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Abstract 

The US is one of the leading global producers of paper industry with ap-

proximately 24 percent of the share of world paper supply. Despite diversity 

of the feedstock and production methods, C rich papermill biosolids (PB) is a 

major byproduct of paper production process. Landfilling is the predominant 

method of PB management. Increasing landfill cost and its potential envi-

ronmental consequences have incentivized research and development efforts 

to find beneficial uses for PB. This sensible option reduces the overall paper 

production costs and increases environmental sustainability. Pelletization of 

PB increases its marketability by reducing transportation costs. This green-

house study was conducted to gain a better understanding of the properties 

and effects of a recently developed pelletized papermill biosolids (PPB) on 

bell pepper (Capsicum annuum L.) and soil. Urea and PPB were each applied 

at four total N rates equivalent to 45, 90, 135, and 180 kg N ha−1 and an addi-

tional control treatments of 0 N was included. The total C and N concentra-

tion in this PPB were 379 and 14 g∙kg−1 respectively and its C:N ratio was 

27.2. Nitrogen treatment significantly (P ≤ 0.0839) influenced pepper height, 

dry biomass, N concentration, and N uptake. Plant height ranged from 31.2 

to 44.4 cm; 135 kg∙ha−1 urea-N and PPB-N produced the tallest and shortest 

plants respectively. Dry biomass of the pepper that did not receive any N, 

those treated with urea-N or PPB-N were 5.3, 5.7 - 7.5, and 5.9 - 6.5 g∙plant−1 

respectively. Nitrogen concentration in control treatment (0 N) was 36.4 

g∙kg−1 and that of pepper treated with any N ranged from 32.0 - 40.7 g∙kg−1. 

There was an inverse numerical, albeit not always statistically significant, re-

lationship between PPB rate and plant N concentration. Generally, pepper 

treated with urea removed significantly more N from soil than control or PPB 

treated pepper. Nitrogen uptake by plants that did not receive any N and 

those amended with urea or PPB were 194, 229 - 270, and 155 - 164 

mg∙plant−1 respectively. Pepper N uptake and concentration data indicate that 
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higher rates of PPB resulted in immobilization of native soil and PPB-N due 

to its wide C:N ratio (27.2). Nitrogen treatment significantly influenced soil 

pH, SOM, total C and N (P > 0.1). Soil organic matter and total C in 

post-harvest soil samples were 17.4 - 19.4 and 21.9 - 35.0 g∙kg−1 respectively. 

The observed increase in soil total C and SOM highlights the potential bene-

ficial use of PPB as a means to improve soil health and sequester C in soil. 

Narrowing the C:N ratio of PPB, by coapplication or incorporation of the 

mineral N into the pellets will make it an attractive organic N fertilizer. 

 

Keywords 

Pelleted Papermill Biosolids, Pepper, Nitrogen, Urea, Beneficial Use 

 

1. Introduction 

The US paper industry produces more than 24% of the world paper using several 

chemical and mechanical methods for production of paper from pulp [1]. Re-

gardless of the production method, biosolids is a major byproduct of paper pro-

duction. Approximately 5.5 million Mg of dry papermill biosolids (PB) is pro-

duced by the US pulp and paper industry [2]. Traditionally landfilling has been 

the most widely used method of PB management. The increasing costs and en-

vironmental concerns about this practice have necessitated research and devel-

opment efforts to find a more sustainable solution for PB management. Paper-

mill biosolids is a mixture of organic compounds such as lignin, cellulose, hemi-

cellulose and secondary treated PB contains N, P and additional nutrients. In 

recent decades beneficial utilization of PB as a soil amendment has emerged as a 

sensible alternative to landfilling. A median N and P values of 23.3 and 4.2 g kg−1 

respectively were reported for a secondary treated PB Camberato et al. (1997) 

[3], Camberato et al. (2006) [4]. The organic C, total N, and total P content of 

another secondary treated PB were 238, 26.7, and 15.3 g∙kg−1 respectively Price et 

al. (2007) [5]. These results demonstrate that plant nutrients (N, P) and organic 

matter content of PB is determined by the feedstock, paper production method 

and biosolids treatment process, thus they can be quite variable. This variability 

indicates that each specific type of PB should be evaluated and utilized based on 

its effect on soil plant system to ensure a successful beneficial use program.  

The effect of various PB on crop and soil has been investigated in field and 

greenhouse studies with a variety of crops. Application of 100 Mg∙ha−1 PB with a 

C:N of 86 reduced barley (Hordem vulgare L.) yield as compared to non-amended 

plants Aitken et al. (1998) [6]. Grain yield and N use efficiency of corn (Zea 

Mays L.) treated with 150 kg total N ha−1 from two PBs with C:N ratio of 13 and 

50 were 11.9 and 6.9 Mg∙ha−1 and 12% to 22% respectively (P ≤ 0.001) Gagnon et 

al. (2012) [2]. According to Vagstad et al. (2001) [7] application of 10 Mg PB 

ha−1 with C:N ratio of about 30 or more tended to decrease barley grain yield. 

Application of a PB with C:N ratio of 14 increased the yield and N uptake of 
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barley while application of another PB with C: N ratio of 31 did not influence the 

dry bean (Phaseolus vulgare L.) yield Ziadi et al. (2013) [8]. They also reported 

that anion exchange extractable soil NO3-N was decreased by application of a 

deinking PB with C:N ratio of 65 (N-immobilization) and increased with appli-

cation of a combined (primary and secondary treated) PB with C:N ratio of 14 

[8]. Net N mineralization in an Entisol amended with 10 Mg∙ha−1 of a PB (C:N = 

15.5) was not significantly more than that of the non-amended soil San Martin 

et al. (2016) [9]. In general application of PB with wide C:N ratio had increased 

N immobilization but application of PB with low C:N ratio had increased soil 

inorganic N Nunes et al. (2008) [10], Cabral et al. (1993) [11]. These outcomes 

indicate that the C:N ratio of the PB is a major determinant of the crop response 

to PB application. Most researchers have suggested that a C:N > 30 will nega-

tively impact crop yield potential and some have even reported a critical C:N ra-

tio of 20 - 30 Cordovil et al. (2007) [12], Sims (1990) [13]. 

Amending soil with PB increased soil C and thus organic matter and the 

magnitude of the increase was dependent on PB composition and application 

rate [4] [14] [15]. For example amending a soil with 40, 80, and 120 Mg∙ha−1 of 

secondary treated PB increased the soil organic C by 0.4, 0.6, and 1.3 g∙kg−1 re-

spectively [10]. These studies clearly demonstrate that soil and plant response to 

PB depends on several factors including its chemical properties (a function of 

production methods), application rate, and crop grown. Thus a successful bene-

ficial use program requires information on crop and soil response to PPB when 

it is applied at agronomically reasonable rates. 

Only a small percentage of total amount of PB produced in the US is currently 

utilized as a beneficial soil amendment, despite environmental and economic 

benefits of this sustainable practice. Widespread beneficial use of PB has been 

hampered by its high moisture content and bulky nature which increases the 

cost of long-distance transport and the need for specialized field application 

equipment. Pelletization (by heat and pressure) of biosolids will help to over-

come these obstacles. Cooperative efforts in the US have led to successful devel-

opment of a new pelleted papermill biosolids (PPB) which is a mixture of PB and 

a byproduct of cow manure. This newly developed PPB is currently at testing 

stage of product development. The objectives of this research were to measure 

and compare the effects of several rates of PPB, urea, and a 0 N control on pep-

per: 1) plant height; 2) N concentration and uptake; 3) selected soil properties.  

2. Experimental Procedures 

A replicated greenhouse experiment was conducted at the University of Arkan-

sas Northeast Research and Extension Center (NEREC) in Keiser Arkansas in 

2017 (N: 35.674988˚, W: −90.084732˚). We evaluated pepper and soil response 

to urea and PPB each applied at four total N rates equivalent to 45, 90, 135, and 

180 kg total N ha−1. The PPB applications rates were approximately equivalent to 

2.24, 4.48, 6.72, and 8.48 Mg ha−1 on as is basis. A control treatment of 0 N was 
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also included. Detailed experimental treatments are listed in Table 1. Experi-

mental design was a randomized complete block and each treatment was repli-

cated five times.  

Greenhouse Cropping: 

A bulk sample of the 0 - 15 cm depth of a soil mapped as Deerfield loamy fine 

sand (mixed, mesic Aquic Udipsamments) was collected, dried to constant 

moisture in a forced-air oven at 40˚C, and ground to pass a 2-mm sieve. Dried 

soil sample was thoroughly mixed in a new cement mixer. Soil texture was 

measured by the hydrometer method [16]. Soil pH was measured by 1:1 soil: 

water [17] and soil organic matter (SOM) was measured gravimetrically by loss 

on ignition (LOI) [18]. Soil total carbon (C) and N were measured by combus-

tion using an Elementar Variomax instrument [19]. Soil NO3-N and NH4-N 

were extracted by 2-M KCl and measured on a Skalar auto analyzer [20]. Those 

two are the inorganic sources of soil N which are taken up by plants. Mehlich-3 

extractable nutrients were measured by the standard procedure [21]. The PPB 

was ground to fineness in a new coffee grinder and analyzed for pH, total C, N, 

NO3-N and NH4-N as mentioned before. Total P and K in the PPB were meas-

ured as outlined by Peters [22]. 

We amended the bulk soil sample with monocalcium phosphate ((CaH2PO4)2), 

potassium chloride (KCl), sulfate of potash and magnesia (Sul-Po-Mag), zinc 

sulfate (ZnSO4) and pelletized lime to supply the equivalent of 56, 112, 36, 48, 

8.4, and 2800 kg∙ha−1 of: P2O5, K2O, Mg, S, Zn, and lime respectively. This en-

sured that N was the only soil amendment that could limit pepper yield potential.  

The experimental units consisted of 24-cm diameter-7.2-liter black plastic 

pots. The required amount of N-treatment for all five replications of each treat-

ment was thoroughly mixed with the appropriate quantity of soil in a cement  

 

Table 1. Nitrogen sources, total N application rates, and eight N-treatments for a pepper 

experiment conducted in a greenhouse at the University of Arkansas Northeast Research 

and Extension Center in Keiser, Arkansas in 2017.  

N source Amendment rate Total N rate N-treatment 

 kg∙ha−1 kg N ha−1  

None 0 0 none 

Urea 98 45 Urea-45 

Urea 195 90 Urea-90 

Urea 292 135 Urea-135 

Urea 382 180 Urea-180 

PPB 2240 45 PPB-45 

PPB 4480 90 PPB-90 

PPB 6720 135 PPB-135 

PPB 8480 180 PPB-180 
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mixer. Then 9 kg of N-treated soil was transferred from cement mixer into each 

plastic pot and the pot was tamped three times to create a uniform soil bulk den-

sity. Five seeds of a bell pepper Hybrid “Alliance F1” were planted in each pot on 

5-July 2017 and thinned to one seedling per pot five days after germination. 

Pepper was grown for 89 days. Greenhouse temperature was set to maintain at 

24˚C. Supplemental light was provided 12 hrs∙day−1 from 7:00 am to 7:00 pm 

and pepper was watered as needed. Pepper was grown for 77 days and harvested 

on 3-October 2017.  

Post-harvest Pepper and Soil Sample Collection and Analysis 

At the end of the study, we measured and recorded the height of each pepper 

plant from the lowest node above the soil level to the top of the apical meristem, 

then cut the total above-ground portion of each plant at 1 cm above the soil lev-

el. Plant samples were dried to constant weight in a forced-air oven and their dry 

biomass was recorded. Plant samples, from all five replications, were ground in a 

Willey Mini-Mill to pass a 20-mesh sieve and analyzed for total N with combus-

tion method [19]. Total N uptake per plant was calculated by multiplying the 

whole plant dry biomass by its respective N concentration.  

After pepper harvest we transferred the soil from each pot (selected 

N-treatments, 0, 90 and 180 kg total N ha−1) to a clean plastic tub, removed the 

roots manually, mixed the soil thoroughly, and collected representative samples 

by the quarter method. Postharvest soil samples were dried as described, ground 

to pass a 2-mm-sieve and analyzed for pH, total N, NH4-N, NO3-N, and SOM as 

described above.  

Statistical Analysis 

The effect of N-treatment on pepper growth parameters and selected soil 

properties were evaluated by analysis of variance using the SAS software pack-

age. When appropriate, means were separated by the least significant difference 

(LSD) method and interpreted as significant when P ≤ 0.10.  

3. Results and Discussion 

Characterization of Soil and PPB 

Analysis of the pre-amendment soil indicated that the soil texture was sandy 

loam where sand and clay were the most and least predominant soil particles 

respectively. Soil pH was 5.5, SOM, total C and N were 28, 12.4 and 0.64 g∙kg−1 

respectively (Table 2). Soil inorganic N was low (13.2 mg∙kg−1) and was predo-

minated by NH4-N. Mehlich-3 extractable K was 28 mg∙kg−1 indicating the need 

for supplemental K fertilization.  

The pH of PPB was 7.7 and was within the range of values reported by other 

PB researchers [5] [8] [23] [24] [25]. Total C and N concentrations were 379 and 

14 g∙kg−1 respectively and the C:N ratio was 27.2 (Table 3). Concentration of 

total C and N in a mixed pelleted biosolids was 260 and 16.8 g∙kg−1 respectively 

[9] [5]. Total C and total N concentrations of 256 and 3.0 g∙kg−1 respectively 

were reported for a PB sample from a Papermill in Canada [5]. Total C and N  
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Table 2. Selected mean (n = 2) chemical properties of the thoroughly mixed untreated bulk soil sample of the surface horizon of a 

Deerfield loamy fine sand that was used in the greenhouse study with pepper at the University of Arkansas Northeast Research 

and Extension Center, in Keiser, Arkansas in 2017. 

Soil pH 
Sand Silt Clay 

Soil Organic 

Matter 
Total C Total N NO3-N NH4-N 

Mehlich-3-extractable nutrients 

 P K Ca Mg 

 -------------------------------- g∙kg−1 ----------------------------------- --------------------------- mg∙kg−1 --------------------------- 

5.5 630 300 70 28 12.42 0.64 1.52 11.70 75 28 176 25 

 

Table 3. Selected mean properties of the finely ground sample of the pelletized Papermill biosolids (PPB) that was used in a 

greenhouse study with pepper at the University of Arkansas Northeast Research and Extension Center in Keiser, Arkansas in 

2017.  

Test Material pH Total C Total N C/N ratio NH4-N P2O5 K2O 

  ------------------------------------ g∙kg−1 -------------------------------------- 

Pelletized Papermill biosolids (PPB) 7.7 378.7 13.9 272 0.18 5.0 6.8 

 

concentrations of 276 and 3 mg∙kg−1 and C:N of 92 respectively have been re-

ported for another PB [10]. Total C and N concentration range of 329 - 438 and 

10.5 - 31.5 g∙kg−1 respectively were reported for two combined PB [8]. 

The C and N concentration of this newly developed PPB suggest its potential 

as an organic source of N. Nitrate-N was below the detection limit and NH4-N 

was very low (0.18 g∙kg−1) therefore organic N was the predominant source of N. 

This is in agreement with others including Gagnon et al. (2012) [2] who re-

ported that only 1% of total N in a combined PB was in NH4-N. The C:N ratio 

and low inorganic N content of this PPB suggested that N mineraliza-

tion/immobilization was the key decisive factor in determining its N supplying 

capacity. The PPB contained several other plant essential nutrients including P 

and K, thus it is a potential high organic matter low grade source of those two 

nutrients.  

Pepper Response to N-treatment 

Pepper dry biomass, N concentration, and N uptake were significantly (P ≤ 

0.0839) influenced by N-treatment (Table 4). Plant height ranged from 31.2 to 

44.4 cm where 135 kg ha−1of urea-N and PPB-N produced the tallest and short-

est plants respectively. Dry biomass of the peppers that did not receive any N, 

those treated with urea-N or PPB-N were 5.3, 5.7 - 7.5, and 5.9 - 6.5 g∙plant−1 re-

spectively. Pepper that did not receive any N and that treated with 45 kg urea-N 

ha−1 produced the numerically smallest and largest plant dry biomass (5.3 vs 7.5 

g∙plant−1). This numerical trend is consistent with Gagnon et al., (2012) [2] who 

reported corn dry biomass of 7, 9.7, and 14 Mg∙ha−1 for plants that received 0 

and 150 kg N ha−1 from PB and mineral N fertilizer respectively. Pepper ferti-

lized with 180 kg urea-N ha−1 appeared dark green and produced significantly 

smaller dry biomass than plants treated with 45 kg urea-N ha−1 reflecting excessive 

N supplied by that higher N-rate. Pepper amended with high PPB rates exhibited 

visual symptoms consistent with N deficiency (yellowing of the lower leaves).  
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Table 4. Pepper plant height, whole plant dry biomass, N concentration and total N uptake as affected by N-treatment from urea 

and pelletized Papermill biosolids (PPB) in a greenhouse study conducted at the University of Arkansas Northeast Research and 

Extension Center in Keiser, Arkansas in 2017.  

N source Total N-rate N-treatment Plant height Plant dry biomass N concentration N uptake 

 kg∙ha−1  cm g∙plant−1 ---- g∙kg−1 ---- mg N plant−1 

None 0 none 35.3bcz 5.3c 36.4ab 194cde 

Urea 45 Urea-45 37.2b 7.5a 36.2bc 270a 

Urea 90 Urea-90 35.3bc 6.1bc 40.7a 249ab 

Urea 135 Urea-135 44.4a 7.4a 36.3abc 269a 

Urea 180 Urea-180 37.5b 5.7bc 39.8ab 229c 

PPB 45 PPB-45 33.8bc 6.5ab 32.0cd 208cd 

PPB 90 PPB-90 33.8c 6.0bc 28.9de 164ef 

PPB 135 PPB-135 31.2c 5.9bc 27.8de 155f 

PPB 180 PPB-180 32.5c 6.4abc 25.7e 163f 

P-value   0.0021 0.0839 <0.0001 <0.0001 

zmeans followed by the same letter are not significantly different at P-value = 0.10. 

 

Dry biomass of PPB treated pepper was 5.9 to 6.5 g∙plant−1, was not significantly 

affected by PPB rate and was not generally different than plants that did not re-

ceive any N. Similar to our work, Norris et al. (2012) [26] reported that increas-

ing the PB application rate decreased the dry biomass of perennial ryegrass (Lo-

lium Perrenne L.).  

Nitrogen treatment significantly influenced pepper N concentration (P < 

0.0001). The N concentration of pepper that did not receive any N was 36.4 

g∙kg−1 and that of pepper receiving urea-N or PPB-N were 36.2 - 40.7 and 25.7 – 

32.0 g∙kg−1 respectively. Increasing PPB rate consistently albeit not always signif-

icantly lowered the plant N concentration. This is in agreement with Simmard et 

al. (1998) [27] who reported that increasing PB application rate decreased N 

concentration in barley grain and straw. Similar results were reported by others. 

Nitrogen concentration of pepper treated with any PPB-N was 13% - 30% less 

than pepper that did not receive any N and 12% - 27% less than plants fertilized 

with any urea-N (P < 0.0001). The lower pepper N concentrations are consistent 

with the general yellowish green color of the PPB amended pepper. Reduction in 

crop N concentration in soil amended with PB has also been reported by others 

[26] [28]. 

Pepper N uptake was significantly (P < 0.0001) influenced by N-treatment and 

reflected the combined effect of N-treatment on plant dry biomass and N con-

centration. Nitrogen uptake by pepper that was not fertilized with any N, 

urea-N, and PPB-N was 194, 229 - 270, and 155 - 164 mg∙plant−1 respectively. In 

general urea-N treated pepper removed significantly more N from soil; pepper 

fertilized with 180 kg urea-N ha−1 was an exception. A similar trend was ob-

served by Gagnon et al. (2012) [2] who noted that N accumulation by silage corn 
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fertilized with 150 kg inorganic N ha−1 was significantly more than corn treated 

with the same amount of total N from a PB with C:N ratio of 50. Smaller pepper 

N uptake at the highest rate of urea-N is a reflection of smaller plant dry biomass 

caused by excessive N supply as evidenced by dark green plant color. In general, 

pepper treated with urea-N removed more N (from the soil) than plants treated 

with PPB-N. Nitrogen uptake by plants amended with ≥90 kg PPB-N ha−1 was 

significantly less than pepper that did not receive any N. The N concentration 

and uptake data indicate that higher rates of PPB resulted in microbial seques-

tration of the native soil and PPB-N due to its high organic C content. This is 

supported by the relatively wide C:N ratio (27.2) and very low inorganic N con-

tent of our PPB. Nitrogen immobilization has been reported when PB with C:N 

ratio > 30 was applied to soil by others [26] [27] [28]. Other researchers, have 

noted N immobilization at C:N ratio of 12 - 30 [12] [13] [29]. Our data indicates 

that for this particular PPB, N immobilization occurred at the C:N of 27.2. From 

a beneficial use perspective, N immobilization, caused by wide C:N ratio of an 

organic byproduct, can be mitigated by co-application of inorganic N [30] [31] 

or incorporation of inorganic N into the pellets Zerbath et al. (2005) [32], Paw-

lett et al. (2015) [33], Smith et al. (2015) [34], and Antille et al. (2014) [35]. 

Post-Harvest Soil Samples 

Soil pH, SOM, total C, N, NH4-N, and NO3-N were significantly influenced by 

N treatment (P > 0.1, Table 5). Soil organic matter and total C in post-harvest 

soil samples ranged 17.4 - 19.4 and 21.9 - 35.0 g∙kg−1 respectively. Application of 

180 kg PPB-N ha−1 produced significantly more SOM than the other treatments 

and total C in soil treated with any 180 kg N ha−1 was significantly more than all 

other treatments. This confirms that PPB is a good source of C and organic 

matter similar to the other types of bulk PB investigated by other researchers [2] 

[5] [15], Manirakiza et al. (2019) [36], Foley et al. (2002) [37], and N’Dayegamiye 

et al. (2003) [38]. The observed increase in SOM and total C brought about by 

PPB, points to the potential soil health benefits of PPB, provided that its C:N ra-

tio can be reduced to control microbial sequestration of N. The concentration of 

NH4-N was low (0.11 to 1.63 mg∙kg−1) and in general decreased with increasing 

 

Table 5. Effect of urea and pelleted papermill biosolids (PPB), each applied at two total N rates on selected chemical properties of 

the soil samples taken from experimental pots after pepper harvest for a greenhouse study conducted at the University of Arkansas 

Northeast Research and Extension Center in Keiser, Arkansas in 2017.  

N source Total N-rate Soil pH Soil organic matter Total C Total N NH4-N NO3-N 

 kg ha−1  ----------------- g kg−1 --------------- ------- mg kg−1 -------- 

None 0 6.2bz 17.8b 22.4c 1.8b 1.63a 7.2c 

Urea 90 5.8c 17.4b 23.8bc 1.8b 1.29ab 46.4a 

Urea 180 5.7d 18.0b 32.0a 1.1c 0.40cd 28.0b 

Pelleted papermill biosolids 

(PPB) 
90 6.1b 17.5b 21.9c 1.9c 0.62bcd 4.4c 

PPB 180 6.4a 19.4a 35.0a 1.0c 0.11d 3.8c 

P-value <0.0001 0.0278 <0.0001 <0.0001 0.020 <0.0001 

zmeans followed by the same letter are not significantly different at P-value = 0.10. 
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N application rate. Total N in post-harvest soil samples ranged 1.0 - 1.9 g∙kg−1, 

the highest and lowest total N were observed in soil that did not receive any N 

and soil treated with 180 kg PPB-N ha−1 respectively.  

The pH of the soil that did not receive any N (control) was 6.2, and that of the 

soils treated with urea or PPB were 5.7 - 5.8 and 6.1 - 6.4 respectively. The lower 

pH of the urea-N treated soil, as compared to control, is attributed to hydrolysis 

of urea-N to NH4 and its subsequent conversion to NO3-N (nitrification). This is 

supported by the significantly lower concentration of NO3-N (7.2 mg∙kg−1) in the 

control soil as compared to urea-N treated soils (28 - 46 mg∙kg−1, Table 5). It is 

well established that conversion of one mole NH4 to NO3 releases five H ions. 

Hydrogen ion secretion by plant roots during nutrient uptake may have also 

contributed to reducing the soil pH. Acidifying effect of mineral fertilizers has 

also been reported in similar experiments Vagstad et al. (2001) [7]. In contrast to 

that, application of high rate of PPB-N significantly increased the soil pH by 0.2 

units. This is consistent with Nunes et al. (2008) [10], who noted that application 

of 40 Mg ha−1 of PB increased the pH of two soils by 1 and 1.6 units. Similar re-

sults had been reported Cabral et al. (1993) [11]. The numerical decrease in 

post-harvest soil NO3-N had been observed by Douglas et al. (2003) [28].  

4. Concluding Remarks  

Our greenhouse study established that this newly developed PPB is an excellent 

source of organic matter that will improve the soil health and enhance C seques-

tration. It also contains some P. The C:N ratio of this PPB should be reduced to 

make it an attractive source of organic N for a pepper crop. Future research to 

determine the optimal rate of supplemental N that should be co-applied or in-

corporated into this PPB will enhance its widespread use as a beneficial soil 

amendment.  
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mg: milligram. 
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