 [𝑏, 𝑛, 𝑆𝑖 × 𝑟 + 𝑘𝑟, 𝑆𝑖 × 𝑐 + 𝑘𝑐] (4)

3.4 The Forward and Backward Propagation of A Pooling Layer
In the FP process of a pooling layer, the activation is transmitted via the IFM DMA channel and
stored in the IFM buffer. In the maximum pooling, the Pooling Kernel compares adjacent pixels,
transfers the results back to DRAM via the OUT DMA channel, and records the index for the
maximal pixel into the Pooling Indexes buffer. The index of a pixel is a 2-bit integer. For average
pooling, the kernel just calculates the average value of a patch of features. In the BP process of
maximum pooling, the indexes are loaded back via the WEI DMA channel, and loss from the
previous layer is loaded via the IFM DMA channel. The Pooling Kernel compares the indexes
and stores the propagated value into the IFM buffer. The BP process of the maximum pooling is
formulated in Eq. (5). For average pooling, the loss values of a patch are directly accumulated. After
a tile of data is processed, the calculated loss is sent back via the OUT DMA channel.

𝐿𝑖 [𝑏,𝑚, 𝑆𝑖×𝑟+𝑘𝑟, 𝑆𝑖×𝑐+𝑘𝑐] =
{
𝐿𝑖+1 [𝑏,𝑚, 𝑟, 𝑐], 𝐴𝑖+1 [𝑏,𝑚, 𝑟, 𝑐] = 𝐴𝑖 [𝑏,𝑚, 𝑆𝑖 × 𝑟 + 𝑘𝑟, 𝑆𝑖 × 𝑐 + 𝑘𝑐],
0, 𝑜𝑡ℎ𝑒𝑟𝑠

(5)

3.5 The Forward Propagation of A BN Layer
Our BN kernel is based on the computation flow in [35]. However, unlike the prior work which
utilizes half-precision, we adopt full precision which brings more computation and transmission
challenges. The BN parameters in Fig. 4 includes learnable parameters 𝛾𝑖 [𝑚] and 𝛽𝑖 [𝑚] and imme-
diate parameters _𝑖 [𝑚] and𝐴𝑖 [𝑏,𝑚, 𝑟, 𝑐], where𝑚 is the index of the channel. The 𝛾𝑖 [𝑚] and 𝛽𝑖 [𝑚]
are used to generate the immediate parameters and the output activation 𝐴𝑖+1 [𝑏,𝑚, 𝑟, 𝑐] during FP.
During BP, the immediate parameters and the loss propagated from the next layer 𝐿𝑖+1 [𝑏,𝑚, 𝑟, 𝑐]

, Vol. 1, No. 1, Article . Publication date: February 2022.

12 Tang and Hu, et al.

are used to update the learn parameters and propagate the loss 𝐿𝑖 [𝑏,𝑚, 𝑟, 𝑐] back. Since the size of
𝛾𝑖 [𝑚], 𝛽𝑖 [𝑚], and _𝑖 [𝑚] is𝑀 (the number of the output channels), the on-chip BRAMs are large
enough to hold these data in a BN layer. Therefore, we use the BN Parameters buffer to store these
parameters as well as the expected value and variance. The 𝐴𝑖 [𝑏,𝑚, 𝑟, 𝑐] is transmitted to DRAM
together with 𝐴𝑖+1 [𝑏,𝑚, 𝑟, 𝑐].
In FP, the BN Kernel first loads 𝛾𝑖 [𝑚] and 𝛽𝑖 [𝑚] from DRAM to the BN Parameters buffer via

the WEI DMA channel. Then it loads 𝐴𝑖 [𝑏,𝑚, 𝑟, 𝑐] via the IFM DMA channel and calculates the
expected value 𝐸 (𝑋)𝑖 [𝑚] and variance 𝑉 (𝑋)𝑖 [𝑚] according to Eq. (6)-(8). To avoid disarranging
the DRAM data layout for adjacent Conv layers, we load data tile by tile using the same data
format as that in Conv layers. The expected value and variance are calculated after the entire data
of a mini-batch is accessed. Then input activation is loaded from the beginning to calculate the
immediate parameters according to Eq. (9) and Eq. (10), where 𝜖 is a constant parameter. _𝑖 [𝑚]
is stored in the BN Parameters buffer, while 𝐴𝑖 [𝑏,𝑚, 𝑟, 𝑐] is transmitted to DRAM via the OUT
channel in parallel with activation loading. Finally, the output activation is calculated according to
Eq. (11). The BN operation completes after the activation, 𝛾𝑖 [𝑚], 𝛽𝑖 [𝑚], and _𝑖 [𝑚] are stored to
DRAM.

𝐸 (𝑋)𝑖 [𝑚] = 1
𝐵 × 𝑅𝑖 ×𝐶𝑖

𝐵∑︁
𝑏=1

𝑅𝑖∑︁
𝑟=1

𝐶𝑖∑︁
𝑐=1

𝐴𝑖 [𝑏,𝑚, 𝑟, 𝑐] (6)

𝐸 (𝑋 2)𝑖 [𝑚] = 1
𝐵 × 𝑅𝑖 ×𝐶𝑖

𝐵∑︁
𝑏=1

𝑅𝑖∑︁
𝑟=1

𝐶𝑖∑︁
𝑐=1

𝐴2
𝑖 [𝑏,𝑚, 𝑟, 𝑐] (7)

𝑉 (𝑋)𝑖 [𝑚] = 𝐸 (𝑋 2)𝑖 [𝑚] − (𝐸 (𝑋)𝑖 [𝑚])2 (8)

_𝑖 [𝑚] = 1√︁
𝑉 (𝑋)𝑖 [𝑚] + 𝜖

(9)

𝐴𝑖 [𝑏,𝑚, 𝑟, 𝑐] = (𝐴𝑖 [𝑏,𝑚, 𝑟, 𝑐] − 𝐸 (𝑋)𝑖 [𝑚]) × _𝑖 [𝑚] (10)

𝐴𝑖+1 [𝑏,𝑚, 𝑟, 𝑐] = 𝐴𝑖 [𝑏,𝑚, 𝑟, 𝑐] × 𝛾𝑖 [𝑚] + 𝛽𝑖 [𝑚] (11)

3.6 The Backward Propagation of A BN Layer
In BP, 𝐴𝑖 [𝑏,𝑚, 𝑟, 𝑐], _𝑖 [𝑚] and 𝐿𝑖+1 [𝑏,𝑚, 𝑟, 𝑐] are used to update the learnable parameters 𝛾𝑖 [𝑚]
and 𝛽𝑖 [𝑚], and 𝐿𝑖 [𝑏,𝑚, 𝑟, 𝑐] is propagated back. _𝑖 [𝑚], 𝛾𝑖 [𝑚], and 𝛽𝑖 [𝑚] are first uploaded via
the WEI channel and stored in the BN Parameters buffer. Then, the BN Kernel loads 𝐴𝑖 [𝑏,𝑚, 𝑟, 𝑐]
and 𝐿𝑖+1 [𝑏,𝑚, 𝑟, 𝑐] via the IFM and OFM channel respectively to calculate the gradients for 𝛾𝑖 [𝑚]
and 𝛽𝑖 [𝑚] according to Eq. (12) and (13). The learnable parameters are updated by deducting the
gradients, while 𝐿𝑖 [𝑏,𝑚, 𝑟, 𝑐] is calculated according to Eq. (14).

𝑑𝛾𝑖 [𝑚] =
𝐵∑︁
𝑏=1

𝑅𝑖∑︁
𝑟=1

𝐶𝑖∑︁
𝑐=1

𝐿𝑖+1 [𝑏,𝑚, 𝑟, 𝑐] ×𝐴𝑖 [𝑏,𝑚, 𝑟, 𝑐] (12)

𝑑𝛽𝑖 [𝑚] =
𝐵∑︁
𝑏=1

𝑅𝑖∑︁
𝑟=1

𝐶𝑖∑︁
𝑐=1

𝐿𝑖+1 [𝑏,𝑚, 𝑟, 𝑐] (13)

𝐿𝑖 [𝑏,𝑚, 𝑟, 𝑐] = 𝛾𝑖 [𝑚] × _𝑖 [𝑚] × (𝐿𝑖+1 [𝑏,𝑚, 𝑟, 𝑐] −
𝑑𝛽𝑖 [𝑚]

𝐵 × 𝑅𝑖 ×𝐶𝑖 −𝐴𝑖 [𝑏,𝑚, 𝑟, 𝑐] ×
𝑑𝛾𝑖 [𝑚]

𝐵 × 𝑅𝑖 ×𝐶𝑖) (14)

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 13

4 DATA RESHAPING APPROACH
In this section, we propose a data reshaping approach to solve the communication bottleneck
between the on-chip buffer and off-chip memory in realistic end-to-end training processes. We
first analyze the discontinuous memory access for the isolate accelerator with the unified channel-
level parallelism-based Conv kernel proposed in Section 3. Then we introduce our data reshaping
approach which involves three aspects. We first achieve intra-tile continuous memory allocation
by reorganizing the DRAM layouts for input features, output features, and weights. Then, we
re-schedule the loop order to achieve inter-tile continuous memory allocation. These two parts
are optimized together. Finally, considering the training process involves convolution operations
among a mini-batch, we propose and apply a weight reuse strategy based on the proposed data
layout.

4.1 Analysis on Discontinuous Memory Access
The pseudo-code of a tiled convolution layer is shown in Fig. 5. The pseudo-code in Fig. 5 (a) is
applied in FP and BP, following previous FPGA-based inference works [16, 30], while the pseudo-
code in Fig. 5 (b) is applied inWU, based on the accelerator design proposed in Section 3. As discussed
in Section 2, the continuity of data significantly influences the DMA transmission efficiency. In this
section, we analyze the data discontinuity when features are placed with the BCHW pattern and
the BHWC pattern, where B represents batch, C represents channel, H represents height (row), and
W represents width (column).

1. for (row=0; row<R; row+=Tr){

2. for (col=0; col<C; col+=Tc){

3. for (to=0; to<M; to+=Tm){

4. for (ti=0; ti<N; ti+=Tn){

5. for(i=0; i<K; i++){

6. for(j=0; j<K; j++){

7. for(trr=0; trr<Tr; trr++){

8. for(tcc=0; tcc<Tc; tcc++){

9. for(too=0; too<Tm; too++){

10. for(tii=0; tii<Tn; tii++){

OFM[too][trr][tcc] +=

WEI[too][tii][i][j]*IFM[tii][S*trr+i][S*tcc+j]

}}}}}}}}}}

(a) (b)

Off-chip data transmission

On-chip computation

1. for (to=0; to<M; to+=Tm){

2. for (ti=0; ti<N; ti+=Tn){

3. for (row=0; row<R; row+=Tr){

4. for (col=0; col<C; col+=Tc){

5. for(trr=0; trr<Tr; trr++){

6. for(tcc=0; tcc<Tc; tcc++){

7. for(i=0; i<K; i++){

8. for(j=0; j<K; j++){

9. for(too=0; too<Tm; too++){

10. for(tii=0; tii<Tn; tii++){

WEI[too][tii][i][j] +=

OFM[too][trr][tcc]*IFM[tii][S*trr+i][S*tcc+j]

}}}}}}}}}}

Off-chip data transmission

On-chip computation

Fig. 5. Pseudo-code of a tiled convolution layer. (a) Pseudo-code for FP and BP, (b) Pseudo-code for WU.

Features are placed in the BCHWpattern: Fig. 6 (a) shows the data layout of𝑀𝑖×𝑅𝑖×𝐶𝑖 output
features stored in DRAM for the 𝑖th layer. The output features are placed with the BCHW pattern
commonly used in CNN accelerating CPU, and GPU platforms [38, 39]. While OpenVINO [39] is
primarily for CPUs, it would also work for CPU, GPU, and FPGA platforms. In this layout, a cube
represents an element of the features, and the indexes represent the orders of the elements stored
in DRAM. In FPGA-based DNN deployments, data are fetched and processed in tiles. As shown in
Fig. 6, the size of a tile is 𝑇𝑚 ×𝑇𝑟 𝑖 ×𝑇𝑐𝑖 for output features.
The output features of layer 𝑖 are also the input features for its next layer 𝑗 . As shown in Fig. 7

(a), the size of the input features in layer 𝑗 is 𝑁 𝑗 × 𝑅 𝑗_𝑖𝑛 ×𝐶 𝑗_𝑖𝑛. For input features, the size of a
tile is 𝑇𝑛 ×𝑇𝑟 𝑗_𝑖𝑛 ×𝑇𝑐 𝑗_𝑖𝑛.

, Vol. 1, No. 1, Article . Publication date: February 2022.

14 Tang and Hu, et al.

109 110

Tm
73

37
74

38

72

87

21
Tr

i

Tc
i

1 2 87 37 38 4443

3 4

9 10

5

1211

6

36

73 74

...

OUT DMA stream

DRAM:

1 2 87 37 38 4443 3 4

...

OFM DMA stream

...

repeat times

...

X

Y

Z

(a)

R
i

C
i

M
i

(b)

Burst length=Tc
i

Burst length=Tc
i

(c)

FP/BP:

WU:

73 74 ...

72 ...

...

no repeat

Fig. 6. Data layout of output features before reshaping. (a) Data stored in DRAM, (b) Data transmitted via
the OUT DMA channel in FP/BP, (c) Data transmitted via the OFM DMA channel in WU.

DRAM:

X

Y

(a)

R
j
_in

C
j
_in

N
j

(b)

Burst length=Tc
j
_in

(c)

Tn

111110

144

73
109
74 75

37 3938 40

2

7

1

13

8

3

9

14 15

4

10

16

36

Tcj_in

Tr
j
_in

1 2 73 8 9 1413 15 3837 39 ...

2 3 384 39 40 ...

IFM DMA stream

109 ...

...110

...

repeat times

1 2 73 8 9 1413 15 3837 39 ... 2 3 4

repeat times

...

IFM DMA stream

109 ...110 111 112...

36

110 111 ...

Burst length=Tc
j
_in

FP/BP:

WU:

Z

...

...

123

...

...

144 ...
72

108 108...

Fig. 7. Data layout of input features before reshaping. (a) Data stored in DRAM, (b) Data transmitted via the
IFM DMA channel in FP/BP, (c) Data transmitted via the IFM DMA channel in WU.

3

3

TnK
i

19
13

7
1

20
14

8
2

21
15

9
3

22
16

10
4

23
17

11
5

24
18

12
6

Tm

DRAM:

WEI DMA stream

repeat times

1 7 9 54 6 1110 12

...

OUT DMA stream

1 2 87 13 2019

WEI DMA stream

repeat times

3 4 109

N
i'
= M

i

M
i'
= N

i

(a)

2 8

Burst length=Tn

1 7 9 54 6 1110 12

...

2 8

(b)

(d)

14

...

Burst length=Tm

(c)

Burst length=Tn

FP:

BP: WU:

...

no repeat

...

Fig. 8. Data layout of weights before reshaping. (a) Weights stored in DRAM, (b) Weights transmitted via the
WEI DMA channel in FP, (c) Weights transmitted via the WEI DMA channel in BP, (d) Weights transmitted
via the OUT DMA channel in WU.

In each DMA stream, the AXI-stream bus allows a pipeline data stream when the data addresses
are continuous. Burst length represents the number of data with continuous addresses in the data

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 15

stream. When a discontinuity happens, the DMA needs to be restarted. Therefore, our goal is to
avoid discontinuity, i.e. elongate the burst length for different transmission patterns.

During FP, the Conv Kernel conducts MAC operations with weights and input features, and then
it generates output features. The output features are transmitted to the DRAM via the OUT DMA
channel, which is shown in Fig. 6 (b). For the next layer, the input features are fetched from DRAM
to the FPGA chip via the IFM DMA stream, which is shown in Fig. 7 (b). As illustrated in Fig. 5
(a), in a Conv layer, the OFM buffer is reused to store and accumulate the immediate convolution
results between each tile of input features and each tile of weights. The first tile of output features
is generated by accumulating the convolution results when the input features tiles move from the
first input channel to the last channel. It corresponds to the movement in the X direction in Fig. 7.
Then, the next tiles of output features are generated in the X direction in Fig. 6, so the data access
pattern of input features (the dashed box in Fig. 7 (b)) repeats ⌈ 𝑀

𝑇𝑚
⌉ times. After the output features

tiles move from the first output channel to the last output channel, they begin to move in the Z
direction, and the input features tiles follow the Z direction as well. From Fig. 6 (b) and Fig. 7 (b),
the address of data is discontinuous for both inside and outside of a tile. The burst length of the
output features in the 𝑖th layer is 𝑇𝑐𝑖 , and the burst length of the input features in the 𝑗th layer is
𝑇𝑐 𝑗_𝑖𝑛. The data movement in BP is similar to that in FP.

In WU, the data access pattern inside a tile is the same as that in FP/BP. However, the inter-tile
data access pattern is different from that for FP/BP. It is because, in WU, the Conv Kernel conducts
MAC operations for input features (the activation data transmitted via the IFM DMA channel) and
output features (the loss data transmitted via the OFM DMA channel) to calculate weight gradients.
Therefore, as shown in Fig. 5 (b), the WEI buffer is reused to store and accumulate the immediate
convolution result between each tile of input features and each tile of output features. The first
tile of weight gradients is generated when the input and output features tiles move from the first
row and the first column to the last row and the last column. It corresponds to the movement in
the Z direction in Fig. 6 and Fig. 7. Then, the next tile of weight gradients is generated along the
input channel direction. The tiles of input features move along the X direction, while the pattern of
output feature tiles (the dashed box in Fig. 6 (c)) repeats ⌈ 𝑁

𝑇𝑛
⌉ times. After the gradients of weights

are calculated from the first input channel to the last input channel, the next tiles are generated
along the output channel direction. Thus, the pattern of input feature tiles (the dashed box in Fig. 7
(c)) repeats ⌈ 𝑀

𝑇𝑚
⌉ times, while the output feature tiles move along the X direction. As shown in

Fig. 7 (c), the burst length for input features is 𝑇𝑐 𝑗_𝑖𝑛. As shown in Fig. 6 (c), the burst length for
output features is 𝑇𝑐𝑖 .
In CNN training, the data layout of weights is also more complex compared to the inference

process. As illustrated in Fig. 8 (a), 𝑀𝑖 × 𝑁 𝑖 × 𝐾𝑖 × 𝐾𝑖 weights of layer 𝑖 are stored in DRAM. In
FP, weights are fetched in the input channel first and then the output channel when the output
features are generated along the X direction in Fig. 6. Then, the output features are generated along
the Z direction, while the weights access pattern (the dashed box in Fig. 8 (a)) repeats ⌈ 𝑅

𝑇𝑟
⌉ × ⌈ 𝐶

𝑇𝑐
⌉

times. WU shares the same intra-tile weights access pattern with FP, but it does not need to repeat
during inter-tile data access. The burst lengths for FP and WU are both 𝑇𝑛. In BP, each 𝐾𝑖 × 𝐾𝑖
kernel needs to be flipped. Such reallocation can be processed on the FPGA chip. However, since
the numbers of input channels and output channels are interchanged, the memory access pattern
of a tile is also changed. The weights kernels are transposed between the input channel dimension
and the output channel dimension. In Fig. 8, the yellow cubes represent a tile of weights in FP and
WU, and the cubes with the red box represent a tile of weights in BP. As illustrated in Fig. 8 (c),
in BP, the number of output channels becomes𝑀𝑖′ = 𝑁 𝑖 , the number of input channels becomes
𝑁 𝑖

′
= 𝑀𝑖 , and the burst length is 𝑇𝑚.

, Vol. 1, No. 1, Article . Publication date: February 2022.

16 Tang and Hu, et al.

Features are placed in the BHWC pattern: As can be seen from Fig. 6, Fig. 7, and Fig. 8, the
tiled data breaks the data continuity of memory access in FP, BP, and WU for the isolate accelerator.
In FPGA-based inference works, the BHWC pattern is also commonly used in end-to-end designs
to optimize memory access [26, 30]. Fig. 9 (a) and Fig. 10 (a) show the data layout of features
placed in the BHWC pattern following previous inference-based works. According to the loop
order in Fig. 5 (a), in FP and BP, tiles move in the channel dimension first and then move in the Z
direction. Therefore, it is effective to fetch ⌈ 𝑁

𝑇𝑛
⌉ tiles of input features to the on-chip memory and

reuse the data after ⌈ 𝑀
𝑇𝑚

⌉ tiles of output features are calculated. With such optimizations, the data
discontinuity of features is alleviated in FP and BP. As shown in Fig. 9 (b) and Fig. 10 (b), the burst
length for output features is𝑀𝑖 ×𝑇𝑐𝑖 , and the burst length for input features is 𝑁 𝑗 ×𝑇𝑐 𝑗_𝑖𝑛. Besides,
the FPGA accelerator does not need to repeatedly load the input feature tiles from the DRAM.
However, in WU, the Conv Kernel conducts MAC operations for input features and output

features to calculate weight gradients, so input and output feature tiles should move in the Z
direction first to calculate the weight gradients of 𝑇𝑚 ×𝑇𝑛 weights kernels and then move in the
channel direction, which is illustrated in Fig. 5 (b). Therefore, features cannot be continuously
fetched to the on-chip buffer and reused as that in the inference phase unless the on-chip memory is
large enough to hold all features of each layer. When the on-chip memory cannot hold all features
of a Conv layer in resource-limited FPGAs, the burst length for output features is𝑇𝑚, and the burst
length for input features is 𝑇𝑛. The data layouts are shown in Fig. 9 (c) and Fig. 10 (c).

In CNN inference, weights will not change in the whole process, and they are loaded in the same
pattern for different layers. Therefore, in the inference phase, weights can be pre-allocated tile by
tile to ensure continuous memory access. The pre-allocated data layout is illustrated in Fig. 11 (a).
As shown in Fig. 11 (b) and Fig. 11 (d), the burst length is 𝑀𝑖 × 𝑁 𝑖 in FP and WU. However, as
illustrated in Fig. 11 (c), the weight kernels are transposed between the input channel dimension and
the output channel dimension, and the tiling scheme in BP breaks the memory access continuity.
Since weights are updated after one iteration of FP, BP, and WU, it is impossible to pre-allocate
them before each iteration. Therefore, data discontinuity is inevitable in BP. As shown in Fig. 11,
the burst length is 𝑇𝑚.

4.2 Optimizing Discontinuous Memory Access
To optimize the discontinuous memory access, our data reshaping approach includes the following
steps. Firstly, we achieve intra-tile continuous memory allocation for both features and weights by
reorganizing the DRAM layouts for output features, input features, and weights which are shown in
Fig. 12, Fig. 13, and Fig. 14 respectively. Then we schedule the loop order based on the pseudo-code
in Fig. 15 to achieve inter-tile continuous memory allocation. Finally, weights are reused among
a mini-batch based on the proposed data layouts. In this section, we reorganize the data layouts
and schedule the loop order together to achieve both intra-tile and inter-tile continuous memory
address allocation.
Intra-Tile Continuous Memory Allocation: Inspired by previous inference works [26, 30],
employing channel-last data layout can improve data continuity for the channel-level parallelism-
based accelerator. However, as explained in Section 4.1, simply changing the data layout cannot
optimize the memory access continuity in FP, BP, and WU together. The memory access patterns in
the three processes need to be considered together. In CNN inference, the selection of𝑇𝑚 and𝑇𝑛 is
flexible. However, to ensure data continuity of weights kernels in both FP and BP, we fix 𝑇𝑚 = 𝑇𝑛

in our training accelerator so that weights can be loaded tile by tile in both FP and BP.
Fig. 12 (a) shows the data layout of the output features in DRAM after data reshaping. The first

𝑇𝑚 channels of OFMs are placed in the row-column-channel pattern. The next 𝑇𝑚 channels of

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 17

4 8

Tm
3

2
7

6

142

2925

51
Tr

i

Tc
i

1 2 43 5 6 87

10
9

14
13

33 37

17

4541

21

141

25 26

...

OUT DMA stream

DRAM:

1 2 65 25 26 3029 9 10

...

OFM DMA stream

...

repeat times

...

X

Y

Z

(a)

R
i

C
i

M
i

(b)

Burst length=M
i
×Tc

i

Burst length=Tm

(c)

FP/BP:

WU:

3 4 ...

142 ...

...

no repeat

Fig. 9. Data layout of output features with the BHWC memory allocation and feature reuse. (a) Data stored
in DRAM, (b) Data transmitted via the OUT DMA channel in FP/BP, (c) Data transmitted via the OFM DMA
channel in WU.

DRAM:

X

Y

(a)

R
j
_in

C
j
_in

N
j

(b)

Burst length=N
j
×Tc

j
_in

(c)

Tn

128

144

16
3

4
7 1511

2 106 14

5

25

1

49

29

9

33

53 57

13

37

61

141

Tcj_in

Tr
j
_in

1 2 43 5 6 87 9 1110 25 ...

5 6 97 10 11 12

IFM DMA stream

36 ...

...

no repeat

1 2 53 6 7 109 11 ... 57 58 59 61

repeat times

...

IFM DMA stream

4 8 12 ...

Burst length=Tn

FP/BP:

WU:

Z

60

144 ...
142

143

143...

49

8 13 14 15 16 144

5 6 7 62 63

12

Fig. 10. Data layout of input features with the BHWC memory allocation and feature reuse. (a) Data stored
in DRAM, (b) Data transmitted via the IFM DMA channel in FP/BP, (c) Data transmitted via the IFM DMA
channel in WU.

3

3

TnK
i

16
13

4
1

17
14

5
2

18
15

6
3

22
19

10
7

23
20

11
8

24
21

12
9

Tm

DRAM:

WEI DMA stream

repeat times

1 4 6 87 9 1110 12

...

OUT DMA stream

1 2 1354 1716

WEI DMA stream

repeat times

3 7 106

N
i'
= M

i

M
i'
= N

i

(a)

2 5

Burst length=M
i
×N

i

1 4 6 87 9 1110 12

...

2 5

(b)

(d)

14

...

Burst length=Tm

(c)

Burst length=M
i
×N

i

FP:

BP: WU:

...

no repeat

...

Fig. 11. Data layout of weights placed tile by tile based on inference-based data flow. (a) Weights stored in
DRAM, (b) Weights transmitted via the WEI DMA channel in FP, (c) Weights transmitted via the WEI DMA
channel in BP, (d) Weights transmitted via the OUT DMA channel in WU.

OFMs are followed with the same pattern. When applying loop tiling, we assign the tiling parameter

, Vol. 1, No. 1, Article . Publication date: February 2022.

18 Tang and Hu, et al.

𝑇𝑐𝑖 = 𝐶𝑖 so that data are continuous inside a tile for both FP and WU. From Fig. 12 (b) and (c), the
burst lengths of output features during FP, BP, and WU are larger than the size of a tile.

OUT DMA stream

DRAM:

OFM DMA stream

X

Y

(a)

R
i

M
i

(b)

Burst length=M
i
×R

i
×C

i

Burst length=Tm×R
i
×C

i

(c)

74

Tm
73

2 4

72

1513

31
Tri

Tc
i
=C

i

6
5

8
7

17 19

10
9 24

362321

12
11

71

25 2725 29 31 33 4835

37 39 41 43 45 47

49

1 2 43 24 4925 ...

73 ...

... 48... 72

74

1 2 43 24 7225 ...

...

49 ...

repeat times

48...

C
i

FP/BP:

WU:

no repeat

...

Fig. 12. Data layout of output features after reshaping. (a) Data stored in DRAM, (b) Data transmitted via
the OUT DMA channel in FP/BP, (c) Data transmitted via the OFM DMA channel in WU.

X

Y

(a)

R
j
_in

C
j
_in

N
j

(b)

Burst length=Tn×Tr
j
_in×Tc

j
_in

(c)

Tr
j
_in

IFM DMA stream

IFM DMA stream

Burst length=Tn×Tr
j
_in×Tc

j
_in

Tn

7876

73

74

75 77

108

1201072422

1193634

48

2 64

72

3

13

1

25

15

5

17

27 29

71

7 9 11

79

80

81

82

83

9512108

19

31

21 23

33 35

37 4745434139

84

96

Tcj_in=C
j
_in

1 2 43 36...

13 37

repeat times

73 108...

...10985 120...

...

36 48... ... 108

1413...

13 14 36

repeat times

73 ...

72... ...1 2 ...

DRAM： FP/BP:

WU:

13 14

...

...

Fig. 13. Data layout of input features after reshaping. (a) Data stored in DRAM, (b) Data transmitted via the
IFM DMA channel in FP/BP, (c) Data transmitted via the IFM DMA channel in WU.

TnK
i

Tm

WEI/OUT DMA stream WEI DMA stream

N
i'
= M

i

M
i'
= N

i

(a)

Burst length=M
i
×N

i

(b)

Burst length=Tm×Tn

(c)

15
13

3
1

16
14

4
2

19
17

7
5

20
18

8
6

23
21

11
9

24
22

12
10

DRAM：

12 43 5 6 11 12

...

1 2 3 1615

...5 6 87

13 144

FP/WU: BP:

...1
‘

Fig. 14. Data layout of weights after reshaping. (a) Weights stored in DRAM, (b) Weights transmitted via the
WEI/OUT DMA channel in FP/WU, (c) Weights transmitted via the WEI DMA channel in BP.

The selection of 𝑇𝑚 = 𝑇𝑛, 𝑇𝑐𝑖 = 𝐶𝑖 , and 𝑇𝑐𝑖_𝑖𝑛 = 𝐶𝑖_𝑖𝑛 also guarantee that features of different
layers share similar data layouts and tiling schemes no matter they serve as output features or
input features of a Conv layer in FP/BP/WU. Therefore, the intra-tile continuity of input features
is also guaranteed. The data layout of the input features in DRAM for the 𝑗th layer is shown in
Fig. 13 (a). According to Fig. 13 (b) and (c), the burst length equals the size of a tile.
After selecting 𝑇𝑚 = 𝑇𝑛, weights can be placed and fetched tile by tile during FP, BP, and WU.

The data layout is illustrated in Fig. 14. Before data reshaping, weights need to be repeatedly

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 19

transmitted between the FPGA chip and the DRAM in FP and BP, which is inefficient especially
for mini-batch training. Therefore, weight reuse based on our unique data layout is necessary
which will be introduced in detail in Section 4.3. After reshaping, the burst length for FP and
WU is𝑀𝑖 × 𝑁 𝑖 , while the burst length for BP is 𝑇𝑚 ×𝑇𝑛, which are shown in Fig. 14 (b) and (c),
respectively.
Inter-Tile Loop Order Optimization: The proposed data reshaping approach also achieves inter-
tile data continuity by rescheduling the loop order in Fig. 5. The loop order of 1, 2, and 3 in Fig. 5
(a) does not have data dependency. Based on our data layout, we move loop 3 to the outermost
loop so that the output features share similar memory access patterns in FP/BP and WU. The loop
order of off-chip data transmission in FP/BP is shown in Fig. 15 (a). As shown in Fig. 12 and Fig. 13,
in FP/BP, tiles of input features are fetched in the X direction first to generate the first output
features tile. Then the tiles of output features are generated and stored in the Y direction first, so
the input features tiles movement follows the Y direction as well. Then the output features tiles
are generated and stored in the X direction, and the access pattern of input features repeats ⌈ 𝑀

𝑇𝑚
⌉

times. The burst length of output features in the OUT DMA channel is𝑀𝑖 × 𝑅𝑖 ×𝐶𝑖 .
The loop order in Fig. 15 (b) is adopted in WU. From Fig. 12 and Fig. 13, tiles of both input

features and output features are fetched and stored in the Y direction first to calculate weights
gradients for the first tile. Then weights are updated along the input channel dimension, so the
input features tiles move in the X direction, while the output features access pattern (the dashed
box in Fig. 12 (c)) repeats ⌈ 𝑁

𝑇𝑛
⌉ times. After that, weights are updated along the output channel

dimension, so the output features tiles move in the X direction, while the input features access
pattern (the dashed box in Fig. 13 (c)) repeats ⌈ 𝑁

𝑇𝑛
⌉ times. The burst length of output features in the

OFM DMA channel is 𝑇𝑚 × 𝑅𝑖 ×𝐶𝑖 . When the IFM buffer and the OFM buffer are large enough
to hold the 𝑇𝑛 × 𝑅𝑖_𝑖𝑛 ×𝐶𝑖_𝑖𝑛 input and 𝑇𝑚𝑖 × 𝑅𝑖 ×𝐶𝑖 output features, i.e. 𝑅𝑖 ≤ 𝑇𝑟 𝑖 , the output
features do not need to be repeatedly loaded. The loop order can be optimized as shown in Fig. 15
(c).

1. for (to=0; to<M; to+=Tm){

2. for (row=0; row<R; row+=Tr){

3. for (ti=0; ti<N; ti+=Tn){

4. load IFM;

5. if (row==0){

6. load WEI;

7. }

8. on-chip convolution;

9. }

10. store OFM;

11. }

12. }

1. for (to=0; to<M; to+=Tm){

2. for(ti=0; ti<N; ti+=Tn){

3. for(row=0; row<R; row+=Tr){

4. load OFM;

5. load IFM;

6. on-chip convolution;

7. }

8. store WEI;

9. }

10. }

(a) (b)

1. for (to=0; to<M; to+=Tm){

2. load OFM;

3. for(ti=0; ti<N; ti+=Tn){

4. load IFM;

5. on-chip convolution;

7. store WEI;

8. }

9. }

(c)

Fig. 15. Pseudo-code of loop order scheduling between tiles. (a) Loop order for FP and BP, (b) Loop order for
WU, (c) Loop order for WU when 𝑅𝑖 ≤ 𝑇𝑟 𝑖 .

4.3 Weight Reuse in Mini-batch Training
Based on the above-mentioned optimization, we further reduce DRAM data access by reusing
weights in mini-batch training. Different from inference, training involves processing a batch of
data at once, so data reuse is necessary to decrease the transmission times of weights between
on-chip buffer and off-chip memory. On FPGAs, a BRAM bank size is large enough to store multiple
tiles of weights. Therefore, we propose a weight reuse strategy based on our data layout. Thanks

, Vol. 1, No. 1, Article . Publication date: February 2022.

20 Tang and Hu, et al.

to our loop order shown in Fig. 15, we can load weights only when the accelerator processes the
output feature tile lying in the first row. As illustrated in Fig. 16, when the accelerator processes
a tile of features in the first row of the first image in a batch, 𝑀𝑖_𝑜𝑛 × 𝑁 𝑖 × 𝐾𝑖 × 𝐾𝑖 weights are
loaded and stored in the WEI double buffers, where 𝑀𝑖_𝑜𝑛 is the multiple of 𝑇𝑚 depending on
the on-chip BRAM resources. After the first𝑀𝑖_𝑜𝑛 channels of OFMs in the image are processed,
the first𝑀𝑖_𝑜𝑛 channels of OFMs of the next image will be processed, so weights do not need to
be uploaded again. The next 𝑀𝑖_𝑜𝑛 channels of the first image will be processed after the first
𝑀𝑖_𝑜𝑛 channels of all images in the batch are processed. Therefore, weights do not need to be
transmitted back and forth. After the above-mentioned steps, the burst length is𝑀𝑖 ×𝑁 𝑖 for FP/WU
and 𝑇𝑚 ×𝑀𝑖_𝑜𝑛′ for BP, which are illustrated in Fig. 16 (b) and (c) respectively.

TnK
i

Tm

WEI/OUT DMA stream
(a)

Burst length=M
i
×N

i

(b)

15
13

3
1

16
14

4
2

19
17

7
5

20
18

8
6

23
21

11
9

24
22

12
10

DRAM:

1 2 43 5 6 87 9 1110 12

...

27
25

28
26

31
29

32
30

35
33

36
34

M
i
_on

M
i
_on'

FP/WU:

WEI DMA stream

Burst length=Tm×M
i
_on'

(c)

1 4 ...5 8...

13 ... 16 ...17 20

25 ... 28 ...29 30

...

BP: M
i'
= N

i

N
i'
= M

i

Fig. 16. Data layout of weights after weight reuse. (a) Weights stored in DRAM, (b) Weights transmitted via
the WEI/OUT DMA channel in FP/WU, (c) Weights transmitted via the WEI DMA channel in BP.

In mini-batch training, weight reuse will not affect the burst length of output features in WU
and input features. For output features in FP and BP, after the first𝑀𝑖_𝑜𝑛 channels of OFMs of the
first image are transmitted to DRAM, the next image of the batch will be processed before other
channels of the prior image. Therefore, as shown in Fig. 17, the burst length is𝑀𝑖_𝑜𝑛 × 𝑅𝑖 ×𝐶𝑖 .

(a)

R
i

Burst length=M
i
_on×R

i
×C

i

C
i

66

96

65

3634

64

3533

2 4

31

32

Image 1 Image 2

162

192

161

132130

160

131129
98 100

128

9997

Tm

M
i

M
i
_on

1 32

...

33 64... ... 97 160...

OUT DMA stream

(b)

FP/BP:DRAM:

Fig. 17. Data layout of output features in mini-batch training after weight reuse. (a) Output features of two
images in a batch, (b) Output features transmitted the via the OUT DMA channel in FP/BP.

5 PERFORMANCE AND RESOURCE MODEL
In this section, we establish an analytic model to calculate the latency and resources for our design.
Unlike previous works [16, 24] which only focused on the performance of a bare accelerator running
on separate Conv layers, our model considers the discontinuity of off-chip memory access in a
realistic end-to-end training process. Based on the model, we build a scheduling tool to determine
design parameters for given FPGA devices and given network models.

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 21

5.1 Performance Model
For a [𝑀𝑖 , 𝑁 𝑖 , 𝑅𝑖 ,𝐶𝑖 , 𝐾𝑖 , 𝐾𝑖 , 𝑆𝑖] Conv layer 𝑖 , we assume the parameters of a tile is [𝑇𝑚,𝑇𝑛,𝑇𝑟 𝑖 ,𝑇𝑐𝑖].
𝑇𝑚 and 𝑇𝑛 are fixed for all layers since they are determined by the number of DSPs, while 𝑇𝑟 𝑖
and 𝑇𝑐𝑖 are adjustable according to different layer parameters. In our design, 𝑇𝑚 = 𝑇𝑛, and
𝑇𝑐𝑖 = 𝐶𝑖 . The computation latency of a tile of features in FP, BP, and WU can be represented as
𝑡𝑖
𝐶𝑂𝑀𝑃

= 𝑇𝑟 𝑖 ×𝑇𝑐𝑖 × 𝐾𝑖 × 𝐾𝑖 clock cycles.
The continuity of memory address significantly impacts the off-chip communication efficiency.

To consider the memory access discontinuity, we assume the start time of the DMA stream is 𝑡𝑠𝑡𝑎𝑟𝑡 .
When discontinuity happens, DMA restarts. We have tested the start time on both the PYNQ-Z1
and the ZCU102 board, and 𝑡𝑠𝑡𝑎𝑟𝑡 ≈ 400 cycles under 100MHz clock. We determine the data width
parameters 𝑝 to model the off-chip/on-chip communication bandwidth. For 32-bit floating-point, if
the DMA stream width is 128 bits, 𝑝 = 4. Since the burst length of input features equals the size of
a tile, discontinuity happens every time a tile of input features are fetched. The latency of loading a
tile of input features is formulated as 𝑡𝑖

𝐼𝐹𝑀
= 𝑡𝑠𝑡𝑎𝑟𝑡 + ⌈𝑇𝑛𝑝 ⌉ × ((𝑇𝑟 𝑖 −1) ×𝑆𝑖 +𝐾𝑖) × ((𝑇𝑐𝑖 −1) ×𝑆𝑖 +𝐾𝑖)

clock cycles. The weights loading latency can be represented as 𝑡𝑖
𝑊 𝐸𝐼

= ⌈𝑇𝑚×𝑇𝑛
𝑝

⌉ × 𝐾𝑖 × 𝐾𝑖 clock
cycles, and the latency of storing a tile of output features is formulated as 𝑡𝑖

𝑂𝑈𝑇
= ⌈𝑇𝑚

𝑝
⌉ ×𝑇𝑟 𝑖 ×𝑇𝑐𝑖

clock cycles. 𝑡𝑠𝑡𝑎𝑟𝑡 is added to 𝑡𝑖
𝑊 𝐸𝐼

and 𝑡𝑖
𝑂𝑈𝑇

only when the discontinuity happens, which will be
discussed in detail as follows. We define 𝑡𝑖

𝐿𝑂𝐴𝐷
= max

{
𝑡𝑖
𝐼𝐹𝑀

, 𝑡𝑖
𝑊 𝐸𝐼

}
, 𝑡𝑖
𝑃𝑅𝑂𝐷1 = max

{
𝑡𝑖
𝐼𝐹𝑀

, 𝑡𝑖
𝐶𝑂𝑀𝑃

}
,

𝑡𝑖
𝑃𝑅𝑂𝐷2 = max

{
𝑡𝑖
𝐿𝑂𝐴𝐷

, 𝑡𝑖
𝐶𝑂𝑀𝑃

}
, and 𝑡𝑖

𝑆𝑇𝑂𝑅𝐸
= max

{
𝑡𝑖
𝐶𝑂𝑀𝑃

, 𝑡𝑖
𝑂𝑈𝑇

}
.

We assume in layer 𝑖 , 𝑀𝑖_𝑜𝑛 ×𝑇𝑛 × 𝐾𝑖 × 𝐾𝑖 weights are stored on-chip. If the batch size is 𝐵,
weights will be loaded only during the iteration when the proposed accelerator processes the first
image in the batch. For other iterations, the latency of processing𝑀𝑖_𝑜𝑛 channels of an image in
FP can be formulated as follows.

𝐿𝑎𝑡1𝑖 = ⌈𝑁
𝑖

𝑇𝑛
− 1⌉ × 𝑡𝑖𝑃𝑅𝑂𝐷1 + 𝑡

𝑖
𝐼𝐹𝑀 + 𝑡𝑖𝐶𝑂𝑀𝑃 (15)

𝐿𝑎𝑡2𝑖 = ⌈𝑁
𝑖

𝑇𝑛
− 1⌉ × 𝑡𝑖𝑃𝑅𝑂𝐷1 + 𝑡

𝑖
𝐼𝐹𝑀 + 𝑡𝑖𝑆𝑇𝑂𝑅𝐸 (16)

𝐿𝑎𝑡3𝑖 = (⌈𝑀
𝑖_𝑜𝑛
𝑇𝑚

⌉ × ⌈ 𝑅
𝑖

𝑇𝑟 𝑖
⌉ − 1) × 𝐿𝑎𝑡2𝑖 + 𝐿𝑎𝑡1𝑖 + 𝑡𝑖𝑂𝑈𝑇 + 𝑡𝑖𝑠𝑡𝑎𝑟𝑡 (17)

Weights need to be loaded when our accelerator processes the first image in the mini-batch. In
FP, 𝑡𝑠𝑡𝑎𝑟𝑡 can be neglected in weight transmission since the burst length equals the size of weights,
which means the addresses are continuous during the whole Conv layer. Therefore, the latency
of the proposed accelerator processing 𝑀𝑖_𝑜𝑛 channels of the first image can be formulated as
follows.

𝐿𝑎𝑡𝑏1𝑖 = ⌈𝑁
𝑖

𝑇𝑛
− 1⌉ × 𝑡𝑖𝑃𝑅𝑂𝐷2 + 𝑡

𝑖
𝐿𝑂𝐴𝐷 + 𝑡𝑖𝐶𝑂𝑀𝑃 (18)

𝐿𝑎𝑡𝑏2𝑖 = ⌈𝑁
𝑖

𝑇𝑛
− 1⌉ × 𝑡𝑖𝑃𝑅𝑂𝐷2 + 𝑡

𝑖
𝐿𝑂𝐴𝐷 + 𝑡𝑖𝑆𝑇𝑂𝑅𝐸 (19)

𝐿𝑎𝑡𝑏3𝑖 = ⌈𝑀
𝑖_𝑜𝑛
𝑇𝑚

⌉ × ⌈ 𝑅
𝑖

𝑇𝑟 𝑖
− 1⌉ × 𝐿𝑎𝑡2𝑖 + ⌈𝑀

𝑖_𝑜𝑛
𝑇𝑚

− 1⌉ × 𝐿𝑎𝑡𝑏2𝑖 + 𝐿𝑎𝑡𝑏1𝑖 + 𝑡𝑖𝑂𝑈𝑇 + 𝑡𝑖𝑠𝑡𝑎𝑟𝑡 (20)

The latency of our accelerator processing the whole Conv layer in FP is formulated in Eq. (21).

𝐿𝑎𝑡𝑖 = ⌈ 𝑀𝑖

𝑀𝑖_𝑜𝑛
⌉ × ((𝐵 − 1) × 𝐿𝑎𝑡3𝑖 + 𝐿𝑎𝑡𝑏3𝑖). (21)

In BP, the situation is similar to that in FP, except that the addresses of weights are discontinuous
after𝑀𝑖_𝑜𝑛 channels. The accelerator loads𝑀𝑖_𝑜𝑛×𝑇𝑛×𝐾𝑖 ×𝐾𝑖 weights together when processing

, Vol. 1, No. 1, Article . Publication date: February 2022.

22 Tang and Hu, et al.

the first tile of the first image, so it costs 𝑡𝑖
𝑊 𝐸𝐼

= ⌈𝑀
𝑖_𝑜𝑛×𝑇𝑛
𝑝

⌉ × 𝐾𝑖 × 𝐾𝑖 + 𝑡𝑖𝑠𝑡𝑎𝑟𝑡 clock cycles. 𝐿𝑎𝑡1𝑖 ,

𝐿𝑎𝑡2𝑖 , 𝐿𝑎𝑡3𝑖 , 𝐿𝑎𝑡2𝑖 , 𝐿𝑎𝑡𝑏1𝑖 , and 𝐿𝑎𝑡𝑏2𝑖 remain unchanged, while 𝐿𝑎𝑡𝑏3𝑖 = (⌈𝑀
𝑖_𝑜𝑛
𝑇𝑚

⌉ × ⌈ 𝑅𝑖
𝑇𝑟 𝑖

⌉ − 1) ×
𝐿𝑎𝑡2𝑖 + 𝐿𝑎𝑡𝑏1𝑖 + 𝑡𝑖

𝑂𝑈𝑇
+ 𝑡𝑖𝑠𝑡𝑎𝑟𝑡 .

In WU, loss features are loaded from the off-chip memory to the OFM buffer. Transmitting a tile
of loss features costs 𝑡𝑖

𝑂𝐹𝑀
= 𝑡𝑖𝑠𝑡𝑎𝑟𝑡 +𝑇𝑟 𝑖 ×𝑇𝑐𝑖 × ⌈𝑇𝑚

𝑝
⌉ clock cycles. Weights are updated after all

the gradients of the batch are accumulated, so transmitting the updated weights costs the same
time as loading weights, which means 𝑡𝑖

𝑂𝑈𝑇
= 𝑡𝑖

𝑊 𝐸𝐼
. Same with FP, 𝑡𝑠𝑡𝑎𝑟𝑡 can be neglected when

calculating 𝑡𝑖
𝑊 𝐸𝐼

. We define 𝑡𝑖
𝐿𝑂𝐴𝐷

= max
{
𝑡𝑖
𝐼𝐹𝑀

, 𝑡𝑖
𝑂𝐹𝑀

}
, 𝑡𝑖
𝑃𝑅𝑂𝐷1 = max

{
𝑡𝑖
𝐿𝑂𝐴𝐷

, 𝑡𝑖
𝐶𝑂𝑀𝑃

}
, 𝑡𝑖
𝑃𝑅𝑂𝐷2 =

max
{
𝑡𝑖
𝐼𝐹𝑀

, 𝑡𝑖
𝐶𝑂𝑀𝑃

}
, and 𝑡𝑖

𝑆𝑇𝑂𝑅𝐸
= max

{
𝑡𝑖
𝐶𝑂𝑀𝑃

, 𝑡𝑖
𝑂𝑈𝑇

}
. The latency of WU of the 𝑖th Conv layer is

formulated as follows.

𝐿𝑎𝑡1𝑖 = ⌈ 𝑅
𝑖

𝑇𝑟 𝑖
− 1⌉ × 𝑡𝑖𝑃𝑅𝑂𝐷1 + 𝑡

𝑖
𝐿𝑂𝐴𝐷 + 𝑡𝑖𝐶𝑂𝑀𝑃 (22)

𝐿𝑎𝑡𝑏1𝑖 = ⌈ 𝑅
𝑖

𝑇𝑟 𝑖
− 1⌉ × 𝑡𝑖𝑃𝑅𝑂𝐷1 + 𝑡

𝑖
𝐿𝑂𝐴𝐷 + 𝑡𝑖𝑆𝑇𝑂𝑅𝐸 (23)

𝐿𝑎𝑡𝑖 = (((𝐵−1) × ⌈𝑀
𝑖_𝑜𝑛
𝑇𝑚

⌉ × ⌈𝑁
𝑖

𝑇𝑛
⌉ +1) ×𝐿𝑎𝑡1𝑖 + (⌈𝑀

𝑖_𝑜𝑛
𝑇𝑚

⌉ × ⌈𝑁
𝑖

𝑇𝑛
⌉ −1) ×𝐿𝑎𝑡𝑏1𝑖 +𝑡𝑖𝑂𝑈𝑇) × ⌈ 𝑀𝑖

𝑀𝑖_𝑜𝑛
⌉

(24)
As illustrated in Fig. 15 (c), when 𝑅𝑖 ≤ 𝑇𝑟 𝑖 , the output features do not need to be repeatedly

loaded. Under this circumstance, the latency of WU is formulated as follows.

𝐿𝑎𝑡1𝑖 = ⌈ 𝑁
𝑖

𝑇𝑛𝑖
− 1⌉ × 𝑡𝑖𝑃𝑅𝑂𝐷2 + 𝑡

𝑖
𝐿𝑂𝐴𝐷 + 𝑡𝑖𝐶𝑂𝑀𝑃 (25)

𝐿𝑎𝑡𝑏1𝑖 = ⌈ 𝑁
𝑖

𝑇𝑛𝑖
− 1⌉ × (𝑡𝑖𝑃𝑅𝑂𝐷2 + 𝑡

𝑖
𝑂𝑈𝑇) + 𝑡

𝑖
𝐿𝑂𝐴𝐷 + 𝑡𝑖𝐶𝑂𝑀𝑃 + 𝑡

𝑖
𝑂𝑈𝑇 (26)

𝐿𝑎𝑡𝑖 = ⌈ 𝑀𝑖

𝑀𝑖_𝑜𝑛
⌉ × ⌈𝑀

𝑖_𝑜𝑛
𝑇𝑚

⌉ × ((𝐵 − 1) × 𝐿𝑎𝑡1𝑖 + 𝐿𝑎𝑡1𝑏𝑖) (27)

5.2 Resource Model
For Conv layers, the on-chip resources that need to be considered for Conv layers include DSPs and
BRAMs. For DSPs, 𝑇𝑚 ×𝑇𝑛 MAC operations are conducted in parallel. Therefore, the computation
constraint is shown in Eq. (28), where 𝑞 is the factor depending on data types. On Xilinx FPGAs,
each MAC utilizes 5 DSPs for 32-bit floating-point, so 𝑞 = 5 in the proposed design. In terms of
on-chip memory, we select double buffers to load and store data and conduct Conv operations in
parallel. The number of BRAM banks for each IFM buffer and OFM buffer are shown in Eq. (29)
and Eq. (30) respectively. The notation BITs is the data bit-width adopted in the design. For the
Weight buffer, we place𝑀𝑖_𝑜𝑛×𝑁 𝑖 kernels together for weight reuse. These data are scattered in
double buffers. The number of BRAM banks for one Weight buffer is shown in Eq. (31). The on-chip
memory constraint is shown in Eq. (32).

𝐷𝐶𝑜𝑛𝑣 = 𝑞 ×𝑇𝑚 ×𝑇𝑛 < 𝑡𝑜𝑡𝑎𝑙 𝐷𝑆𝑃𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 (28)

𝐵𝐼𝐹𝑀 = max
𝑖
𝐵𝑖𝐼𝐹𝑀 = max

𝑖

{
𝑇𝑛 × ⌈ ((𝑇𝑟

𝑖 − 1) × 𝑆𝑖 + 𝐾𝑖) × ((𝑇𝑐𝑖 − 1) × 𝑆𝑖 + 𝐾𝑖) × 𝐵𝐼𝑇𝑠
𝑆𝑖𝑧𝑒 𝑜 𝑓 𝑎 𝐵𝑅𝐴𝑀 𝐵𝑎𝑛𝑘

⌉
}

(29)

𝐵𝑂𝐹𝑀 = max
𝑖
𝐵𝑖𝑂𝐹𝑀 = max

𝑖

{
𝑇𝑚 × ⌈ 𝑇𝑟 𝑖 ×𝑇𝑐𝑖 × 𝐵𝐼𝑇𝑠

𝑆𝑖𝑧𝑒 𝑜 𝑓 𝑎 𝐵𝑅𝐴𝑀 𝐵𝑎𝑛𝑘
⌉
}

(30)

𝐵𝑊𝐸𝐼 = max
𝑖
𝐵𝑖𝑊 𝐸𝐼 = max

𝑖

{
𝑇𝑚 ×𝑇𝑛 × ⌈

𝐾𝑖 × 𝐾𝑖 × ⌈ 𝑁 𝑖

2×𝑇𝑛 ⌉ × ⌈𝑀
𝑖_𝑜𝑛
𝑇𝑚

⌉ × 𝐵𝐼𝑇𝑠
𝑆𝑖𝑧𝑒 𝑜 𝑓 𝑎 𝐵𝑅𝐴𝑀 𝐵𝑎𝑛𝑘

⌉
}

(31)

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 23

𝐵𝐶𝑜𝑛𝑣 = 2 × (𝐵𝐼𝐹𝑀 + 𝐵𝑂𝐹𝑀 + 𝐵𝑊𝐸𝐼) < 𝑡𝑜𝑡𝑎𝑙 𝐵𝑅𝐴𝑀𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 (32)

It should be noted that in realistic end-to-end system design, the boundary of 𝐷𝐶𝑜𝑛𝑣 and 𝐵𝐶𝑜𝑛𝑣
should be slightly smaller than the total DSPs and BRAMs numbers. It is because except for the
MAC operations, several operations also take up a small fraction of on-chip resources. For example,
some non-Conv layers (e.g. maximum pooling, average pooling, ReLU, etc.), which are inevitable in
practical end-to-end training processes need extra DSPs to make comparisons and extra BRAMs to
buffer the indexes. Besides, some neural networks have irregular weights kernel shapes for different
Conv layers. Adding an extra buffer to fetch a tile of weights from the on-chip Weight buffer to the
Conv Kernel can relieve the routing congestion in realistic FPGA implementation. Besides, since
FP, BP, WU have different loop orders, extra DSPs are utilized to calculate BRAM addresses under
different layer parameters. This address calculation is much more complex than that in inference.
Therefore, in practical design, the estimated boundary of the on-chip resources should be set lower
than the available resources empirically. The details will be further explained in Section 5.3.

5.3 Computation and Memory Resources Scheduling Tool
Based on the above-mentioned model, we build a computation and memory resources scheduling
tool for different devices and different networks. Algorithm 1 shows the framework of our scheduling
tool. As mentioned in Section 5.2, 𝐷𝐶𝑜𝑛𝑣 and 𝐵𝐶𝑜𝑛𝑣 are lower than the total DSPs and BRAMs
numbers in realistic FPGA implementation. Therefore, it is wise to set a boundary for 𝐷𝐶𝑜𝑛𝑣 and
𝐵𝐶𝑜𝑛𝑣 that is lower than the available on-chip resources. According to the experimental results
in Section 6, assigning 80% of DSPs and 75% BRAMs to the estimated boundary for 𝐷𝐶𝑜𝑛𝑣 and
𝐵𝐶𝑜𝑛𝑣 should be enough. Then we determine 𝑇𝑚 and 𝑇𝑛 according to the DSPs number. Then we
choose the optimal 𝑇𝑟 𝑖 , 𝑇𝑐𝑖 , and𝑀𝑖_𝑜𝑛 for each layer according to Eq. (15) - (27). Specifically, in
steps 3 and 4, we find the lower bound for 𝐵𝐼𝐹𝑀 and 𝐵𝑂𝐹𝑀 by assuming that the buffers can only
hold one row for the largest feature maps. Then, from step 5 to step 12, we try to assign resources
for Weight buffers so that they can hold as many weights for each layer as possible. After we
determine 𝐵𝑊𝐸𝐼 and𝑀𝑖_𝑜𝑛 for each layer, we re-assign IFM and OFM buffers under the constraints
shown in Eq. (29), (30), and (32), and find the optimal 𝑇𝑟 𝑖 and 𝑇𝑐𝑖 for each layer. After 𝑇𝑚, 𝑇𝑛, and
[𝑇𝑟 𝑖 ,𝑇𝑐𝑖 , 𝑀𝑖_𝑜𝑛]1≤𝑖≤𝑛 are determined, we can calculate the DMA start addresses for each layer
off-line based on the data reshaping approach in Section 4.

6 EXPERIMENTS
The proposedwork is evaluated on edge-level FPGAs PYNQ-Z1 and ZCU102withworking frequency
at 100MHz. The accelerator is designed with Vivado HLS, which generates IP core from C language.
The obtained IP cores are connected, synthesized, and implemented in Vivado (v2019.1). The Vivado
Project Summary reports resource utilization and power after implementation. Finally, we employ
Xilinx SDK to program SoC on PYNQ-Z1 and ZCU102 to achieve end-to-end CNN training.

6.1 Effectiveness of The Data Reshaping Approach
In this section, we need to validate the effectiveness of the proposed data reshaping approach
([𝑇𝑚,𝑇𝑛] = [16, 16]). We test the Conv layers of the AlexNet on ZCU-102. We select the batch size
𝐵 as 4 and the DMA stream width as 128 bits. We adopt the results using the BCHW data layout
and the results using the BHWC data layout as baselines ([𝑇𝑚𝐵𝑎𝑠𝑒 ,𝑇𝑛𝐵𝑎𝑠𝑒] = [32, 8]). The BCHW
pattern does not involve any optimization. For the BHWC pattern, 𝑁 /𝑇𝑛 tiles of input features and
𝑀/𝑇𝑚 tiles of the output features are buffered in the on-chip BRAM for data reuse based on the
loop order in the inference phase. Weights are pre-allocated tile by tile based on the data flow in
inference. The comparisons are shown in Tables 3, 4, and 5.

, Vol. 1, No. 1, Article . Publication date: February 2022.

24 Tang and Hu, et al.

Algorithm 1 Computation and Memory Resources Scheduling
Input:

CNN layers parameters [𝑀𝑖 , 𝑁 𝑖 , 𝑅𝑖 ,𝐶𝑖 , 𝐾𝑖 , 𝐾𝑖 , 𝑆𝑖]1≤𝑖≤𝑛 , batch size 𝐵, data type parameter 𝑞,
DMA stream width, total DSPs number, total BRAMs number;

Output:
𝑇𝑚, 𝑇𝑛, [𝑇𝑟 𝑖 ,𝑇𝑐𝑖 , 𝑀𝑖_𝑜𝑛]1≤𝑖≤𝑛 , 𝐵𝐼𝐹𝑀 , 𝐵𝑂𝐹𝑀 , 𝐵𝑊𝐸𝐼 ;

1: Estimate the boundary for 𝐷𝐶𝑜𝑛𝑣 and 𝐵𝐶𝑜𝑛𝑣 ;
2: Assign 𝑇𝑚, 𝑇𝑛 according to Eq. (28), while 𝑇𝑚 = 𝑇𝑛;
3: Find 𝑘 = argmax

𝑖

{
𝑅𝑖 ×𝐶𝑖

}
;

4: Determine the lower bound for 𝐵𝐼𝐹𝑀 and 𝐵𝑂𝐹𝑀 , i.e. inf 𝐵𝐼𝐹𝑀 = 𝐵𝑘
𝐼𝐹𝑀

, inf 𝐵𝑂𝐹𝑀 = 𝐵𝑘
𝑂𝐹𝑀

, when
𝑇𝑐𝑘 = 𝐶𝑘 , 𝑇𝑟𝑘 = 1;

5: for 𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖 + + do
6: Calculate 𝐵𝑖

𝑊 𝐸𝐼
based on (31) when𝑀𝑖_𝑜𝑛 = 𝑀𝑖 , and initialize 𝑙 = 1;

7: if 2 × (inf 𝐵𝐼𝐹𝑀 + inf 𝐵𝑂𝐹𝑀 + 𝐵𝑖
𝑊 𝐸𝐼

) ≥ 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐵𝐶𝑜𝑛𝑣 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 then
8: l++;
9: Find the minimal𝑀𝑖_𝑜𝑛 satisfying 𝑀𝑖

𝑙
≤ 𝑀𝑖_𝑜𝑛,𝑀𝑖_𝑜𝑛 mod 𝑇𝑚 = 0, and go to step 7;

10: end if
11: end for
12: Calculate 𝐵𝑊𝐸𝐼 and𝑀𝑖_𝑜𝑛 for each layer based on Eq. (31);
13: for 𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖 + + do
14: Set 𝑇𝑐𝑖 = 𝐶𝑖 , and select all 𝑇𝑟 𝑖𝑚 satisfying Eq. (29), (30), and (32), where 1 ≤ 𝑇𝑟 𝑖𝑚 ≤ 𝑅𝑖 ;
15: Determine 𝑇𝑟 𝑖 = argmin

𝑚

𝐿𝑎𝑡𝑖𝑚 based on Eq. (15)- (27);

16: end for
17: Calculate 𝐵𝐼𝐹𝑀 and 𝐵𝑂𝐹𝑀 based on Eq. (29), (30);

As mentioned in Section 2.3, our goal is to design a general accelerator supporting end-to-end
training with both dense and small networks without sacrificing precision, so it is necessary to
appropriately manage external memory access and allocate on-chip buffers. When applying loop
tiling, the tiling schemes involved in the accelerator design break the continuity of data addresses
in DRAM and thus reduce the transmission efficiency between on-chip buffer and off-chip DRAM.
Table 3 shows the experimental results of our baseline which is a bare accelerator with the unified
channel-level parallelism-based convolution kernel. It does not involve any optimizations related to
the off-chip DRAM access policy. As illustrated in Section 4, the burst length before data reshaping
is much smaller than the size of a tile. To ensure that the accelerator conducts MAC operations with
correct features and weights matrices in realistic end-to-end training, data should be reallocated
before being transmitted from DRAM to the on-chip accelerator. Therefore, our baseline includes
the on-chip acceleration time and off-chip reallocation time. After applying data reshaping, data
can be fetched from DRAM to the accelerator directly without extra reallocation.
For Conv 1, the number of input channels is only 3, 𝑇𝑛𝐵𝑎𝑠𝑒 = 8, and 𝑇𝑛 = 16. Therefore, 5/8

computation resources remain idle for the baseline, while 13/16 computation resources for our
proposed design remain idle. That’s why the acceleration time for the baseline is shorter than the
latency in our proposed design. However, features should be reallocated before entering the next
layer (for FP) or after being generated from the prior layer (for WU). As shown in Table 3, the
reallocation time is much longer than the acceleration time. For Conv 2 to Conv 5, 𝑇𝑟 𝑖 ≥ 𝑅𝑖 and
𝑇𝑐𝑖 ≥ 𝐶𝑖 , so features do not need to be reallocated between adjacent layers, but weights still need
to be reallocated before entering the Conv layer (for FP and BP) or updated from the Conv layer

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 25

Table 3. Experimental Results of The Baseline with The BCHW Data Layout

AlexNet Process [𝑇𝑟 𝑖
𝐵𝑎𝑠𝑒

,𝑇𝑐𝑖
𝐵𝑎𝑠𝑒

] Acceleration
(cycles)

Reallocation
(cycles)

Total
(cycles)

Conv 1 FP
BP
WU

[11, 11]
N/A

[11, 11]

6,732,837
N/A

4,496,029

151,846,336
N/A

152,110,235

158,579,173
N/A

156,606,264
Conv 2 FP

BP
WU

[27, 27]
[27, 27]
[27, 27]

7,105,292
7,066,705
9,258,823

69,743,160
68,271,764
57,303,397

76,848,452
75,338,469
66,562,220

Conv 3 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

2,410,532
2,401,320
4,448,898

101,062,954
98,646,892
83,566,193

103,473,486
101,048,212
88,015,091

Conv 4 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

3,596,425
3,596,400
6,669,238

150,012,382
149,621,995
126,214,297

153,608,807
153,218,395
132,883,535

Conv 5 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

2,401,212
2,410,637
4,448,751

102,632,162
99,408,011
84,518,969

105,033,374
101,818,648
88,967,720

Total 67,043,099 1,494,958,747 1,562,001,846

Table 4. Experimental Results of The Baseline with The BHWC Data Layout and Data Reuse

AlexNet Process [𝑇𝑟 𝑖
𝐵𝑎𝑠𝑒

,𝑇𝑐𝑖
𝐵𝑎𝑠𝑒

] Acceleration
(cycles)

Reallocation
(cycles)

Total
(cycles)

Conv 1 FP
BP
WU

[11, 11]
N/A

[11, 11]

8,094,251
N/A

4,495,794

N/A
N/A

161,048,775

8,094,251
N/A

165,544,569
Conv 2 FP

BP
WU

[27, 27]
[27, 27]
[27, 27]

7,383,996
7,382,504
7,848,249

N/A
68,200,715

N/A

7,383,996
75,583,219
7,848,249

Conv 3 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

2,531,247
2,529,216
3,345,845

N/A
100,372,954

N/A

2,531,247
102,902,170
3,345,845

Conv 4 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

3,745,972
3,745,922
4,999,576

N/A
148,657,460

N/A

3,745,972
152,403,382
4,999,576

Conv 5 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

2,529,173
2,531,318
3,364,408

N/A
100,586,051

N/A

2,529,173
103,117,369
3,364,408

Total 64,527,471 578,865,955 643,393,426

(for WU). To sum up, the total acceleration time for the baseline is close to that for our proposed
design under the same degree of parallelism (𝑇𝑚𝐵𝑎𝑠𝑒 ×𝑇𝑛𝐵𝑎𝑠𝑒 = 𝑇𝑚 ×𝑇𝑛) and tile size boundary of
features (max

𝑖
𝑇𝑟 𝑖

𝐵𝑎𝑠𝑒
×max

𝑖
𝑇𝑐𝑖

𝐵𝑎𝑠𝑒
= max

𝑖
𝑇𝑟 𝑖 ×max

𝑖
𝑇𝑐𝑖), but the extra reallocation time in realistic

, Vol. 1, No. 1, Article . Publication date: February 2022.

26 Tang and Hu, et al.

Table 5. Experimental Results Validating Data Reshaping Approach

AlexNet Process [𝑇𝑟 𝑖 ,𝑇𝑐𝑖] Without Weight Reuse
(cycles)

After Weight Reuse
(cycles)

Conv 1 FP
BP
WU

[2, 55]
N/A
[2, 55]

11,498,545
N/A

9,598,744

11,419,835
N/A

9,299,086
Conv 2 FP

BP
WU

[27, 27]
[27, 27]
[27, 27]

7,283,187
7,128,663
7,910,148

7,312,794
7,146,578
7,430,533

Conv 3 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

2,491,672
2,461,694
3,402,418

2,510,310
2,671,392
2,706,696

Conv 4 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

3,689,930
3,688,961
5,053,485

3,708,934
3,972,757
4,014,651

Conv 5 FP
BP
WU

[13, 13]
[13, 13]
[13, 13]

2,462,778
2,490,897
3,373,373

2,475,263
2,686,910
2,677,726

Total 72,534,495 70,033,465

end-to-end training is even longer than the acceleration time. Therefore, accelerating without
considering the actual data layout in DRAM between adjacent layers is inefficient in realistic
end-to-end training.
The baseline in Table 4 uses the BHWC data layout and applies data reuse to alleviate the

discontinuous memory access. As illustrated in Figs. 9-11, features and weights are continuous in a
long burst length in FP, so data are not reallocated during the Conv layers. Such an approach is
efficient in the inference phase. In BP, although the memory access pattern of features is the same
as that in FP, the weights transmission patterns are quite different. As shown in Fig. 11 (c), the
burst length is much less than the size of a tile, so weights should be reallocated in each Conv layer.
The extra reallocation time is much longer than the acceleration time. In WU, the on-chip buffer
can hold all the features for Conv 2-Conv 5 layers, so it is practical to load all the features to the
FPGA chip without extra reallocation. However, in the Conv 1 layer, the on-chip memory cannot
hold all the features. Even though the input features can be pre-allocated before entering into the
neural network since they serve as the inputs for the whole process, the output features which are
calculated in BP cannot be allocated ahead of time. Therefore, the Conv 1 layer also requires extra
reallocation time in WU, which is quite inefficient.

As mentioned in Section 4, we optimize the DRAM access incrementally.We first achieve intra-tile
continuousmemory allocation by reorganizing the DRAM layouts for input features, output features,
and weights. Then we re-schedule the loop order to achieve inter-tile continuous memory allocation.
These two parts are combined to improve memory access continuity together when the batch size
is 1. Considering the training process involves convolution operations among a mini-batch, we
further propose and apply a weight reuse strategy based on the proposed data layout. Table 5 shows
the experimental results of the data reshaping approach without weight reuse and after weight
reuse. The batch size is also 4, and the latency for FP/BP without and after weight reuse is nearly
the same. It is because, in FP and BP, input features and weights are transmitted together. As can be

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 27

seen from Section 5, When ⌈𝑇𝑛
𝑝
⌉ × ((𝑇𝑟 𝑖 − 1) ×𝑆𝑖 +𝐾𝑖) × ((𝑇𝑐𝑖 − 1) ×𝑆𝑖 +𝐾𝑖) > ⌈𝑇𝑚×𝑇𝑛

𝑝
⌉ ×𝐾𝑖 ×𝐾𝑖 ,

𝑡𝑖
𝐼𝐹𝑀

> 𝑡𝑖
𝑊 𝐸𝐼

. Therefore, reusing the weights may not reduce the latency as a whole. However, in
WU, the latency with weight reuse is apparently less than that without reuse. It is because the
transmission of weights happens during storing the results in WU, which cannot be totally covered
by 𝑡𝑖

𝐶𝑂𝑀𝑃
(For example, in the last iteration of the loop in line 2 from Fig, 15 (b) and the loop in

line 3 from Fig, 15 (c)). As a whole, reusing weights can reduce the latency of the training phase of
the whole network. Fig. 18 shows the latency without and with weight reuse when the batch size
ranges from 2 to 128. It shows that when the batch size increases, applying the reuse strategy has
more apparent advantages than only achieving intra-tile and inter-tile data access continuity.

0

5

10

15

20

25

30

2 4 8 16 32 64 128

Without Weight Reuse

After Weight Reuse

La
te

n
cy

 p
er

 b
at

ch
 (

s)

Batch size

Fig. 18. Experimental Results of The Data Reshaping Approach without Weight Reuse and after Weight Reuse

6.2 Accuracy of The Performance Model
After displaying the effectiveness of the data reshaping approach, we use the AlexNet to validate the
accuracy of the performance model. Our scheduling tool first determines optimal tiling parameters
which are shown in Table 6. Then the latency is estimated by our model and tested on-board
separately. As shown in Table 6, the estimated results are close to the tested results. The results
verify the accuracy of the performance model.

6.3 CNN Training Performance
In this section, we conduct end-to-end evaluations on different neural networks. We first com-
pare our design with the automatic compiler-based FPGA accelerator [22]. It adopted a combi-
nation of channel-level parallelism and feature map-level parallelism with the unrolling factors
for columns, rows, and output channels. It initially stored weights tile by tile in a transposable
format in DRAM and read the entire weights of a Conv layer from DRAM to their on-chip
buffer. The baseline implemented a ‘1X’ CNN on the CIFAR-10 dataset with the structure as
Conv 1 ([𝑀𝑖 , 𝑁 𝑖 , 𝑅𝑖 ,𝐶𝑖 , 𝐾𝑖 , 𝑆𝑖] = [16, 3, 32, 32, 3, 1]) - Conv 2 ([16, 16, 32, 32, 3, 1]) - Pooling - Conv
3 ([32, 16, 16, 16, 3, 1]) - Conv 4 ([32, 32, 16, 16, 3, 1]) - Pooling - Conv 5 ([64, 32, 8, 8, 3, 1]) - Conv 6
([64, 64, 8, 8, 3, 1])- Pooling - FC ([10, 1024, 1, 1, 1, 1]), using 16-bit fixed-point precision. We test the
same network on both PYNQ-Z1 and ZCU102 boards. The DMA stream bandwidth is 128 bits for
ZCU102 and 32 bits for PYNQ-Z1. Our design focuses on implementing on-device FPGAs without
sacrificing precision, so 32-bit floating-point is adopted. Vivado utilization report provides the
utilization of BRAMs, DSPs, and the power report provides the total on-chip power. We measure
the latency of training the whole batch with the batch size of 128. Then we calculate the latency
per image and the throughput.

, Vol. 1, No. 1, Article . Publication date: February 2022.

28 Tang and Hu, et al.

Table 6. Experimental Results Validating The Performance Model

AlexNet Process [𝑇𝑟 𝑖 ,𝑇𝑐𝑖 , 𝑀𝑖_𝑜𝑛] Our Model (cycles) On-board (cycles) Deviation

Conv 1 FP
BP
WU

[2, 55, 96]
N/A

[2, 55, 96]

11,504,640
N/A

9,043,384

11,419,835
N/A

9,299,086

0.74%
N/A
2.75%

Conv 2 FP
BP
WU

[27, 27, 112]
[27, 27, 48]
[27, 27, 112]

7,309,808
7,126,784
7,423,616

7,312,794
7,146,578
7,430,533

0.04%
0.28%
0.09%

Conv 3 FP
BP
WU

[13, 13, 112]
[13, 13, 112]
[13, 13, 112]

2,478,272
2,566,987
2,682,240

2,510,310
2,671,392
2,706,696

1.28%
3.91%
0.90%

Conv 4 FP
BP
WU

[13, 13, 112]
[13, 13, 112]
[13, 13, 112]

3,646,400
3,861,220
3,960,960

3,708,934
3,972,757
4,014,651

1.69%
2.81%
1.34%

Conv 5 FP
BP
WU

[13, 13, 112]
[13, 13, 112]
[13, 13, 112]

2,432,368
2,618,372
2,640,640

2,475,263
2,686,910
2,677,726

1.73%
2.55%
1.38%

Total 69,295,691 70,033,465 1.05%

Table 7 shows the comparison results between the baseline [22] and our design in terms of
resource utilization, throughput, energy efficiency, etc. The Stratix 10 GX adopted in the baseline
is an advanced FPGA board developed by Intel. It is unfair to compare the throughput directly
for different devices. However, energy efficiency is an important metric to judge the performance
of edge devices, thus we use energy efficiency as the metric for different designs on different
FPGAs. We nominate the throughput and efficiency by multiplying the bit width of the data type.
Although using the fixed-point data type is much more DSP-efficient and power-efficient than
adopting floating-point under the same bit width, our nominal efficiency still can outperform
that of the baseline. The reason is that the baseline has more data transmission latency especially
for WU where accessing weight gradients, weights, and storing back the updated values leads to
DRAM access latency. 51% percent of the overall latency in one iteration of a batch is consumed in
WU [22]. Fig. 19 shows the latency breakdown of our design. The total latency for each training
process is calculated by summarizing latency for each Conv layer, and the latency for MAC is the
theoretical computation latency calculated by accumulating 𝑡𝑖

𝐶𝑂𝑀𝑃
for each Conv layer based on the

performance model. Since the ’1X’ CNN is a relatively small network, the number of loops is also
small. According to the performance model, although double buffers are adopted, the computation
and data transmission is conducted in sequential in the first and last iteration of the loop, while
they are in parallel for the middle iterations. Therefore, when the number of loops is small, the
proposed design also includes much data transmission latency for FP, BP, WU. However, other
optimizations like loop order scheduling and weight reuse in a mini-batch reduce the number of
off-chip memory access. Therefore, our computation latency is still much more than 50% percent of
the total latency in FP, BP, or WU, which takes up a larger proportion compared with the baseline.

Besides, the baseline stored the entire weights of a Conv layer from DRAM to the on-chip buffer.
Their design cannot support denser networks where the on-chip buffer cannot hold the entire
weights of each Conv layer. However, our design does not have such restrictions and can support
many larger networks.

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 29

Table 7. Experimental Results on the ’1X’ CNN

Baseline [22] Ours Ours

Platform Stratix 10 GX PYNQ-Z1 ZCU102
Frequency (MHz) 240 100 100
DSP Utilization 1699 (30%) 212 (96.4%) 1315 (52.2%)

𝐷𝐶𝑜𝑛𝑣 (𝐷𝐶𝑜𝑛𝑣/𝑈𝑠𝑒𝑑 𝐷𝑆𝑃𝑠) 180 (84.9%) 1280 (97.3%)
BRAM Utillization 10.6 (4.4%) 123 (87.9%) 324 (35.5%)

𝐵𝐶𝑜𝑛𝑣(𝐵𝐶𝑜𝑛𝑣/𝑈𝑠𝑒𝑑 𝐵𝑅𝐴𝑀𝑠) 108 (87.8%) 288 (88.9%)
Power (W) 20.6 1.85 (11.14X) 6.89 (2.99X)
Data Type Fixed 16 FP 32 FP 32
Batch Size 40 128 128

Latency/Image (ms) 0.36 14.32 2.08
Throughput 163 GOPS 4.08 GFLOPS 28.15 GFLOPS

Nominal Throughput
(GOPS× precision) 2608 130.56 900.8

Energy Efficiency 7.90 GOPS/W 2.21 GFLOPS/W 4.09 GFLOPS/W
Nominal Effciency

(GOPS× precision/W) 126.4 70.72 130.88 (1.04X)

0 2000000 4000000 6000000 8000000 10000000

FP

BP

WU

Latency (ns)

Tr
ai

n
in

g
P

h
as

e

MAC

Others

Fig. 19. Latency breakdown of CIFAR-10 ’1X’ CNN for FP, BP and WU when the batch size is 128.

In Table 7, the 𝐷𝐶𝑜𝑛𝑣 and 𝐵𝐶𝑜𝑛𝑣 are the DSPs and BRAMs numbers for the Conv layer estimated
by our resource model. The percentage shows the ratio between the estimated resources and actual
resources used in the whole end-to-end training. As mentioned in Section 5.2 and Section 5.3, 𝐷𝐶𝑜𝑛𝑣
and 𝐵𝐶𝑜𝑛𝑣 are lower than the DSPs and BRAMs numbers used in the realistic end-to-end training
process. For ’1X’ CNN, the extra on-chip resources mainly function for maximum pooling layers.
Besides, a few DSPs are utilized to calculate BRAM addresses of features and weights.

To validate the correctness of our design, we also implement the whole training phase of the ’1X’
CNN on ZCU102 and compare the training result with that on GPU. We load the Cifar-10 dataset
from the secure digital (SD) card to the DRAM and run 50 epochs. The batch size is also 128, and
the learning rate is 0.008. We use the V-100 GPU from AWS to validate the training process. The
loss curves are shown in Fig. 20. Since we adopt full precision and have not changed the training
algorithm, the training result should be nearly the same as that on GPU. As can be seen in Fig. 20,

, Vol. 1, No. 1, Article . Publication date: February 2022.

30 Tang and Hu, et al.

the two curves are really close to each other. We also test the trained model on the test dataset. The
test accuracy is 65.22% running on GPU and 64.82% running on FPGA.

Fig. 20. The loss curves during the training phase.

Most state-of-art works [22, 23] mainly implemented their design on Cifar-10 dataset whose
input image is really small (3 × 32 × 32) compared to real-world on-device learning scenarios. To
verify that our accelerator with the data reshaping approach can support larger networks with
larger feature sizes, we test our design on AlexNet and Vgg-16 for ImageNet whose input image
parameters are 3 × 227 × 227 and 3 × 224 × 224 respectively.

0

5

10

15

20

25

31.5

32

32.5

33

33.5

34

34.5

35

2 4 8 16 32 64 128

Latency

Throughput

Th
ro

u
gh

p
u

t
(G

FL
O

P
S)

La
te

n
cy

 p
e

r
b

at
ch

 (
s)

Batch size
(a)

(b) (c)

0

5

10

15

20

25

30

35

46.2

46.3

46.4

46.5

46.6

46.7

46.8

46.9

47

47.1

2 4 8 16

Latency

Throughput

Th
ro

u
gh

p
u

t
(G

FL
O

P
S)

La
te

n
cy

 p
e

r
b

at
ch

 (
s)

Batch size

0

5

10

15

20

39.6

39.7

39.8

39.9

40

40.1

40.2

2 4 8

Latency

Throughput

Th
ro

u
gh

p
u

t
(G

FL
O

P
S)

La
te

n
cy

 p
e

r
b

at
ch

 (
s)

Batch size

Fig. 21. Experimental Results TrainingDifferent CNNs. (a) Throughput and Latency of AlexNet, (b) Throughput
and Latency of Vgg-16 without BN layers, (c) Throughput and Latency of Vgg-16 with BN layers

The data reshaping approach enables our accelerator to support end-to-end training with the
following situations: (1) when the feature map size of a layer increases and the on-chip memory

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 31

Table 8. Experimental Results on AlexNet and Vgg-16

Network AlexNet Vgg-16 without BN Vgg-16 with BN

DSP Utilization 1513 (60.0%) 1508 (59.8%) 1680 (66.7%)
𝐷𝐶𝑜𝑛𝑣 (𝐷𝐶𝑜𝑛𝑣/𝑈𝑠𝑒𝑑 𝐷𝑆𝑃𝑠) 1280 (84.6%) 1280 (84.9%) 1280 (76.2%)

BRAM Utillization 857 (94.0%) 787 (86.3%) 812 (89.0%)
𝐵𝐶𝑜𝑛𝑣 (𝐵𝐶𝑜𝑛𝑣/𝑈𝑠𝑒𝑑 𝐵𝑅𝐴𝑀𝑠) 672 (78.4%) 672 (85.4%) 672 (82.8%)

Power (W) 7.736 7.712 8.208
Batch Size 128 16 8

Throughput (GFLOPS) 34.52 46.99 40.08
Efficiency (GFLOPS/W) 4.46 6.09 4.88

is not big enough to hold all the feature maps of the layer, and (2) when the number of channels
increases and the weights buffer cannot hold all the weights of a layer. For AlexNet, its convolution
kernel size ranges from 11×11 to 1×1 and feature map size ranges from 227×227 to 1×1, which
covers the above-mentioned situations. Besides, the stride of the first Conv layer of AlexNet is 4.
Implementing Conv layers with different stride sizes are more complex than only verifying the
design on CNNs where the stride remains 1. Therefore, AlexNet is ideal to verify that our design
can support DNNs with a larger feature map size and larger weight density and can deal with
different Conv layers shapes. Fig. 21 (a) shows the throughput and latency of a batch for training the
AlexNet model with batch size ranging from 2 to 128. When the batch size is 128, the throughput
reaches 34.52 GFLOPS. Because of weight reuse, the weights transmission bottleneck is ameliorated
when the batch size increases, so the throughput in larger batch size is slightly higher than that for
small batch size. However, unlike batch-level parallelism-based designs [23] where the performance
varies a lot under different batch sizes, the performance of our channel-level parallelism-based
design is less affected by the batch size. As shown in Fig. 21, the throughput when the batch size is
2 is still above 32 GFLOPS.

We also test our design on Vgg-16 which has denser parameters, and the performance is shown
in Fig. 21 (b). Due to the DRAM memory size limitation of ZCU102, the maximum batch size is 16.
As illustrated in Fig. 21, our design achieves higher throughput on Vgg-16 compared with AlexNet.
It is because, for channel-level parallelism, the number of input channels of the first Conv layer is
only 3, which is smaller than 𝑇𝑛, so the computation resources are not fully utilized in this layer.
This effect is also mentioned in Section 6.1. However, such underutilization only happens in the
first Conv layer and is alleviated when the neural network becomes deeper. Hence, in the deeper
network, Vgg-16, we achieve higher throughput.
To verify that our design can support the BN layer which is a key component of typical CNN

architectures, we also test the proposed design on Vgg-16 with BN layers. The performance is
shown in Fig. 21 (c). Apart from the loss and activation, the immediate BN parameters also need
to be stored in DRAM. Due to the memory size limitation, the maximum batch size is 8. Unlike
computation-intensive Conv layers, BN layers involve lots of data transmission processes. Some
complex operations like extracting a root also cost extra computation resources and reduce the
timing performance. Therefore, the overall throughput is a little less than that for Vgg-16 without
BN layers.

Table 8 also shows the resource utilization and energy efficiency of the FPGA for these networks.
With the same estimated DSPs and BRAMs for Conv layers (𝐷𝐶𝑜𝑛𝑣 and 𝐵𝐶𝑜𝑛𝑣), AlexNet requires
more BRAMs than Vgg-16. It is because, compared to Vgg-16, AlexNet has a less regular weights

, Vol. 1, No. 1, Article . Publication date: February 2022.

32 Tang and Hu, et al.

kernel shape (ranging from 11× 11 to 1× 1), so we add an extra buffer to fetch a tile of weights from
the on-chip Weight buffer before the Conv Kernel conducting MAC operations. Such optimization
can release routing congestion caused by complex BRAM addresses calculation and allocation
in FP, BP, and WU processes. Apart from the extra buffer, a small fraction of DSPs and BRAMs
function for non-Conv layers. The accelerator also utilizes a few DSPs to calculate BRAM addresses.
Therefore, as mentioned in Section 5.3, the estimated boundary of 𝐷𝐶𝑜𝑛𝑣 and 𝐵𝐶𝑜𝑛𝑣 in realistic
end-to-end system design should be slightly smaller than the total DSPs and BRAMs numbers.
From our experimental results, assigning 80% of DSPs and 75% BRAMs should be enough.
As for the Vgg-16 with BN layers, extra computation resources are utilized to do complex

operations such as division, root extraction, etc. Therefore, Vgg-16 with BN layers costs more DSP
resources compared with Vgg-16 without BN layers. Additional BRAMs are also utilized to buffer
BN parameters for a batch.

In our end-to-end training validation, we utilize 1508 DSPs for the Vgg-16 model. The theoretical
peak performance with 1508 DSPs on the 32-bit floating-point accelerator is 1508

5 × 2 × 0.1 GHz=
60.3 GFLOPS, while our attainable end-to-end test is 46.99 GFLOPS including pooling and ReLU
operations.

6.4 Comparison with State-of-art Works
Comparisons of the best performance between our design and other state-of-art FPGA-based
training accelerators are shown in Table 9. In the table, "N/A" means that the metric is not provided,
and "≈" means that the value is obtained by approximate estimation. Since the platforms, the neural
networks for training, and the data type are different, it is extremely difficult to fairly compare
between different training accelerators. However, our design still shows desirable performance
even under such circumstances.
To better illustrate the uniqueness of the proposed design, we also compare our work with the

accelerators that also adopted 32-bit floating-point. The comparisons are shown in Table 10 and
Table 11. The design in [36] was tested on LeNet-10which is a really small networkwith the structure
as Conv 1 ([𝑀𝑖 , 𝑁 𝑖 , 𝑅𝑖 ,𝐶𝑖 , 𝐾𝑖 , 𝑆𝑖] = [32, 3, 32, 32, 3, 1]) - Pooling - Conv 2 ([32, 32, 16, 16, 3, 1]) -
Pooling - Conv 3 ([64, 32, 8, 8, 3, 1]) - Pooling - FC ([64, 1024, 1, 1, 1, 1]) - FC ([10, 64, 1, 1, 1, 1]). As
explained in Section 6.3, the underutilization of computation resources in the first Conv layer
reduces the overall throughput. Therefore, the performance of the proposed design on this small
network cannot be as superior as that in deeper networks like Vgg-16. However, our design is a
general architecture that can support both small networks and larger networks, while the accelerator
in [36] only targeted such small networks. It first achieved feature-map level parallelism in a uniform
computation engine, and then unrolled channel-level parallelism factors to improve utilization of
computation resources. For the memory access issues, the input and output features of each layer
are all stored on the FPGA chip, which restricts the work from extending to support the networks
where the on-chip BRAMs are not large enough to hold entire features of a Conv layer. However,
larger networks like AlexNet and Vgg are commonly applied in practical applications. Unlike [36],
our work not only enables on-device training on larger CNN models but also achieves higher
throughput when the network becomes deeper. Besides, the number of operations of LeNet-10
reported in [36] is 74.43 MFLOPs. However, according to 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 =
2 × (3 ×∑𝑛

𝑖=1𝑀
𝑖 × 𝑁 𝑖 × 𝑅𝑖 ×𝐶𝑖 × 𝐾𝑖 × 𝐾𝑖 −𝑀1 × 𝑁 1 × 𝑅1 ×𝐶1 × 𝐾1 × 𝐾1), the actual number of

operations that we obtain is only 25.17 MFLOPs. In this formula, 2× is due to the FP 32 data type,
and 3× is due to the fact that each layer needs to conduct FP, BP, and WU except the 1st layer
which only needs to conduct FP and WU.

The FeCaffe [41] introduced a Caffe framework with OpenCL which can integrate FPGA to
perform CNN network training. It only provided DSP utilization and throughput which are shown

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 33

Table 9. Comparison of Different FPGA-based Training Accelerators

Accelerator Chow et al.
2017 [36]

DarkFPGA
2020 [23]

Seo et al.
2020 [40]

FeCaffe
2020 [41]

Ours

Platform ZU19EG XCVU9P Stratix 10 MX Stratix 10 ZCU102
Technology 16nm 16nm 14nm 14nm 16nm
DSP Util. 1500 4202 1040 1796 1508

Freq. (MHz) 200 200 185 253 100
Power (W) 14.24 13.5 ≈20 N/A 7.712
Network LeNet-10 Vgg-like ResNet-20 AlexNet Vgg-16
Dataset CIFAR-10 CIFAR-10 CIFAR-10 ImageNet ImageNet

Data Type FP 32 Fixed 8 FP 16 FP 32 FP 32
Throughput 86.12

GFLOPS
1417
GOPS

≈180
GFLOPS

≈24
GFLOPS

46.99
GFLOPS

Energy Effi. 6.05
GFLOPS/W

104.96
GOPS/W

≈9
GFLOPS/W

N/A 6.09
GFLOPS/W

Nominal
Thro.(GOPS
× precision)

2755.84 11336 ≈2880 ≈768 1503.68

Nominal
Effi. (GOPS

× precision/W)

193.6 839.68 ≈144 N/A 194.88

Table 10. Experimental Results on LeNet-10 Compared with Chow et al. [36]

Chow et al. [36] Ours

Platform ZU19EG ZCU102
Frequency (MHz) 200 100
DSP Utilization 1699 (76.2%) 1315 (52.2%)

BRAM Utillization 174 (17.7%) 340 (37.3%)
Power (W) 14.24 7.14
Throughput 86.12 GFLOPS 15.47 GFLOPS

Energy Efficiency 6.05 GFLOPS/W 2.17 GFLOPS/W

in Table 11. Compared to the FeCaffe framework, our design utilized fewer computation resources
but achieved higher throughput implementing AlexNet.

The work in [40] also adopted both feature-map level parallelism and channel-level parallelism,
similar to its preliminary work in [22]. The best nominal energy efficiency reaches 144 (GOPS
× precision) which is lower than our best nominal energy efficiency which is 194.88 (GOPS ×
precision). As for the memory access issues, the accelerator in [40] targeted devices equipped with
high bandwidth memory (HBM2). Compared with DMA, the HBM2 is superiorly advanced with 16
pseudo channels providing a high number of I/O data pins. However, HBM2 is a new high-speed
memory technology and is only integrated into a few modern FPGAs like Stratix 10 MX. Most
FPGA-based edge devices still rely on DMA to communicate between the FPGA chip and off-chip
DRAM. Besides, [22] and [40] only tested their designs on the Cifar-10 dataset where the input

, Vol. 1, No. 1, Article . Publication date: February 2022.

34 Tang and Hu, et al.

Table 11. Experimental Results on AlexNet Compared with FeCaffe [41]

FeCaffe [41] Ours

Platform Stratix 10 ZCU102
Frequency (MHz) 253 100
DSP Utilization 1796 (31.2%) 1513 (60.0%)

BRAM Utillization N/A 857 (94.0%)
Power (W) N/A 7.736
Throughput ≈24 GFLOPS 34.52 GFLOPS

Energy Efficiency N/A 4.46 GFLOPS/W

image size is only 32× 32 which is really small so that their on-chip BRAMs can easily hold 𝑃 entire
feature maps, where 𝑃 is the unrolling factors in the channel dimension. However, our design can
support both small and large feature map sizes.
DarkFPGA [23] placed DRAM data layout in the channel-height-width-batch (CHWB) pattern

based on its batch-level parallelism-based design. It achieves higher nominal energy efficiency
because the 8-bit fixed points can improve the energy efficiency and DSP efficiency out of proportion.
The previous study has shown that if the data precision is no more than 8-bit, two MACs can be
calculated on one Xilinx DSP48, reducing the DSP usage by half [42]. However, for 32-bit floating-
point, 1 MAC operation takes up 5 DSPs in the Xilinx FPGA board. Besides, XCVU9P is an extremely
high-end cloud-level FPGA that has superior efficiency than commonly used edge FPGAs. However,
as mentioned in Section 2.3, the batch-level parallelism adopted by DarkFPGA only achieved high
throughput when the batch size is large. From their experiments, when the batch size is below 16,
its throughput is below 100 GOPS which is around 800 GOPS×precision after nominating, while
our nominal throughput is stably above 1000 GOPS×precision among different batch sizes. Besides,
same with [22, 40], DarkFPGA also implemented their design on Cifar-10 dataset with a relatively
small feature map size.

7 CONCLUSION
In this paper, we design EF-train, an efficient DNN training accelerator enabling edge FPGAs
to continuously learn on the device, which makes it possible for current FPGA-based edge-level
applications to achieve domain adaption and personalization. We propose an FPGA-based CNN
training accelerator with a unified convolution kernel to process FP, BP, and WU with full precision
and a data reshaping approach to ensure continuous memory access during end-to-end training
processes. We implement end-to-end CNN training effectively for low-power edge devices with
restricted resources. The experimental results show that our design achieves 46.99 GFLOPS and
6.09 GFLOPS/W in terms of throughput and energy efficiency, respectively.

REFERENCES
[1] Scott R Granter, AndrewHBeck, and David J Papke Jr. Alphago, deep learning, and the future of the humanmicroscopist.

Archives of pathology & laboratory medicine, 141:619–621, 2017.
[2] Tengchan Zeng, Omid Semiari, Mohammad Mozaffari, Mingzhe Chen, Walid Saad, and Mehdi Bennis. Federated

learning in the sky: Joint power allocation and scheduling with uav swarms. In ICC 2020-2020 IEEE International
Conference on Communications (ICC), pages 1–6. IEEE, 2020.

[3] Cong Hao, Xiaofan Zhang, Yuhong Li, Sitao Huang, Jinjun Xiong, Kyle Rupnow, Wen-mei Hwu, and Deming Chen.
Fpga/dnn co-design: An efficient design methodology for 1ot intelligence on the edge. In 2019 56th ACM/IEEE Design
Automation Conference (DAC), pages 1–6. IEEE, 2019.

[4] Xilinx. Corazon ai. http://www.xilinx.com/products/boards-and-kits/1-1bua5s3.html.

, Vol. 1, No. 1, Article . Publication date: February 2022.

EF-Train: Enable Efficient On-device CNN Training on FPGA Through Data Reshaping for Online Adaptation or
Personalization 35

[5] Xilinx. Pony.ai sensor fusion usingmultiple xilinx devices. https://www.xilinx.com/applications/automotive/automated-
driving.html.

[6] Xilinx. Zf proai gen 3 using xilinx zynq ultrascale+ mpsoc. https://www.xilinx.com/applications/automotive/automated-
driving.html.

[7] Ahmed Sanaullah, Chen Yang, Yuri Alexeev, Kazutomo Yoshii, and Martin C Herbordt. Real-time data analysis for
medical diagnosis using fpga-accelerated neural networks. BMC bioinformatics, 19(18):19–31, 2018.

[8] Alwyn Burger, Chao Qian, Gregor Schiele, and Domenik Helms. An embedded cnn implementation for on-device
ecg analysis. In 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops), pages 1–6. IEEE, 2020.

[9] Corey Lammie, Alex Olsen, Tony Carrick, and Mostafa Rahimi Azghadi. Low-power and high-speed deep fpga
inference engines for weed classification at the edge. IEEE Access, 7:51171–51184, 2019.

[10] Xiaofan Zhang, Cong Hao, Haoming Lu, Jiachen Li, Yuhong Li, Yuchen Fan, Kyle Rupnow, Jinjun Xiong, Thomas
Huang, Honghui Shi, et al. Skynet: A champion model for dac-sdc on low power object detection. arXiv preprint
arXiv:1906.10327, 2019.

[11] Jianfei Yang, Han Zou, Shuxin Cao, Zhenghua Chen, and Lihua Xie. Mobileda: Toward edge-domain adaptation. IEEE
Internet of Things Journal, 7(8):6909–6918, 2020.

[12] Md Abdullah Al Hafiz Khan, Nirmalya Roy, and Archan Misra. Scaling human activity recognition via deep learning-
based domain adaptation. In 2018 IEEE international conference on pervasive computing and communications (PerCom),
pages 1–9. IEEE, 2018.

[13] Fábio Mendonça, Sheikh Shanawaz Mostafa, Fernando Morgado-Dias, and Antonio G Ravelo-García. A method based
on cardiopulmonary coupling analysis for sleep quality assessment with fpga implementation. Artificial Intelligence in
Medicine, 112:102019, 2021.

[14] Amrita Rana and Kyung Ki Kim. Comparison of artificial neural networks for low-power ecg-classification system.
Journal of Sensor Science and Technology, 29(1):19–26, 2020.

[15] Mengwei Xu, Feng Qian, Qiaozhu Mei, Kang Huang, and Xuanzhe Liu. Deeptype: On-device deep learning for input
personalization service with minimal privacy concern. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 2:1–26, 2018.

[16] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimizing fpga-based accelerator
design for deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA international symposium on
field-programmable gate arrays, pages 161–170, 2015.

[17] Xiaofan Zhang, Junsong Wang, Chao Zhu, Yonghua Lin, Jinjun Xiong, Wen-mei Hwu, and Deming Chen. Dnnbuilder:
an automated tool for building high-performance dnn hardware accelerators for fpgas. In 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[18] Xuechao Wei, Yun Liang, and Jason Cong. Overcoming data transfer bottlenecks in fpga-based dnn accelerators via
layer conscious memory management. In 2019 56th ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE,
2019.

[19] Seungkyu Choi, Jaehyeong Sim, Myeonggu Kang, and Lee-Sup Kim. Trainware: A memory optimized weight update
architecture for on-device convolutional neural network training. In Proceedings of the International Symposium on
Low Power Electronics and Design, pages 1–6, 2018.

[20] Yudong Tao, Rui Ma, Mei-Ling Shyu, and Shu-Ching Chen. Challenges in energy-efficient deep neural network training
with fpga. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages
400–401, 2020.

[21] Wenlai Zhao, Haohuan Fu, Wayne Luk, Teng Yu, Shaojun Wang, Bo Feng, Yuchun Ma, and Guangwen Yang. F-cnn:
An fpga-based framework for training convolutional neural networks. In 2016 IEEE 27Th international conference on
application-specific systems, architectures and processors (ASAP), pages 107–114. IEEE, 2016.

[22] Shreyas Kolala Venkataramanaiah, Yufei Ma, Shihui Yin, Eriko Nurvithadhi, Aravind Dasu, Yu Cao, and Jae-sun Seo.
Automatic compiler based fpga accelerator for cnn training. In 2019 29th International Conference on Field Programmable
Logic and Applications (FPL), pages 166–172. IEEE, 2019.

[23] Cheng Luo, Man-Kit Sit, Hongxiang Fan, Shuanglong Liu, Wayne Luk, and Ce Guo. Towards efficient deep neural
network training by fpga-based batch-level parallelism. Journal of Semiconductors, 41(2):022403, 2020.

[24] Weiwen Jiang, Edwin H-M Sha, Xinyi Zhang, Lei Yang, Qingfeng Zhuge, Yiyu Shi, and Jingtong Hu. Achieving
super-linear speedup across multi-fpga for real-time dnn inference. ACM Transactions on Embedded Computing Systems
(TECS), 18(5s):1–231, 2019.

[25] Sheng-Chun Kao, Geonhwa Jeong, and Tushar Krishna. Confuciux: Autonomous hardware resource assignment for dnn
accelerators using reinforcement learning. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 622–636. IEEE, 2020.

, Vol. 1, No. 1, Article . Publication date: February 2022.

36 Tang and Hu, et al.

[26] Yijin Guan, Hao Liang, Ningyi Xu, Wenqiang Wang, Shaoshuai Shi, Xi Chen, Guangyu Sun, Wei Zhang, and Jason
Cong. Fp-dnn: An automated framework for mapping deep neural networks onto fpgas with rtl-hls hybrid templates.
In 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pages
152–159. IEEE, 2017.

[27] Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, and Muhammad Shafique. Romanet: Fine-grained
reuse-driven off-chip memory access management and data organization for deep neural network accelerators. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 29(4):702–715, 2021.

[28] Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, and Muhammad Shafique. Drmap: A generic dram
data mapping policy for energy-efficient processing of convolutional neural networks. In 2020 57th ACM/IEEE Design
Automation Conference (DAC), pages 1–6. IEEE, 2020.

[29] Duseok Kang, Donghyun Kang, and Soonhoi Ha. Multi-bank on-chip memory management techniques for cnn
accelerators. IEEE Transactions on Computers, 2021.

[30] Chen Zhang, Guangyu Sun, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason Cong. Caffeine: Toward uniformed
representation and acceleration for deep convolutional neural networks. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 38(11):2072–2085, 2018.

[31] Atefeh Sohrabizadeh, Jie Wang, and Jason Cong. End-to-end optimization of deep learning applications. In Proceedings
of the 2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pages 133–139, 2020.

[32] Tianqi Wang, Tong Geng, Ang Li, Xi Jin, and Martin Herbordt. Fpdeep: Scalable acceleration of cnn training on
deeply-pipelined fpga clusters. IEEE Transactions on Computers, 69(8):1143–1158, 2020.

[33] Hiroki Nakahara, Youki Sada, Masayuki Shimoda, Kouki Sayama, Akira Jinguji, and Shimpei Sato. Fpga-based training
accelerator utilizing sparseness of convolutional neural network. In 2019 29th International Conference on Field
Programmable Logic and Applications (FPL), pages 180–186. IEEE, 2019.

[34] Sean Fox, Julian Faraone, David Boland, Kees Vissers, and Philip HW Leong. Training deep neural networks in
low-precision with high accuracy using fpgas. In 2019 International Conference on Field-Programmable Technology
(ICFPT), pages 1–9. IEEE, 2019.

[35] Jinming Lu, Jun Lin, and Zhongfeng Wang. A reconfigurable dnn training accelerator on fpga. In 2020 IEEE Workshop
on Signal Processing Systems (SiPS), pages 1–6. IEEE, 2020.

[36] Zhiqiang Liu, Yong Dou, Jingfei Jiang, QiangWang, and Paul Chow. An fpga-based processor for training convolutional
neural networks. In 2017 International Conference on Field Programmable Technology (ICFPT), pages 207–210. IEEE,
2017.

[37] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Jincheng Yu, Junbin Wang, Song Yao, Song Han, Yu Wang, and Huazhong Yang.
Angel-eye: A complete design flow for mapping cnn onto embedded fpga. IEEE transactions on computer-aided design
of integrated circuits and systems, 37(1):35–47, 2017.

[38] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan
Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[39] OpenVINO. Optimization guide. https://docs.openvino.ai/2020.2/_docs_optimization_guide_dldt_optimization_guide.
html.

[40] Shreyas K Venkataramanaiah, Han-Sok Suh, Shihui Yin, Eriko Nurvitadhi, Aravind Dasu, Yu Cao, and Jae-sun Seo.
Fpga-based low-batch training accelerator for modern cnns featuring high bandwidth memory. In Proceedings of the
39th International Conference on Computer-Aided Design, pages 1–8, 2020.

[41] Ke He, Bo Liu, Yu Zhang, Andrew Ling, and Dian Gu. Fecaffe: Fpga-enabled caffe with opencl for deep learning training
and inference on intel stratix 10. In Proceedings of the 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, pages 314–314, 2020.

[42] Yuhong Li, Cong Hao, Xiaofan Zhang, Xinheng Liu, Yao Chen, Jinjun Xiong, Wen-mei Hwu, and Deming Chen.
Aedd: Efficient differentiable dnn architecture and implementation co-search for embedded ai solutions. In 2020 57th
ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2020.

, Vol. 1, No. 1, Article . Publication date: February 2022.

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 CNN Training
	2.2 Related Works
	2.3 Motivations of The Proposed Design

	3 FPGA-based CNN Training Accelerator
	3.1 The Architecture of The Training Accelerator
	3.2 The Forward and Backward Propagation of A Convolutional Layer
	3.3 The Weight Update of A Convolutional Layer
	3.4 The Forward and Backward Propagation of A Pooling Layer
	3.5 The Forward Propagation of A BN Layer
	3.6 The Backward Propagation of A BN Layer

	4 Data Reshaping Approach
	4.1 Analysis on Discontinuous Memory Access
	4.2 Optimizing Discontinuous Memory Access
	4.3 Weight Reuse in Mini-batch Training

	5 Performance and Resource Model
	5.1 Performance Model
	5.2 Resource Model
	5.3 Computation and Memory Resources Scheduling Tool

	6 Experiments
	6.1 Effectiveness of The Data Reshaping Approach
	6.2 Accuracy of The Performance Model
	6.3 CNN Training Performance
	6.4 Comparison with State-of-art Works

	7 Conclusion
	References

