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[1] We present a new semi-analytic method to evaluate the deformation due to a screw
dislocation in arbitrarily heterogeneous and/or anisotropic elastic half plane. The
method employs integral transformations to reduce the governing partial differential
equations to the integral Fredholm equation of the second kind. Dislocation sources, as
well as spatial perturbations in the elastic properties are modeled using equivalent
body forces. The solution to the Fredholm equation is obtained in the Fourier domain
using a method of successive over-relaxation, and is mapped into the spatial domain
using the inverse Fast Fourier Transform. We apply this method to investigate the effect of
a soft damage zone around an earthquake fault on the co-seismic displacement field,
and on the earthquake slip distribution inferred from inversions of geodetic data. In the
presence of a kilometer-wide damage zone with a reduction of the effective shear modulus
of a factor of 2, inversions that assume a laterally homogeneous model tend to
underestimate the amount of slip in the middle of the seismogenic layer by as much as
20%. This bias may accentuate the inferred maxima in the seismic moment release at
depth between 3–6 km suggested by previous studies of large strike-slip earthquakes.
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1. Introduction

[2] Major crustal faults are often associated with zones of
highly cracked and damaged rocks that can extend as far as
102–103 m away from the slip interface [Ambraseys, 1970a;
Wilson et al., 2004; Chester et al., 2005]. Such zones may
result from inelastic deformation associated with the fault
growth [e.g., Vermilye and Scholz, 1998; Manighetti et al.,
2001] or repeated seismic ruptures [Rice et al., 2005;
Fialko, 2007]. Intense damage gives rise to a reduction in
the effective elastic moduli of the fault zone material, as
predicted by theoretical models [Rybicki, 1971; Kachanov,
1986; Lyakhovsky et al., 2001; Turcotte et al., 2003], and
evidenced by geodetic [Fialko et al., 2002; Fialko, 2004b;
Hamiel and Fialko, 2007] and seismic [Li et al., 1994;
Thurber et al., 2003; Cochran et al., 2006] observations.
Macroscopic compliant fault zones result in significant
lateral variations in the mechanical properties of the Earth’s
crust, and may affect the pattern of surface deformation
during the co-seismic, post-seismic, and inter-seismic
phases of the earthquake cycle. In this paper we investigate
the effect of a pre-existing damage zone on the co-seismic
displacement field, and spatially variable fault slip inferred
from inversions of geodetic data.

[3] We develop a new computationally efficient semi-
analytic model of the fault-induced deformation in an
arbitrarily heterogeneous and anisotropic medium. We use
integral transforms to reduce the problem to the Fredholm
integral equation of the second kind which is solved by
means of successive approximations [e.g., Delves and
Mohamed, 1985; Fialko et al., 2001]. The forcing terms
are the equivalent body forces representing dislocations
with prescribed slip [Eshelby, 1957; Burridge and Knopoff,
1964]. Our approach takes advantage of the convolution
theorem and the fast Fourier transforms [e.g., Frigo and
Johnson, 1998] and avoids the formation of a stiffness
matrix, such that the overall computational burden scales
only linearly with the model size. The method readily
allows one to simulate deformation due to fault slip in the
Earth’s crust or lithosphere with realistic variations in the
elastic moduli (e.g., as inferred from seismic tomography
data). It can be also extended to simulate the visco-elastic
response by taking advantage of the correspondence
principle, whereby the time-dependent response of a
visco-elastic medium is determined by applying the Laplace
transform and reducing a problem to a set of inhomogeneous
static problems in the transformed domain [e.g., Pollitz,
1997; Smith and Sandwell, 2004; Wang et al., 2006].
[4] In the next section, we present the elasto-static solu-

tion for heterogeneous media. The solution is implemented
for a case of a two-dimensional anti-plane deformation, and
verified against a number of available analytic solutions. In
section 3, we apply our method to investigate the effects of
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a macroscopic compliant fault zone on co-seismic slip
distributions inferred from inversions of geodetic data.

2. Semi-Analytic Model of Deformation in
Heterogeneous and Anisotropic Media

2.1. Theory

[5] Surface deformation due to slip on a fault can be well
described using solutions for dislocations in an elastic half-
space [Steketee, 1958; Savage and Burford, 1973; Fialko,
2004b]. As demonstrated by Burridge and Knopoff [1964],
one may transform the corresponding mixed boundary-
value problem into a stress boundary-value problem using
a body-force equivalent of the dislocation discontinuity in
terms of double couples. Under this approach, the solution
can simply be obtained from the integration of some forcing
terms f(x). The equivalent body force for a total displace-
ment u on a fault located at position x and oriented normal
to n̂(x) (see Figure 1), in a linear elastic medium with an
elasticity tensor C(x) is given by [e.g., Eshelby, 1957;
Burridge and Knopoff, 1964; Aki and Richards, 1980;
Alshits and Kirchner, 1995a, 1995b; Nemat-Nasser and
Hori, 1999]

f ¼ �r � C : u� n̂ð Þ ð1Þ

The static deformation resulting from fault slip satisfies the
conservation of linear momentum [e.g., Malvern, 1969]

r � sþ f ¼ 0 ð2Þ

subjected to the displacement-strain relation ����� = 1
2
[r � u +

(r� u)t], the stress-strain relation s = C: �����, and appropriate
boundary conditions. For a finite deformation source in an
elastic half-space, the relevant boundary conditions are zero
tractions at the free surface and vanishing displacements at
infinity.
[6] We now introduce the following iterative approach to

simulate a dislocation in a heterogeneous half-space. Con-
sider the decomposition of the elastic moduli into a constant
part �C and a heterogeneous part, C0(x) [e.g., Du et al., 1994],

CðxÞ ¼ �Cþ C0 xð Þ ð3Þ

The choice of �C is discussed in Appendix A. The
conservation of linear momentum can then be written

r � �C : �����ð Þ þ f þr � C0 : �����ð Þ ¼ 0: ð4Þ

The contribution r � (C0: �����) can be interpreted as equivalent
body forces mimicking the presence of heterogeneities.
These fictitious forces are uniquely related to the elastic
structure and can be distributed such that the resulting
deformation in a homogeneous medium is equivalent to that
in a heterogeneous medium. The proposed algorithm for
solving the heterogeneous problem consists in the following
steps: first, starting from the displacement field u0 = 0 (or
some non-trivial guess), compute the equivalent body force
at iteration n = 1,

~fn ¼ f þr � C0 : �����n�1ð Þ; ð5Þ

then solve the homogeneous problem

r � �C : �����nð Þ þ ~fn ¼ 0 ð6Þ

for the entire displacement field with appropriate boundary
conditions. Last, verify the convergence criterion

k ~fn � ~fn�1 k2
� �

k f k2h i < � ð7Þ

where � is the tolerance (hereafter, we use � = 10�6), and the
operator h . i denotes integration over the entire domain.
Steps (5) and (6) are repeated until condition (7) is satisfied.
The convergence criterion is a necessary condition to ensure
that the equivalent body forces adequately mimic hetero-
geneities in the elastic structure. The amplitude of stress and
the equivalent body forces is governed by the forcing term f,
which depends upon the magnitude of slip on the
dislocations and the local shear modulus, so the conver-
gence criterion (7) is scaled accordingly.
[7] The displacement field due to a dislocation in an

arbitrarily heterogeneous material can be obtained by itera-
tively solving the corresponding homogeneous problems
with the properly distributed body forces.

2.2. Anti-Plane Deformation

2.2.1. Implementation
[8] Here we implement the described procedure for the

case of an infinitely long screw dislocation in an elastic
half-space, with two-dimensional variations in shear modu-
lus [e.g., Barnett, 1972; Du et al., 1994]. The deformation is
anti-plane strain, as u2 = u3 = 0, the only non-zero displace-
ment component is u1 = u1(x2, x3), and the only non-zero
stress components are

s12 ¼ 2m �12 ¼ m u1;2

s13 ¼ 2m �13 ¼ m u1;3

ð8Þ

We now decompose the rigidity tensor into a constant part
and a heterogeneous part as follows,

m xð Þ ¼ �mþ m0 xð Þ ð9Þ

We use the method of images to satisfy the free-surface
boundary condition [Steketee, 1958; Smith and Sandwell,
2004]. The equivalent body forces act in the x1-direction
only, and we write f1(x) the sum of the equivalent body
forces and their image. The conservation of linear
momentum can now be written as

�m u1;22 þ u1;33
� �

¼ �f1 � m0u1;2
� �

;2
� m0u1;3
� �

;3
ð10Þ

which simplifies to the Poisson’s equation in case of
a homogeneous medium. After Fourier transforming,
equation (10) is reduced to an algebraic expression
representing the Fredholm integral equation of the second
kind (see Appendix A).
[9] We solve equation (10) by using a method of succes-

sive approximations in the spectral domain. Convergence of
the resulting series of iterated kernels is further discussed in
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the Appendix A. A similar approach was previously used to
study the cooling of the oceanic lithosphere [Sandwell,
1984], the mantle convection [Gable et al., 1991] and
complex composites in mineral structures [Moulinec and
Suquet, 1998; Lebensohn, 2001]. We employ the Successive
Over-Relaxation (SOR) technique to accelerate convergence
[e.g., Golub and Van Loan, 1996]. The iterative algorithm
for solving equation (10) is as follows: Starting from
û1
0(k) = 0 or some initial guess, compute the equivalent

body forces in the spectral domain for iteration n = 1

ĝn kð Þ ¼ f̂ 1 � w2 m̂0
* w2û

n�1
1

� �
� w3 m̂0

* w3û
n�1
1

� �
ð11Þ

where the hat denotes the relevant field in the transformed
domain and we use w = 2pk. The two-dimensional
convolutions, denoted by the symbol *, are performed in
the space domain, taking advantage of the fast Fourier
transform. Then, we update the displacement field using the
SOR method

ûn1 kð Þ ¼ fT kð Þĝn kð Þ þ 1� fð Þûn�1
1 kð Þ ð12Þ

where we have defined the transfer function

T̂ kð Þ ¼ 1

�m w2
2 þ w2

3

� � ð13Þ

An optimal value for the SOR parameter f for simple
problems (single fault embedded in a subspace of uniform
shear modulus) is f = �m/m* where m* is the shear modulus m
on the fault. This choice ensures the satisfaction of the
boundary conditions on the fault at any iteration, so that the

final solution is obtained with fewer iterations. If the
geometry prohibits one from using this simple definition,
the default value f = 1 should be preferred, which
corresponds to the successive approximation approach.
Finally, we evaluate the convergence criterion

k ĝn � ĝn�1 k2
� �

�
k f̂ 1 k2

� < � ð14Þ

where the norm is k f k2 = f f *, and the functional h k.k2 i =R1
�1 k.k2 dk denotes the total error inferred from the
Rayleigh’s theorem. In order to satisfy the boundary
condition of vanishing of displacement at infinity, we need
to enforce û1

n(0) = 0. This is done by setting T̂ (0) = 0. Steps
(11) and (12) are to be repeated until the convergence test
(14) is satisfied. The suggested algorithm uses the direct and
inverse two-dimensional Fourier transforms

f̂ kð Þ ¼
Z 1

�1
f xð Þe�i2pk�xdx

f xð Þ ¼
Z 1

�1
f̂ kð Þei2pk�xdk

ð15Þ

[10] The fault geometry is defined by the value of f1(x)
and can be readily expressed in the Fourier domain in an
analytic fashion. However, an accurate model depends upon
the quality of the frequency sampling and the fault slip
distribution should be tapered so that high frequencies
vanish as one approaches the Nyquist frequency. We suggest
two appropriate tapers which intensities are controlled by a
roll-off parameter b. For any value of b in the range 0 < b <
1/2, the tapers have a unit area and can be successively

Figure 1. Dislocation in a half-space. A fault idealized by a plane of normal vector n̂ is sliding in a
direction u. In anti-plane deformation, strike-slip occurs along the x1-direction.
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added so that only the tip of the fault or abrupt changes in
slip are tapered. The first is a linear taper

Pb xð Þ ¼
1; jxj < 1

2
� b

1

2b
1

2
þ b � jxj

� �
;

1

2
� b < jxj < 1

2
þ b

0; otherwise

8>>><
>>>:

~Pb kð Þ ¼ sinc kð Þsinc 2b kð Þ

ð16Þ

The second taper suppresses stress singularities at the tip of
a fault and allows for a better frequency sampling,

Wb xð Þ ¼

1; jxj < 1� 2b
2 1� bð Þ

cos p
1� bð Þjxj � 1

2
þ b

2b

� �2

;

1� 2b
2 1� bð Þ < jxj < 1

2 1� bð Þ
0; otherwise

8>>>>>>>>>><
>>>>>>>>>>:

ð17Þ

~Wb kð Þ ¼
sinc k

1�b


 �
þ 1� 2bð Þsinc k 1�2b

1�b


 �

2 1� b � 4k2 b2

1�b


 �

For b = 0, both tapers reduce to a simple boxcar function.
As an example, a vertical fault of unit length and slip,
starting at depth d, has the equivalent body-force in the
Fourier domain

f̂ 1 kð Þ ¼ � m*i2pk2e�p2Dx2
2
k2
2

� ~Wb k3ð Þ2 cos 2pk3 1=2þ dð Þð Þ ð18Þ

where we make use of the Gaussian representation of a unit
moment, Dx2 being the horizontal sampling interval, and
we utilize the shift property of the Fourier transform to add
the source and its image.
2.2.2. Benchmarks
[11] We test our semi-analytic solution against a number

of available analytic solutions for an elastic half-space with
the spatially variable elastic moduli. All benchmarks dis-
cussed below include a strike-slip fault extending from the
surface to a depth L, and having the surface slip s. Our
method allows one to treat dipping faults; for simplicity,
here we restrict our attention to vertical faults only.
[12] We begin with the case of an isotropic medium

with a contrast in shear modulus across a transform fault
(Figure 2a). The analytic solution for the surface dis-
placement is

u1 x2ð Þ ¼

2s

p
m2

m1 þ m2

tan�1 L

x2
; x2 < 0

2s

p
m1

m1 þ m2

tan�1 L

x2
; x2 > 0

8>><
>>:

ð19Þ

where m1 and m2 are the value of the shear modulus at each
side of the fault and s is the total slip across the dislocation.
As expected, the deformation is enhanced in the softer
region. Note an excellent agreement between the numerical
and analytic solutions.

[13] Next example illustrates the full post-seismic re-
laxation due to a visco-elastic substrate underlying the
elastic-brittle layer (Figure 2b). Viscous flow reduces the
co-seismically induced shear stresses below the brittle-
ductile transition. In the limit of full relaxation and no
secular deformation, the latter effectively becomes a
stress-free boundary [e.g., Fialko, 2004c]. The full visco-
elastic deformation can be evaluated by subtracting the
elastic half-space and the elastic plate solutions. The respec-
tive analytic solutions are available for the case of the anti-
plane strain [Weertman and Weertman, 1964; Rybicki, 1971;
Nur and Mavko, 1974; Barbot et al., 2008]. Because of the
finite displacement at far field, a numerical cosine transform
is more adequate to model the deformation. Our numerical
solution is in an excellent agreement with the analytic
expressions (see Figure 2). Note that the use of the SOR
method allows one to treat such problems with arbitrarily
large variations in elastic properties, as shown in this
example.
[14] We now consider deformation due to slip on a fault

embedded in a relatively narrow zone of damaged material
having a reduced effective shear modulus. An analytic
solution is available in the form of an infinite series [e.g.,
Rybicki and Kasahara, 1977]. The corresponding surface
deformation is shown in Figure 2. The semi-analytic solu-
tion well captures the localized deformation including a
discontinuity in strain at the interface between the fault zone
and the surrounding crust. The convergence is reached after
2 iterations, which takes only a few seconds for a 512 � 512
array on a low end laptop computer.
[15] Finally, we consider the case of faulting in an aniso-

tropic half plane with heterogeneous shear moduli. The
condition of anti-plane strain requires that the dislocation
lines extend along an axis of two-fold symmetry in the elastic
moduli tensor. A fault separating two media with anisotropic
shear moduli m12 and m13 satisfies this condition. Any anti-
plane isotropic solution can be generalized for the anisotropic
case by scaling the horizontal coordinate by a factor

a ¼
ffiffiffiffiffiffiffi
m13

m12

r
ð20Þ

Deformation in the presence of anisotropic heterogeneity
across a transform fault, as sketched in Figure 2d, exhibits
the following deformation profile at the surface:

u1 x2ð Þ ¼

2s

p
1

1þ a
tan�1 L

a x2
; x2 < 0

2s

p
a

1þ a
tan�1 L

x2
; x2 > 0:

8>><
>>:

ð21Þ

and is very well matched by the numerical solution
(Figure 2d). The wavelength of the deformation is larger on
the left side of the fault where the medium is more compliant
in the vertical direction. Solutions for dislocations in
heterogeneous anisotropic media are further discussed in
Appendix B.
[16] As one can see from Figure 2, there is a general

agreement between our semi-analytic approach and closed
form analytic solutions. We conclude that the proposed
iterative scheme can be efficiently used to model crustal
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Figure 2. Comparison between the analytic expressions and the numerical solutions for surface
displacements due to a fault slip in heterogenous media. a) Isotropic medium with a contrast of shear
modulus across the transform fault zone. b) Isotropic medium after full relaxation of a visco-elastic
substrate below the depth H. c) Isotropic medium with the compliant fault zone with total width 2W. d)
Contrast of anisotropy across the fault plane. The wavelength of deformation is larger in the softer
anisotropic crust, to the left of the rupture.
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deformation in the presence of arbitrary variations in the
effective elastic moduli in the Earth’s crust.

3. Co-Seismic Deformation in the Presence of a
Compliant Fault Zone

[17] Major crustal faults are often surrounded by zones of
highly cracked and damaged rocks, as evidenced by geologic
[e.g., Wilson et al., 2004; Chester et al., 2005; Dor et al.,
2006], seismic [Li et al., 1994; Thurber et al., 2003; Cochran
et al., 2006] and geodetic [Fialko et al., 2002; Fialko, 2004b;
Hamiel and Fialko, 2007] observations. Such zones intro-
duce significant lateral variations in the crustal rigidity, and
likely affect patterns of co-seismic deformation at the Earth’s
surface (see Figure 2c). Consequently, inversions of geodetic
data for the subsurface fault slip that are usually based on
solutions for homogeneous or horizontally stratified Earth’s
crust may be systematically biased.
[18] We investigate this potential bias by modeling the

co-seismic response of a heterogeneous brittle-elastic litho-
sphere in the presence of a damaged compliant fault zone.
We approximate the damage zone by using a reduced shear
modulus m in a finite vertical strip centered on the fault
plane and extending by the distance W in both directions
away from the fault plane. On the basis of preliminary
results from seismic tomography of the Calico fault zone in
eastern California [Cochran et al., 2006], we assume that
the effective shear modulus varies gradually from a back-
ground value m to a minimum value m/2 at the center of the
fault zone. We further assume that the fault zone width is six
times smaller than the depth extent of the co-seismic slip,W =
L/6, where L is the nominal locking depth. For a fault locking
depth of 12 km typical of California, the assumed thickness
of the compliant zone is 2 km, consistent with some geodetic
and seismic observations [Fialko et al., 2002; Fialko, 2004b;
Hamiel and Fialko, 2007; Cochran et al., 2006]. The fault
slip is assumed to be constant in the uppermost crust, and
gradually tapered to zero toward the bottom of the seismo-
genic zone according to the following expression,

sðx3Þ ¼ s0 Pb
2x3 � L

2L

� �
þPb

2x3 þ L

2L

� �� �
ð22Þ

where s0 is slip in the upper part of the fault. The assumed
slip distribution is shown by the solid line in Figure 3b for b =
0.4. The corresponding surface displacements are shown in
Figure 3a for a homogeneous half-space (solid line) and a
half-space with the compliant fault zone (dashed line). The
difference between the two model predictions is maximum
at a distance of O(W) away from the fault, where it reaches
�10% of the local displacement amplitude.
[19] We then invert the synthetic co-seismic surface

displacements for the fault slip distribution at depth. Using
the Green’s functions for a homogeneous elastic half-space,
we perform two sets of inversions: one for the case of a
heterogeneous half-space with a compliant zone, and
another for the case of a homogeneous elastic half-space.
The corresponding surface displacements are shown in
Figure 3a. As inversions of surface displacements are
intrinsically non-unique [e.g., Parker, 1994a; Mavko,
1981; Savage, 1990], we impose the non-negativity and
smoothness constraints to regularize the problem [see
Fialko, 2004b]. The resulting slip distributions are shown

in Figure 3b for the homogeneous (long dashed line) and
heterogeneous (short dashed line) models. Note that the use
of the non-negativity constraint makes the inversion a non-
linear one. One consequence of non-linearity is that the
difference between the inverted slip models (e.g., corres-
ponding to the homogeneous and heterogeneous forward
models) is not equivalent to the inversion of the difference
between the surface displacements (Figure 3a). Figures 3c
and 3d illustrate results of the inversion of the difference
between the synthetics for the homogeneous and heteroge-
neous half-space, and the difference between the slip dis-
tributions shown in Figure 3b, respectively. A comparison
between the slip models inferred from inversions, and the
assumed slip distribution (Figure 3b) shows that the neglect
of a compliant fault zone gives rise to an underestimation of
slip throughout much of the seismogenic layer. The largest
discrepancy (as much as 20%) corresponds to a depth
interval around x3 � 0.2 L. In addition, inversions neglect-
ing a compliant zone tend to overestimate slip below the
effective brittle-ductile transition (depths greater than L, see
Figure 3b). The effect of a vertical compliant zone on the
inferred slip distribution is opposite to the effect of hori-
zontal layering. The latter tends to bias the moment centroid
to shallower depths in slip inversions that assume a homo-
geneous elastic half-space [Simons et al., 2002; Fialko,
2004a; Hearn and Bürgmann, 2005].
[20] These results bear on the interpretation of co-seismic

deformation. In particular, inversions of high-quality geo-
detic data from several large strike-slip events including the
Landers, Izmit, Hector Mine, and Bam earthquakes [Simons
et al., 2002; Fialko, 2004b; Fialko et al., 2005] suggest that
the maximum seismic moment release occurs in the middle
of the seismogenic layer, with a peak in the interval between
3 and 6 km [Fialko et al., 2005]. Because co-seismic slip in
the uppermost part of the brittle layer (shallower than�3 km)
appears to be systematically less than slip at greater depth,
this pattern was referred to as the ‘‘shallow slip deficit’’
[Simons et al., 2002; Fialko et al., 2005]. It is of interest to
establish whether the shallow slip deficit inferred from
inversions of geodetic data represents actual variations in
seismic slip with depth, or is an artifact of inversions (e.g.,
due to an oversimplified representation of the mechanical
response of the Earth’s crust to fault slip). Results presented
above suggest that previous inferences of the shallow slip
deficit may be in fact conservative, as inversions based on
homogeneous or horizontally stratified elastic half-space
models likely underestimate the amount of slip in the depth
interval between�3–6 km if earthquake faults are embedded
in large damage zones with reduced effective elastic moduli
(Figure 3b).
[21] The semi-analytic approach described in this paper

allows one to accurately and efficiently calculate deforma-
tion due to fault slip in a heterogeneous elastic half-space
under conditions of anti-plane strain. This approach can be
readily extended for the general case of three-dimensional
(3-D) deformation. The 3-D formulation will be presented
in a separate paper.

4. Conclusions

[22] We derived an iterative approach to model disloca-
tions in heterogeneous and anisotropic media for the case of
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two-dimensional (anti-plane strain) deformation appropriate
for infinitely long strike-slip faults. The method requires
solving homogeneous problems with equivalent body forces
that account for arbitrarily distributed elastic heterogeneities
in the Earth’s crust. By making use of a series of integral
transforms, the problem is reduced to the Fredholm integral
equation of the second kind. The computational burden is
alleviated by the application of the convolution theorem and
the use of fast Fourier transforms. We have tested our
numerical scheme against analytic solutions for surface
displacements due to a finite dislocation with variable slip.
The comparisons showed a very good agreement between
the numerical and analytic solutions, indicating that the
proposed method can be used to model deformation in
heterogeneous and anisotropic media with essentially arbi-
trary distribution of elastic moduli.

[23] We applied the Fredholm iterative scheme to model
the co-seismic displacements in the presence of a narrow
compliant zone with gradual variations in the shear modu-
lus. Inversions of the corresponding surface displacements
for subsurface fault slip show that models that neglect the
presence of compliant damage zones around earthquake
faults may underestimate fault slip by as much as 20% in
the middle of the seismogenic layer. This bias implies more
accentuated shallow slip deficit than suggested by previous
studies of large strike-slip earthquakes, provided that the
investigated earthquake ruptures are surrounded by wide
damage zones.

Appendix A: Convergence Condition

[24] The displacement field due to a screw dislocation in
a heterogeneous isotropic medium is, when expressed in the

Figure 3. (a) Synthetic co-seismic surface displacements in a homogeneous crust (solid line) and in a
laterally heterogeneous crust with a compliant zone (dashed line). (b) Slip inversions of surface
displacements for the initial slip distribution shown by the continuous profile. (c) Inversion of the
algebraic difference between the homogeneous and the heterogeneous synthetics. (d) Difference between
the inversions of the homogeneous and heterogeneous synthetics.
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Fourier domain, the solution of the Fredholm integral of the
second kind

û kð Þ ¼ f̂ 2
�m4p2k � k þ

Z 1

�1
K k; sð Þû sð Þds ðA1Þ

where the kernel K(k, s) is

K k; sð Þ ¼ k � s
k � k

m̂0 k � sð Þ
�m

: ðA2Þ

The estimation of û(k) can be performed by successive
approximations

û kð Þn¼ T û kð Þn�1
h i

: ðA3Þ

The corresponding series converges if

kT û kð Þn½ � � T ½û kð Þnþ1� k < k û kð Þn�û kð Þnþ1k ðA4Þ

where we use the infinite norm

k f k2¼ max
R2

f kð Þf * kð Þ ðA5Þ

As T [.] is a linear operator, we can write

T
�
ûn
�
� T ûnþ1

� �
¼ T ûn � ûnþ1

� �
¼

Z 1

�1
K k; sð Þ û sð Þn�û sð Þnþ1


 �
ds ðA6Þ

Applying the Cauchy-Schwarz inequality, we have

����
����
Z 1

�1
K k; sð Þ û sð Þn�û sð Þnþ1


 �
ds

����
����

<

����
����
Z 1

�1
K k; sð Þds

����
����
����
����û kð Þn�û kð Þnþ1

����
���� ðA7Þ

Combining equations (A4) and (A7), the convergence of the
successive approximation method is obtained if

�����
�����
Z 1

�1
K k; sð Þds

�����
����� < 1 ðA8Þ

Evaluation of the above integral gives

Z 1

�1
K k; sð Þds ¼

Z 1

�1

k � s
k � k

m̂0 k � sð Þ
�m

ds

¼
Z 1

�1

m̂0 sð Þ
�m

ds�
Z 1

�1

k � s
k � k

m̂0 sð Þ
�m

ds

¼ m0 0ð Þ
�m

þ i2pk � rm0 0ð Þ
�4p2k � k �m ðA9Þ

where the last step is obtained by application of the moment
theorem [Bracewell, 2003]. We also require invariant
convergence properties upon translation, so after Fourier
transforming (A9) to the space domain, one obtains the
convergence criterion

m0 xð Þ
�m

����
���� < 1

2
ðA10Þ

where j.j denotes the absolute value. The optimal choice for
�m, that allows the maximum range of deviations, is

�m ¼ 1

2

�
max
R2

m xð Þ þmin
R2

m xð Þ
�

ðA11Þ

[25] We have implemented the suggested algorithm for
the case of the transform fault (Figure 2a) and performed a
series of calculations for various values of �m. Results shown
in Figure A1 indicate that convergence is obtained only for
�m min m(x) and that the optimal convergence rate is
obtained for the value predicted by (A11). When using

Figure A1. Convergence rate of the proposed algorithm as a function of the homogenization constant �m.
The successive approximation works best for the value predicted by equation (A11) (as denoted by
arrow). When using SOR, convergence is obtained for all range of �m with an accelerated rate.
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SOR, there is much less sensitivity to the choice of �m, as
convergence is always reached, and convergence rates are
always faster compared to the successive approximation
method.

Appendix B: Anisotropy

[26] Here we implement the suggested procedure for the
case of anti-plane strain in the presence of arbitrary hetero-
geneity and anisotropy. The non-zero stress components are

s12 ¼ 2C1212e12 ¼ m12u1;2

s13 ¼ 2C1313e13 ¼ m13u1;3

ðB1Þ

where we denote, for the sake of simplicity, the shear
moduli as m12 = C1212 and m13 = C1313. Note that for an
isotropic medium, m = C1212 = C1313. The rigidity tensor is
decomposed into a constant part and a heterogeneous part as
follows,

m12 xð Þ ¼ �m12 þ m0
12 xð Þ

m13 xð Þ ¼ �m13 þ m0
13 xð Þ

ðB2Þ

and the conservation of linear momentum is written

�m12u1;22 þ �m13u1;33 ¼ �f1 � m0
12u1;2

� �
;2
� m0

13u1;3
� �

;3
ðB3Þ

The algorithm is essentially the same as in the isotropic
case, but the equivalent body forces, corresponding to (11)
in the isotropic case, become

ĝn kð Þ ¼ f̂ 1 � w2 m̂0
12 � w2û

n�1
1

� �
� w3 m̂0

13 � w3û
n�1
1

� �
ðB4Þ

The transfer function is

T̂ kð Þ ¼ �m12w
2
2 þ �m13w

2
3

� ��1 ðB5Þ

and an optimal value for the SOR parameter is now f = �m12/
m12* where m12* is the horizontal shear modulus m12 on the
fault. Similarly, the relevant elastic parameter for the body
force representation in the presence of anisotropy is m12

[Burridge and Knopoff, 1964]. As an example, a vertical
fault of length L and slip s, starting at depth d, has the
equivalent body-force

f̂ 1 kð Þ ¼ � sm*12i2pk2e
�p2Dx2

2
k2
2

� L ~Wb L k3ð Þ2 cos 2pk3 L=2þ dð Þð Þ ðB6Þ

Our solution for a dislocation in a heterogeneous and
anisotropic half plane favorably compares to the analytic
one, as shown in Figure 2 in the main text.
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