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Abstract

Methods from causal mediation analysis have generalized the traditional approach to direct and 

indirect effects in the epidemiologic and social science literature by allowing for interaction and 

non-linearities. However, the methods from the causal inference literature have themselves been 

subject to a major limitation in that the so-called natural direct and indirect effects that are 

employed are not identified from data whenever there is a variable that is affected by the exposure, 

which also confounds the relationship between the mediator and the outcome. In this paper we 

describe three alternative approaches to effect decomposition that give quantities that can be 

interpreted as direct and indirect effects, and that can be identified from data even in the presence 

of an exposure-induced mediator-outcome confounder. We describe a simple weighting-based 

estimation method for each of these three approaches, illustrated with data from perinatal 

epidemiology. The methods described here can shed insight into pathways and questions of 

mediation even when an exposure-induced mediator-outcome confounder is present.

One of the chief advantages of the counterfactual approach to mediation analysis is allowing 

for effect decomposition of a total effect into a natural direct and indirect effect even in 

models with interactions and non-linearities.1,2 This is accomplished using new definitions 

of direct and indirect effects defined in terms of counterfactuals,1,2 often referred to as 

natural direct and indirect effects. Robins and Greenland1 noted that natural direct and 

indirect effects could not be identified even when both observational and experimental data 

were available. However Pearl2 showed that under additional causal assumptions encoded in 

a causal diagram interpreted as a nonparametric structural equation model with independent 

errors,2 identification was possible if the following four assumptions held: (i) the effect of 

the exposure A on the outcome Y is unconfounded conditional on C; (ii) the effect of the 

mediator M on the outcome Y is unconfounded conditional on C; (iii) the effect of the 

exposure A on the mediator M is unconfounded conditional on C; and (iv) none of the 
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mediator-outcome confounders are themselves affected by the exposure. Throughout this 

paper we assume that our causal diagrams represent underlying non-parametric structural 

equation models.

It has, however, also been shown3 that if there is an intermediate variable that is affected by 

the exposure and that in turn confounds the mediator-outcome relationship - thereby 

violating assumption (iv) above - then, even under an non-parametric structural equation 

model with independent errors, natural direct and indirect effects are not identified from the 

data, irrespective of whether data were collected on this intermediate variable. Natural direct 

and indirect effects are still theoretically appealing, but because they cannot be identified, 

bounds or sensitivity analysis must be applied. This essentially has restricted the 

contemporary methods for causal mediation analysis to settings in which the mediator 

occurs shortly after the exposure in order to minimize the possibility of such exposure-

induced mediator-outcome confounding.4 This is a severe limitation. It is not one that is 

possible to address directly.

In this paper we partially circumvent this limitation by providing three approaches to effect 

decomposition in the presence of such an exposure-induced mediator-outcome confounder. 

First, we will consider new definitions of direct and indirect effects in which the exposure-

induced confounder and the original mediator of interest are instead jointly considered as the 

mediator. Second we will consider certain path-specific effects that can be identified from 

data in settings with an exposure-induced mediator-outcome confounder.3 Finally, we will 

consider a randomized-intervention analogue of the notions of natural direct and indirect 

effects that can also be identified from data in the presence of an exposure-induced 

mediator-outcome confounder. These three approaches to effect decomposition - although 

not estimating the natural direct and indirect effects themselves - may provide some insight 

into mediation and pathways in this more challenging, though not uncommon, setting. As 

such, the methods presented in this paper may help to address one of the major limitations of 

the causal mediation analysis literature.

Direct and Indirect Effects: Notation and Definitions

Let A denote the exposure of interest, Y the outcome of interest, M the potential mediator of 

interest, and C a set of baseline covariates not affected by the exposure. We will let Ya and 

Ma denote respectively the values of the outcome and mediator that would have been 

observed had the exposure A been set to level a; let Yam denote the value of the outcome that 

would have been observed had A been set to level a, and M to m. These counterfactual 

variables, Ya, Ma and Yam all presuppose that at least hypothetical interventions on A and M 

are conceivable. Some additional technical conditions referred to as consistency and 

composition are also needed to relate the observed data to counterfactual quantities. The 

consistency assumption in this context is that when A = a, the counterfactual outcomes Ya 

and Ma are, respectively, equal to the observed outcomes Y and M, and that when A = a and 

M = m, the counterfactual outcome Yam is equal to Y. The composition assumption is that Ya 

= YaMa. Further discussion of these assumptions is given elsewhere.4,5

VanderWeele et al. Page 2

Epidemiology. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Suppose a and a* are two values of the exposure we wish to compare, for example, for 

binary exposure we may have a = 1 and a* = 0. The average controlled direct effect 

comparing exposure level A = a to A = a* and fixing the mediator to level m is defined by 

E[Yam − Ya*m] and captures the effect of exposure A on outcome Y, intervening to fix M to 

m; it may be different for different levels of m.1,2 Direct effects are always relative to the 

mediator M being considered (i.e. through pathways other than M). The natural direct 

effect1,2 is defined as E[YaMa* − Ya*Ma*] and differs from controlled direct effects in that the 

intermediate M is set to the level Ma*, the level that it would have naturally been under some 

reference condition for the exposure, A = a*. Similarly, the average natural indirect effect 

can be defined as E[YaMa − YaMa*], which compares the effect of the mediator at levels Ma 

and Ma* on the outcome when exposure is set to A = a. For the natural indirect effect to be 

non-zero, the exposure would have to change the mediator and that change in the mediator 

would have to change the outcome; natural indirect effects thus formally capture our notion 

of mediation. Natural direct and indirect effects are referred to by Robins and Greenland1 as 

“pure direct effects” and “total indirect effects,” respectively. Natural direct and indirect 

effects have the property that a total effect, E[Ya − Ya*], decomposes into a natural direct and 

indirect effect: E[Ya − Ya*] = E[YaMa − Ya*Ma*] = E[YaMa − YaMa*] + E[YaMa* − Ya*Ma*]; 

the decomposition holds even when there are interactions and non-linearities.

The estimation of direct and indirect effects in general requires stronger no-unmeasured-

confounding assumptions than total effects. For causal diagrams interpreted as non-

parametric structural equation models,6 the following four assumptions suffice to identify 

natural direct and indirect effects from data2: (i) the effect of the exposure A on the outcome 

Y is unconfounded conditional on C; (ii) the effect of the mediator M on the outcome Y is 

unconfounded conditional on C; (iii) the effect of the exposure A on the mediator M is 

unconfounded conditional on C; and (iv) none of the mediator-outcome confounders are 

affected by exposure. If we let X ⫫ Y |Z denote that X is independent of Y conditional on Z, 

then these four assumptions are satisfied if (i) Yam ⫫ A|C, (ii) Yam ⫫ M|{A; C}, (iii) Ma ⫫ A|

C, (iv) Yam ⫫ Ma*|C.

Assumption (iv) is known as a cross-world independence assumption because it places an 

independence restriction on the joint distribution of the variables Yam and Ma*. The 

assumption states that knowing what would happen to the mediator when a person is 

unexposed, Ma*, does not, within strata of covariates C, give information about the effects 

on the outcome of setting both the exposure and mediator to certain other values, a and m, 

say (i.e. does not give information on Yam). It is a strong assumption because these two 

variables, Yam and Ma*, unlike the variables Yam and Ma, are never observed together and 

therefore it is not possible to obtain empirical data (either experimental or observational) 

concerning their joint distribution. We could not confirm or disprove this assumption even if 

we could randomize both the exposure and the mediator. The cross-world independence 

assumption would hold on the causal diagram in Figure 1 interpreted as a non-parametric 

structural equation model (NPSEM) of Pearl.6 As noted above, however, there are other 

interpretations of causal diagrams than Pearl’s6. The interpretation of causal diagrams of 

Robins7-9, in contrast to the non-parametric structural equation model of Pearl,6 does not 

impose cross-world independencies; as a consequence natural direct effects are not 
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identified under the model. See Robins and Richardson8 for further discussion. Nonetheless 

as mentioned several times, we will in general assume that causal diagrams are interpreted 

as an non-parametric structural equation models with independent errors throughout, though, 

as will be seen below, the final of our three approaches will not require this assumption.

Assumptions (i) and (ii) alone suffice to identify controlled direct effects. If these two 

assumptions hold, then the controlled direct effect is equal to:

If assumptions (i)-(iv) hold then natural direct and indirect effects are identified and given 

by the following empirical expressions:

(1)

(2)

VanderWeele and Vansteelandt4,10 describe a simple regression-based method to estimate 

conditional natural direct effects, E[YaMa* − Ya*Ma* |c], and indirect effects, E[YaMa − YaMa* 
|c], and their standard errors from data. See also Imai et al.11 and Valeri and VanderWeele12 

for other estimation approaches and software. These expressions generalize those found in 

the social science literature13,14 to allow for exposure-mediator interactions.

Even if a causal diagram is interpreted as a non-parametric structural equation model, 

assumption (iv) still requires that there is no effect of the exposure that itself confounds the 

mediator-outcome relationship. This would hold in Figure 1 but would be violated in Figure 

2. Avin et al.3 have shown that natural direct and indirect effects are not identified from data 

in Figure 2 or whenever there is a variable that is affected by exposure that in turn 

confounds the mediator-outcome relationship. To see why controlling just for L in a 

regression model will not suffice, suppose then that we are interested in estimating the direct 

effect of A on Y through pathways that do not involve M, and the mediated effect through 

pathways that do involve M. For the direct effect we thus want to estimate the effects of two 

pathways A − Y and A − L − Y, as these are the pathways not through M. Regression models 

will not work here because L is both a mediator-outcome confounder and on the pathway 

from the exposure to the outcome.

To intuitively see why regression control for L will not work, suppose first that we included 

L as a covariate in our outcome regression. In this case we would potentially be blocking 

one of the direct-effect pathways not through M that we were interested in, namely A − L − 

Y, by controlling for L. This would suggest that we should perhaps not adjust for L in the 

regression analysis. But if we do not adjust for L in the regression, then our estimates of the 

effect of M on Y will be confounded (since L is a confounder of the M − Y relationship, 

which we have not controlled for) and thus our direct and indirect effect estimates will be 

biased. Whether we control for L or not in the regression model, we will get bias if what we 
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are interested in is the direct effect of A on Y not through M (but potentially through L). We 

get biased results if we adjust for L; we get biased results if we do not adjust for L. Simple 

regression methods cannot be used to estimate direct and indirect effects in this setting.

Controlled direct effects can, however, still be identified in the setting of Figure 2, but 

require methods other than regression in the presence of an exposure-induced mediator-

outcome confounder. These methods have been described elsewhere.15-19 In the next section 

we describe three approaches to effect decomposition that are applicable even in the 

presence of an exposure-induced mediator-outcome confounder as in Figure 2. These 

approaches do not give the aforementioned natural direct and indirect effects, but they give 

other types of direct and indirect effects that may shed light on questions of mediation and 

pathways.

Effect Decomposition in the Presence of an Exposure-Induced Mediator-

Outcome Confounder

Approach 1. Joint Mediators

Consider the causal relationships in Figure 2. Suppose now that, instead of considering M 

only as the mediator, one were to consider (L, M) jointly as the mediator. We will need some 

additional notation. We let La denote the value of L that would have been observed had the 

exposure A been set to level a; we let Yalm denote the value of the outcome that would have 

been observed had A been set to level a, L to l, and M to m. We could de-ne the natural 

direct and indirect effects with (L, M) taken as the mediator as E[YaLa*Ma* − Ya*La*Ma*] and 

E[YaLaMa − YaLa*Ma*]. The natural indirect effect here is the effect mediated through M or L 

or both, and the natural direct is effect the effect not through either M or L. We have the 

effect decomposition: E[Ya − Ya*] = E[YaLaMa − YaLa*Ma*] + E[YaLa*Ma* − Ya*La*Ma*].

The analog for four assumptions for identication can then be stated as: (i†) Yalm ⫫ A|C, (ii†) 

Yalm ⫫ (L, M)|{A, C}, (iii†) (La; Ma) ⫫ A|C, (iv†) Yalm ⫫ (La*, Ma*)|C. In this case with (L, 

M) considered jointly as the mediator, assumption (iv) is once again effectively satisfied 

since on the causal diagram there is no effect of exposure A that confounds the relationship 

between the joint mediator (L, M) and the outcome Y. For assumptions (ii) and (iii), that 

there are no unmeasured “mediator-outcome” or “exposure-mediator” confounders, 

respectively, these assumptions now need to apply to (L, M), considered jointly. Stated in 

intuitive terms, we thus need to control for confounders for the relationship between the 

exposure A and mediator M, along with confounders for the relationship between the 

exposure A and the variable L. Likewise, we need to control for confounders for the 

relationship between the mediator M and the outcome Y, along with confounders for the 

relationship between the variable L and the outcome Y .

Under the four assumptions above, the exact argument given in Pearl2 for the identification 

of natural direct and indirect effects applies. Thus these effects above are identified by:
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Conditional analogs of these effects, E[YaLa*Ma* − Ya*La*Ma* |c] and E[YaLaMa − YaLa*Ma* |

c], are given by the same expressions without summing over the distribution P (c). In the 

following section we will describe a weighting-based estimator for these effects.

Approach 2. Path-Specific Effects

If M is the actual mediator of interest, the approach above may be unsatisfactory as it gives 

only mediated effects when M and L are considered jointly as the mediator. Let us return to 

the setting where the interest is principally in M as a mediator, but such that there is an 

exposure-induced mediator-outcome confounder L as in Figure 2. Although natural direct 

and indirect effects with M considered alone as the mediator are not in general identified 

under the causal diagram of Figure 2, certain path-specific effects are identified. For 

example, although we cannot identify the effects mediated through pathways involving M 

(i.e. the combination of A → L → M → Y and A → M → Y) and the effects through 

pathways not involving M (i.e. the combination of A → Y and A → L → Y), Avin et al.3 

showed that we can identify the effects (1) through pathways involving neither L nor M (i.e. 

A → Y), (2) through the additional pathways not involving L (i.e. A → M → Y) and (3) 

through the pathways involving only L (i.e. the combination of A → L → M → Y and A → L 

→ Y). For simplicity, let us refer to these effects as EA→Y, EA→M→Y, EA→LY. In 

counterfactual notation, these effects are EA→Y(c) = E[YaLa*Ma* − Ya*La*Ma* |c], 

EA→M→Y(c) = E[YaLa*MaLa*
 − YaLa*Ma* |c] and EA→LY(c) = E[YaLaMa − YaLa*MaLa*

 |c] (see 

the eAppendix for further discussion). Formal counterfactual definitions of these effects are 

given in the eAppendix. Also, as shown in the eAppendix, a total effect decomposes into the 

sum of these three effects: E[Ya − Ya*] = EA→Y + EA→M→Y + EA→LY. By the results of Avin 

et al.,3 it follows that if Figure 2 is a causal diagram (and thus the identifying assumptions 

(i†)-(iv†) all hold) then these three effects are identified and in fact given by the following 

empirical expressions:

Conditional analogs of these effects, EA→Y(c), EA→M→Y(c), EA→LY (c), are given by the 

same expressions without summing over the distribution P(c). Note that these expressions 

do not allow us to distinguish between effects through L and through M versus those that are 

through L but not through M. See the eAppendix for further discussion and formality. Once 

again, in the following section we will describe weighting-based estimators for these effects.
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Approach 3. Interventional Effects

Suppose again that we wish to retain M as our principal mediator, rather than M and L 

jointly. Although natural direct and indirect effects with M alone as the mediator of interest 

are not identified, alternative effects that randomly set M to a value chosen from the 

distribution of a particular exposure level can be identified. Let Ga|C denote a random draw 

from the distribution of the mediator among those with exposure status a conditional on C.

Suppose a and a* are two values of the exposure we wish to compare. The effect E(YaGa|C) 

− E(YaGa*|C) is then the effect on the outcome of randomly assigning a person who is given 

the exposure to a value of the mediator from the distribution of the mediator among those 

given exposure versus no exposure (given covariates); this is an effect through the mediator. 

Next consider the effect E(YaGa*|C) − E(Ya*Ga*|C); this is a direct effect comparing exposure 

versus no exposure with the mediator in both cases randomly drawn from the distribution of 

the population when given no exposure (given covariates). Finally, the effect E(YaGa|C) − 

E(Ya*Ga*|C) compares the expected outcome when having the exposure, with the mediator 

randomly drawn from the distribution of the population when given the exposure (given 

covariates), to the expected outcome when not having the exposure, with the mediator 

randomly drawn from the distribution of the population when not exposed. These various 

effects are similar to those described by Didelez et al.20 and Geneletti21. With effects thus 

defined we have the decomposition: E(YaGa|C) − E(Ya*Ga*|C) = {E(YaGa|C) − E(YaGa*|C)} + 

{E(YaGa*|C) − E(Ya*Ga*|C)} so that the overall effect decomposes into the sum of the effect 

through the mediator and the direct effect. These are not the natural direct and indirect 

effects considered earlier, but are instead analogs arising from not fixing the mediator for 

each person to the level it would have been under a particular exposure, but rather to a level 

that is randomly chosen from the distribution of the mediator among all of those with a 

particular exposure.

To identify these effects the following conditions suffice: Assumptions (i) Yam ⫫ A|C and 

(iii) Ma ⫫ A|C above, that conditional on C there is no unmeasured exposure-outcome or 

exposure-mediator confounding, along with an assumption (ii*) that Yam ⫫ M|{A, C, L}, i.e. 

that conditional on (A, C, L), there is no unmeasured confounding of the mediator-outcome 

relationship. These three assumptions would hold in the causal diagram in Figure 2, even if 

the association between L and Y were confounded by unmeasured factors. If these three 

assumptions hold, then these interventional effects are identified by:

where the first expression amounts to averaging controlled direct effects corresponding to 

different levels m, using the distribution P(m|a*; c). Conditional analogs of these effects are 
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given by the same expressions without summing over the distribution P(c). These 

expressions reduce to the mediation formulae (1) and (2) when L does not confound the 

association between M and Y, conditional on covariates C. Note that in contrast to the effects 

described in the first two approaches, the effects here in the third approach do not require 

interpreting causal diagrams as non-parametric structural equation models; the effects are 

identified under alternative interpretations7-9 because assumptions (i), (ii’) and (iii), none of 

which are “cross-world”, are implied by the models. Once again, in the following section, 

we will describe weighting-based estimators for these effects.

Weighting Estimators

All weighting-based estimators require first estimating inverse-probability weights, which 

can be obtained on the basis of regression models for the exposure A, mediator M and 

confounder L. For pedagogic purposes, we will focus on dichotomous (coded 0 or 1) 

exposure, mediator and confounder, in which case 3 logistic regressions can be used: 1) a 

logistic regression of the exposure A on covariates, 2) a logistic regression of the confounder 

L on the exposure and covariates and 3) a logistic regression of the mediator on the 

confounder, exposure and covariates. We also focus on weighting estimators for the 

marginal effects described above. Analogous estimators for the conditional effects are 

described in the eAppendix. Under approach 1, a weighting-based estimator can then be 

obtained upon duplicating the dataset and adding an exposure variable A* that is 0 for the 

first replication and 1 for the second. For each person, a weight is obtained by taking the 

product of the predicted probabilities (of the observed confounder and mediator values) 

from the two logistic regressions for L and M had the exposure been A*, divided by the 

product of the corresponding predicted probabilities from the two logistic regressions had 

the exposure been as observed, with additional weighting by the reciprocal of the probability 

of the observed exposure to adjust for confounding of the exposure-outcome association:

The natural direct effect E[Y1L0M0 − Y0L0M0] is then obtained as the coefficient of A in a 

weighted regression of Y on A among persons with A* = 0; the natural indirect effect 

E[Y1L1M1 − Y1L0M0] is obtained as the coefficient of A* in a weighted regression of Y on A* 

among persons with A = 1 in the duplicated data set. Approach 3 works like the first, but 

using the weights

instead.

Under approach 2, a weighting-based estimator can be obtained upon merging three copies 

of the dataset and adding exposure variables A* and A**, where A* equals the observed 

exposure for the first replication and 1 − A for the next two replications, and where A** 
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equals the observed exposure for the first two replications and 1 − A for the third replication. 

For each person, a weight is now obtained by taking the product of the predicted probability 

(of the observed confounder value) from the logistic regression for L had the exposure been 

A* and the predicted probability (of the observed mediator value) from the logistic 

regression for M had the exposure been A**, divided by the product of the corresponding 

predicted probabilities from the two logistic regressions had the exposure been as observed, 

with additional weighting by the reciprocal of the probability of the observed exposure:

For a binary exposure, the natural direct effect EA→Y is now obtained as the coefficient of A 

in a weighted regression of Y on A among persons with A* = A** = 0; the natural indirect 

effect EA→LY is obtained as the coefficient of A* in a weighted regression of Y on A* among 

persons with A = 1, A** = 0; finally, the natural indirect effect EA→M→Y is obtained as the 

coefficient of A** in a weighted regression of Y on A** among those with A = A* = 1.

SAS code (SAS Institute, Cary, NC) for each of these three weighting approaches are given 

in the eAppendix. Since the procedures above are not maximum likelihood procedures, 

involve creating copies of the observed data, and moreover require estimation of the 

weights, the standard confidence intervals and estimates of the standard error can be 

severely biased. Valid standard errors and confidence intervals can be obtained via the 

bootstrap.

Illustration

To illustrate the three approaches, we will analyze 2003 US birth certificate data and will 

consider whether the effect of the exposure, A, of adequate or inadequate prenatal care (n = 

2, 629, 247; excluding those with intermediate or superadequate care for the purposes of this 

illustration) on preterm birth (Y) is mediated by pre-eclampsia (M) or other pathways, where 

maternal smoking (L) is taken as an exposure-induced mediator-outcome confounder. 

Maternal smoking may be affected by prenatal care and may in turn affect both pre-

eclampsia and preterm birth. The analysis is principally for the purpose of illustration. 

Categories of the adequacy of prenatal care determined from data on the month prenatal care 

was initiated, on the number of visits, and on gestational age, according to the American 

College of Gynecologists recommendation, as encoded in a modification of the APNCU 

index.22,23 In this analysis we will take age category (below 20 years, between 20 and 35 

years, or above 35 years), ethnicity (black, Hispanic, native american, white), education and 

marital status as baseline confounders (C). Our analysis is certainly a simplification of a 

more complex reality, in that prenatal care and maternal smoking are both ultimately time-

varying, and pre-eclampsia and preterm birth could be regarded as processes whereas we 

will treat them as dichotomous; again the analysis here is used only for illustrative purposes.

Inverse probability weights were constructed on the basis of logistic regression models for 

adequate care, smoking and preeclampsia. In view of the large sample size and the resulting 

computational complexity, standard errors and con-dence intervals were constructed using 
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the subsampling bootstrap methods.24 This is similar to the bootstrap approach, but involved 

repeating the analysis for 1000 subsamples of size n = 13146 (0.5% of the total sample size); 

on the basis of the empirical standard deviation of the 1000 estimates, the standard error of 

the estimates that were obtained from the analysis of the full data set can be inferred 

(accounting for correlation resulting from the fact that some data points may be shared 

between subsamples).

Approach 1, which considers both preeclampsia and smoking as mediators, shows that the 

conditional direct effect of adequate care, other than via smoking or preeclampsia, is to 

reduce the odds of preterm birth by 54.3% (95% confidence interval=53.9%-54.8%). The 

remaining indirect effect via smoking or preeclampsia amounts to a 0.7% (0.6%-0.8%) 

increase in the odds of preterm birth. Approach 2 gives the same conditional direct effect, 

EA→Y, but is more informative about the mediated effect. It indicates that the indirect effect 

via smoking, EA→LY, amounts to a 0.7% (0.7% to 0.8%) reduction in the odds of preterm 

birth. That this effect is small is perhaps not surprising since the effect of adequate care by 

decreasing smoking mixes an inherent beneficial impact on preterm birth with a harmful 

effect by increasing pre-eclampsia. The remaining indirect effect via preeclampsia, but not 

smoking, EA→M→Y, is to increase the odds of preterm birth with 0.06% (−0.01%-0.12%). In 

contrast to the previous two approaches, approach 3 avoids assumptions of 

unconfoundedness with respect to smoking. It suggest that the conditional direct effect of 

adequate care, other than via preeclampsia, is to reduce the odds of preterm birth by 54.7% 

(54.3%-55.2%), corresponding to a negligible remaining indirect effect via pre-eclampsia 

which amounts to a reduction in the odds of preterm birth with 0.8% (0.7% to 0.9%). The 

inverse probability weights for all analyses were very stable, varying between 0.70 and 1.43 

in approaches 1 and 2, and 0.80 and 1.25 in approach 3.

Discussion

We have described three approaches to effect decomposition in the presence of an exposure-

induced mediator-outcome confounder. This setting presents challenges to the 

counterfactual approach to mediation since natural direct and indirect effects are not 

identified. We considered approaches that estimate either (i) natural direct and indirect 

effects with the exposure-induced confounder and the original mediator of interest 

considered jointly as the mediator, or (ii) certain path-specific effects that are identified from 

the data, or (iii) analogs to the notions of natural direct and indirect effects that instead rely 

on randomized interventions on the mediator. The three approaches estimate different 

quantities and may be of interest in different contexts. All three can, however, potentially be 

pursued in any particular application and, considered together, may shed considerable light 

on questions of mediation and pathways.

It should also be noted that even with the three approaches described in this paper, the 

identification of these effects requires strong no-unmeasured-confounding assumptions. 

Sensitivity-analysis techniques have been developed for natural direct and indirect effects 

when there is no exposure-induced mediator-outcome confounding.11,25 Similar sensitivity 

analysis techniques could potentially be developed for each of the three approaches 

considered in this paper. However, until such approaches have been developed, an analyst 
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must proceed cautiously when evaluating these assumptions, when attempting to control for 

sufficient covariates to make these plausible, and when interpreting the results as providing 

only tentative evidence. Further development of sensitivity-analysis techniques for the 

approaches in this paper will allow for more formal evaluation of the extent to which 

substantive conclusions may hold even when assumptions are violated.

An alternative approach to reasoning about mediation in the context of an exposure-induced 

mediator-outcome confounder would be instead to maintain the original natural direct and 

indirect effects as the targets of interest, and use sensitivity analysis to help address issues of 

non-identifiability. Natural direct and indirect effects are not identified in this setting, but 

sensitivity analysis approaches can be useful in assessing the extent to which various 

estimators using the observed data can deviate from the true natural direct and indirect 

effects. Several approaches along these lines have begun to develop. For example, Imai and 

Yamamoto26 proposed a parametric sensitivity analysis technique for linear models to 

reason about natural direct and indirect in the presence of an exposure-induced mediator-

outcome confounder, which requires data on the exposure-induced mediator-outcome 

confounder. Their technique is at present, however, restricted to one fairly simple setting. 

Tchetgen Tchetgen and Shpitser27 and VanderWeele and Chiba28 proposed non-parametric 

techniques that are more general and do not require data on the exposure-induced mediator-

outcome confounder, but require specifying a large number of sensitivity-analysis 

parameters that may be difficult to do in practice. Vansteelandt and VanderWeele29 describe 

a technique that, like that of Imai and Yamamoto26, requires data to be available on the 

exposure-induced mediator-outcome confounder, and also requires specifying a selection-

bias function which can be difficult to interpret in practice, but does have the advantage that 

the selection-bias function is essentially zero as long as there is no three-way interaction 

among the exposure, mediator, and exposure-induced confounder. These various sensitivity 

techniques could be used in conjunction with the methods described there to improve 

conclusions about mediation and pathways.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Causal diagram with exposure A, mediator M, outcome Y, and confounding variables C
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Figure 2. 
Causal diagram with a mediator-outcome confounding variable L that is affected by 

exposure
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