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Abstract: A study is presented to examine the one-horizontal dimension effect of a shallow shelf obstacle on nonlinear long wave runup.
Due to the large horizontal-vertical aspect ratio of this problem, it is not well suited for experimental analysis, and therefore this study is
purely numerical. Simulations are performed for various incident wave conditions, obstacle height and widths, and final beach slopes.
Many of the setups involve breaking, either through approaching the obstacle as a large breaking bore, incipient breaking on top of the
obstacle, or breaking during the beach uprush. The general conclusion of this study is that, for highly nonlinear waves ���wave
height/shelf water depth �0.5�, the obstacle will always act to reduce the runup and the maximum overland velocity. However, for very
small obstacle lengths, particularly for extremely large waves, this reduction may be practically inconsequential. Interestingly, for weakly
nonlinear waves ���0.1�, due to front steepening over the obstacle, greater overland velocities can result from increasing obstacle length.
Consistent with previous studies, it is found that the final beach slope is of primary importance for determining the runup.
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Introduction

As a nonlinear long wave, such as a tsunami, approaches the
shoreline, it inevitably interacts with any coastal features in its
path, such as reefs, bars, and dunes. The role of these obstacles, as
noted in a handful of post-tsunami surveys, appears to be as an
energy reducer: areas protected by these obstacles tended to ex-
perience lower runup and flow velocities. However, most of these
field observations are, by nature, qualitative and limited.

Synolakis et al. �1995�, surveying the coast of Nicaragua for
information about the 1992 tsunami in the region, noted that the
highest levels of damage along a particular stretch of beach were
located directly landward of a reef opening used for boat traffic. It
was postulated that the reef gap acted as a lower resistance con-
duit for tsunami energy, behaving like a funnel and focusing the
tsunami wave. Along neighboring beaches with intact reefs, the
tsunami did not have the intensity to remove even beach umbrel-
las. Investigating impacts from the same tsunami, Borrero et al.
�1997�, discussed how small scale bathymetry variations affected
coastal inundation. One of the conclusions of this work was that
bathymetry features with lengthscales 50 m and less had leading
order impact on the runup. Looking to the recent Indian Ocean
tsunami, a survey team in Sri Lanka inferred from observations
that reef and dune breaks lead to locally increased tsunami impact
�Liu et al. 2005�. Also in Sri Lanka, Fernando et al. �2005� per-
formed a more thorough survey along the southeastern coastline,
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and concluded that there was a compelling correlation between
coral mining and locally severe tsunami damage.

Analytical, experimental, and numerical investigations into the
effect of a shallow water obstacle on nonlinear long wave evolu-
tion are sparse. Analytical methods, such as Kanoglu and Syno-
lakis �1998�, have found that small-scale bathymetry changes do
impact the runup. Additionally, these authors note that runup is
largely controlled by the last slope a long wave experiences, the
beach slope. Such analytical methods are often limited to linear or
very long waves, and examination of breaking waves are gener-
ally restricted to experimental or numerical studies. Experimental
and numerical studies of wave interaction with coastal obstacles
�e.g., overtopping� exist in the literature �e.g., Hu et al. 2000�,
however these focus on wind waves having wavelengths and pe-
riods one or more orders of magnitude less than that of a typical
tsunami.

When modeling tsunami runup and inundation, a solitary wave
is placed in the deep water of the physical or numerical wave tank
�e.g., Liu et al. 1995; Li and Raichlen 2002�. The initial hurdle to
overcome is the vertical-to-horizontal aspect ratio of the long
wave problem. A large tsunami may be hundreds of water depths
in length—a difficult setup to recreate in the lab. To show the
difficulty in studying the impact of a shallow water obstacle in
these setups, consider that the model deep water, say 1 m, is
meant to represent the oceanic deep water, on the order of
1,000 m. To experimentally assess the impact of a full-scale ob-
stacle that is 100 m long, 10 m high, in a water depth of 10 m, the
model obstacle would be just 10 cm long, 1 cm high, in 1 cm
water depth, and scale effects would render the results difficult to
interpret. To make the situation even more difficult, the most rel-
evant problem occurs when the obstacle height is in the same
order as the wave height.

It is the purpose of this paper to examine this physical problem
through numerical means, where performing simulations with
huge aspect ratios are computationally possible. The focus here
will be on how shallow water obstacles affect the runup and over-

land flow velocities of nonlinear long waves. In the following
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section, the numerical basis will be presented. Next, the results of
nearly 1,000 simulations will be discussed, for various incident
wave conditions, obstacle height and widths, and final beach
slopes.

Numerical Experiment Setup

As mentioned in the “Introduction,” the scale of the problem to be
investigated here is poorly suited to be studied in a physical wave
tank. The horizontal length scale of the wave will be many hun-
dreds of water depths, typical of a tsunami for example, and
would be difficult to create in a laboratory without significant
scaling issues. Here, a numerical model based on the Boussinesq-
type equations will be employed to study long wave evolution
over a rough obstacle in shallow water. These equations are
derived from a depth integration of the Reynolds averaged
Navier–Stokes equations, commonly with the assumption of zero
vorticity. The resulting equation model consists of a mass conser-
vation equation and a vector equation for the horizontal velocity
components
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��free surface elevation; u�horizontal velocity vector evaluated
at � and �=−0.531h; h�local water depth; g�gravity,
Rb�breaking-related dissipation term; R f accounts for bottom
friction; and Rsg for eddy viscosity dissipation.

As can be seen in Eq. �2�, there are three sources of dissipa-
tion: bottom friction, breaking, and viscous diffusion. Bottom
friction is calculated with the quadratic friction equation

R f =
f

h + �
ub�ub� �4�

where ub�velocity evaluated at the seafloor; and f�bottom fric-
tion coefficient, typically in the range of 10−3–10−2. To simulate
the effects of wave breaking, the eddy viscosity model of
Kennedy et al. �2000� is used here with some modification, as
given in Lynett �2006�. The eddy viscosity formulation, Rsg, also
follows that given in Lynett �2006�.

The use of the Boussinesq is chosen over the nonlinear shal-
low water �NLSW� model based on established equation accuracy
�e.g., Madsen and Schaffer 1998�. The fundamental supposition is
that given identical numerical schemes and setups with conver-
gent numerical results, there is no reason to expect the Boussinesq

to be less accurate than the NLSW. This statement permits the
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possibility that both models are equally �in�accurate and �un�ac-
ceptable for a given problem, and neglects the practical consider-
ation that the Boussinesq model requires significantly more
computational time to complete a simulation. To test the differ-
ences of the two models, four sets of simulations with varying
incident wave heights were run with the NLSW, corresponding to
the Boussinesq results to be presented later in this paper. The
conclusion of this sensitivity study is that for long waves that do
not break, differences between NLSW and Boussinesq are negli-
gible. For breaking waves, maximum differences in predicted
runup are near 10%. These changes are driven by slightly differ-
ent interaction between the steep wave front and the breaking
model, depending on whether dispersive terms are included. The
breaking model employed here is calibrated only with the Bouss-
inesq model �e.g., Lynett 2006�, and thus the use of the Bouss-
inesq with this particular breaking model is preferred.

The finite difference algorithm presented in Lynett and Liu
�2002� is used to solve the model equations; the scheme is briefly
described here. A high-order predictor-corrector scheme is uti-
lized, employing a third order in time explicit Adams–Bashforth
predictor step, and a fourth order in time implicit Adams–
Moulton corrector step �Press et al. 1992�. Spatial derivatives are
differenced to fourth-order accuracy, yielding a model which is
numerically accurate to ��x�4, ��y�4 in space, and ��t�4 in time.

Accurate prediction of runup and rundown of the waves is of
utmost importance to this study. The moving boundary scheme
employed here is the technique developed by Lynett et al. �2002�.
Founded around the restrictions of the high-order numerical wave
propagation model, the moving boundary scheme utilizes linear
extrapolation of free surface and velocity through the shoreline,
into the dry region. This approach allows for the five-point finite
difference formulas to be applied at all points, even those neigh-
boring dry points, and thus eliminates the need for conditional
statements.

To simulate a realistic shallow water wave condition, a solitary
wave is placed in the deeper water portion of the domain. Note
that although the solitary wave is placed in the deep water portion
of the domain, its form is based on the local depth, and thus is
still a long wave initially. The depth in this deep portion is given
in the Appendix . The solitary wave then travels up a slope onto a
flat shelf with depth h0, where an obstacle is situated �Fig. 1�.
After the obstacle, the depth returns to h0 for a length of 10h0.
The final transition is the beach slope; two beach slopes, m, will
be tested here, a mild m=1/50 slope and a steep m=1/10. Four
different wave conditions will be tested with varying levels of
nonlinearity. As the wave height is changing throughout its evo-
lution, the characteristic height H will be that measured at the toe

Fig. 1. Problem setup and variable definition
of the obstacle. The four wave conditions have shelf nonlinearity
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�=H /h0 approximately equal to 0.1, 0.5, 1, and 4.
The obstacle will have the shape of a trapezoid, with side

slopes of 1/5. The length of the obstacle Lr, as shown in Fig. 1,
will be varied. This length will always be given as a fraction of
the incoming wavelength, Lw, measured as given in Fig. 1. It is
noted that for the problems to be examined here, the wavelength
is not always a clearly defined parameter. The nonlinear long
waves develop a very steep front on the shelf, such that the front
moves faster than the tail, and the length can change in time. Also
due to the long nature of the wave, the entire wave does not exist
in the same depth at any particular time. Having this information
in mind, wavelength is measured as shown in Fig. 1, taken as the
length of the wave when the wave front reaches the obstacle, and
should be interpreted as an approximate value.

The height of the obstacle, dr will also be varied, and will be
expressed as a fraction of the shelf depth, i.e., dr /h0. To approxi-
mate roughness, the obstacle will have a large bottom friction
coefficient. The obstacle is given a friction coefficient of 0.01,
taken from field studies of wave dissipation over a barrier reef
�Lowe et al. 2005�. Obstacles of all heights use this friction co-
efficient. All other locations use a coefficient of 0.002, a reason-
able value for a smooth sandy bottom. In a practical sense, this
obstacle is meant to approximate a number of coastal structures: a
rubble mound for Lr /Lw values near zero, a reef for small to
moderate values of Lr /Lw, and possibly an offshore or barrier
island for moderate to large Lr /Lw. It is noted here that this study
is only investigating the one horizontal dimension �1HD� effect of
an obstacle. The two horizontal dimension �2HD� impact, due to,
for example, a break in a reef is not examined here, but may be
significant.

Fig. 2. Spatial snapshots at four different times for extremely nonl

�0.03 and running up beach slope m=1/50. Dimensionless time, t*,
A simulation example is given in Fig. 2. In this figure, snap-

JOURNAL OF WATERWAY, PORT, COASTAL, AND OC
shots for an extremely nonlinear wave ��=H /h0�4� evolving
over a relatively short obstacle �Lr /Lw�0.03� are shown. As seen
in Fig. 2�a�, the incoming wave has broken before the shelf break,
and is a fully developed bore before reaching the obstacle. The
bore hits the obstacle, and a small amount of this leading energy
is reflected offshore �Fig. 2�b��. As the wave rushes onshore, the
front remains as a steep breaking bore until maximum runup is
reached, shown in Fig. 2�c�. Rundown is characterized by a rela-
tively thin layer of fluid �Fig. 2�d��, but with very high velocity.
The magnitude of this rundown velocity will be strongly depen-
dent on the bottom roughness and the slope of the beach.

The analysis in the following section will focus on two par-
ticular aspects of this complex flow problem: maximum runup, R,
and maximum overland velocity, Umax. Maximum runup is a ver-
tical distance and clearly defined. Runup will be scaled by the
shelf wave height, H. Maximum overland velocity is the maxi-
mum horizontal uprush velocity experienced on initially dry land.
Generally, this maximum velocity is located very near to the ini-
tial shoreline position, and occurs as the leading wave front be-
gins running up the slope. Velocity will be scaled by the shelf
linear long wave speed, c0=
gh0.

Results and Discussion

In this section, the impact of a rough obstacle on nonlinear long
wave runup and overland velocity will be quantitatively assessed.
Four different incident wave conditions will be examined, propa-
gating over a wide range of obstacle height and width. For these

ave ���4� propagating over obstacle with dr /h0=0.75 and Lr /Lw

ned as t
g�H+h0� /Lw.
inear w

is defi
simulations, the numerical grid spacing, �x, lies in the range of
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0.5–1.5h0, and select simulations �those with the smallest Lr and
highest dr for each wave condition� have been tested for numeri-
cal convergence. The first wave condition to be discussed will be
the condition with the weakest nonlinearity.

Weakly Nonlinear Incident Wave, �=H /h0É0.1

Fig. 3 shows how runup and uprush velocity vary with obstacle
length and height. A curve is given for four obstacle heights from
dr /h0=0.25 to 1. An additional curve is given for dr /h0=0, which
is the case for no obstacle and constant bottom friction coefficient
of 0.002 everywhere in the domain. This curve is meant to rep-
resent the “baseline” runup and velocity, to which the others can
be compared to quantify the impact of the obstacle. For example,
looking to subplots �a� and �b� for beach slope 1/50, and obstacle
with height dr /h0=0.75 and length Lr /Lw=0.8, the obstacle re-
duces runup by about 55% and increases velocity by 30% as
compared to the same setup with the obstacle removed.

There are a number of unique patterns for this case that will
not be as apparent for waves with higher nonlinearity. For the
mild slope case �m=1/50�, the runup and velocity for the baseline
setup increase as the shelf length increases. While it might be
reasonably expected that runup and velocity decrease with in-
creasing shelf length, due to increased bottom friction dissipation,
here this is not always the case. Note that, for example, with
Lr /Lw�1 and the specified Lw /h0�500, the total shelf length is
approximately 710h0. With the combined shelf and mild slope,
amplitude dispersion has enough time, even for the weakly non-
linear wave, to steepen the wave front, leading to increased runup
and overland velocities. Comparing this to the steep slope

Fig. 3. Scaled runup and maximum overland velocity for incident w
Curves with dots are for dr /h0=0, circles are for dr /h0=0.25, cross
=1.0.
�m=1/10� baseline case where this trend does not exist, it is
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evident that the milder slope is driving most of the steepening,
rather than the shelf. In fact, looking to the steep slope baseline
case, the runup results show that the wave feels the slope in much
the same way as it would a vertical wall, such that runup is twice
the wave height. Likewise, the maximum velocities for the steep
slope cases are very low. Clearly the final beach slope is of pri-
mary importance when predicting runup and velocity.

For this weakly nonlinear wave, the reverse trends in runup
and velocity �one decreases while the other increases� are also
explained by wave front steepening. The obstacles lead to de-
creased runup and increased velocity up to some threshold ob-
stacle length. The threshold length for the obstacle with dr /h0

=1 is Lr /Lw�0.12 and for dr /h0=0.75 the threshold is Lr /Lw

�0.95. This phenomenon is explained in Fig. 4, showing wave-
forms for a setup with and without an obstacle. In Fig. 4�a�,
without the obstacle, the solitary wave changes slightly over the
shelf as amplitude dispersion mildly steepens the front and bot-
tom friction reduces the amplitude. With the obstacle, in Fig. 4�b�,
some of the incident energy is reflected out to sea by the offshore
side of the obstacle. Additionally, the much shallower depth in-
creases the importance of bottom friction, and the wave height is
much reduced before reaching the beach. Also, however, due to
the shallower depth, nonlinearity is more important, and front
steepening is more significant. This front does not break, but does
form a weak undular bore type structure. When this steeper front
reaches the beach, the result is higher flow velocities, but much
decreased runup. There are clear engineering implications here:
for this weakly nonlinear wave, it is in fact possible for an ob-

ith ��0.1 and Lw /h0�500 for variable obstacle height and length.
for dr /h0=0.5, squares are for dr /h0=0.75, and stars are for dr /h0
ave w
es are
stacle, such as a reef, to increase the magnitude of overland
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velocities �and related transport� while decreasing inundation
limits. This will not be the case for waves with higher incident
nonlinearity.

Highly Nonlinear Incident Waves, �=H /h0É0.5
and �=H /h0É1

These two wave conditions are grouped together as they behave
in a very similar manner. Figs. 5 and 6 give the results for these
two wave conditions. For the mild slope cases, there is a very
regular pattern of decreased runup with increased obstacle length
and height. Velocity does not behave as monotonically. There
appears to be an “optimum” obstacle length that results in maxi-
mum velocities, which decreases with increasing obstacle height.
For example, with an obstacle height of dr /h0=0.5, the maximum
overland velocity occurs when Lr /Lw�0.15. This maximum oc-
curs due to the wave height over the shelf, controlled by reflection
off the seaward obstacle face and bottom friction, and depth
above the obstacle, which when combined govern the strength of
amplitude dispersion and steepening. Note that, for all cases, the
runup and overland velocity is less than that for the baseline,
showing that for these highly nonlinear waves, an obstacle ap-
pears to always lead to a reduction in tsunami impact on the
beach.

For the steep slope cases, the trends show different behavior
for small obstacle length as compared to the mild slope. Runup
and overland velocity show weak dependency on obstacle height
for Lr /Lw�0.1, as shown by the converging trends. The interest-
ing cause of this behavior is a resonance that occurs in between
the beach and the reef. This process is shown in Fig. 7. Wave
energy reflected off the beach is re-reflected off the landward side
of the obstacle, combining with the incident wave propagating
landward. In the figure there are two distinct runup maxima in �c�

Fig. 4. Comparisons of wave forms for two different setups, one wi
are shown, first with crest at x /h0=200, second with crest near x /h0=
be seen in �b� as gray area between x /h0=200 and 680.
and �e�, where the first maxima is due to the runup of the wave
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front and the second, and larger, maxima is due to this re-
reflection effect. The efficiency of this re-reflection is related to
dr, while the amount of energy passing over the obstacle is in-
versely related to dr. These two factors work against each other to
create a large runup at small Lr /Lw, regardless of obstacle height.
The effect is most significant when the wave height, water depth,
and obstacle height are all similar values. This resonance is in-
hibited by a milder slope, and does not play a significant role in
the m=1/50 cases.

Extremely Nonlinear Incident Wave, �=H /h0É4

Finally, the interaction between a rough obstacle and a very large
incident wave is examined. An example of this condition has been
given in Fig. 2. Note that the wavelength of this wave is twice as
large as the three previous wave conditions. The reason for this is
that it was not possible to maintain the extremely high nonlinear-
ity without also increasing the wavelength. The runup and uprush
velocity trends are shown in Fig. 8. The behavior shown in this
figure is the most regular of all the cases given, with runup and
velocity decreasing steadily with increasing obstacle length and
height.

There are a couple of interesting results from this analysis.
One is that for very small obstacle lengths, Lr /Lw�0.02, the ef-
fect of the obstacle diminishes; runup and velocity approach the
baseline values. The explanation for this is that the wave height is
so much larger than the obstacle height, and thus the offshore
directed reflection is relatively small. Also note that the runup and
velocity trends shown in Fig. 8 for nonzero obstacle heights lie
closer together as compared to other wave nonlinearities. It fol-
lows then that the amount of energy reaching the beach for ex-
tremely nonlinear waves will be primarily controlled not by wave
reflections off bathymetry features but dissipation mechanisms,

bstacle �a�; one with obstacle �b�. Snapshots at three different times
nd last �dashed line� at time of maximum runup. Top of obstacle can
thout o
600, a
namely bore front breaking and bottom friction.
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Fig. 5. Scaled runup and maximum overland velocity for incident wave with ��0.5 and Lw /h0�500 for variable obstacle height and length.
Curves as for Fig. 3 with triangles for dr /h0=1.25.
Fig. 6. Scaled runup and maximum overland velocity for incident wave with ��1 and Lw /h0�500 for variable obstacle height and length.
Curves as for Fig. 3 with triangles for dr /h0=1.5.
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Fig. 7. Spatial snapshots at five different times for highly nonlinear wave ���1� propagating over obstacle with dr /h0=1.5 and Lr /Lw�0.03 and
running up beach slope m=1/10. Note two runup maxima in �c� and �e�, with �e� showing later and larger of two. Dimensionless time, t*, is

defined as t
g�H+h0� /Lw.
Fig. 8. Scaled runup and maximum overland velocity for incident wave with ��4 and Lw /h0�1,000 for variable obstacle height and length.
Curves as for Fig. 3 with triangles for dr /h0=1.5.
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The importance of the final beach slope is again underscored
here. Recall from the weakly nonlinear condition that showed
runup on a steep slope was less than that on a mild slope, due to
the decreased time possible for steepening. Here, for the ex-
tremely nonlinear case, the reverse is evident. Runup on the steep
slope is larger, reaching values of over four times the shelf wave
height for a short shelf. The steeper, and shorter slope provides
less time for the bore front and bottom friction to dissipate energy
during runup. More of the incoming kinetic energy can be con-
verted into potential, and the runup is greater.

Conclusions

A numerical study, comprising 920 simulations, was undertaken
to examine the effect of a shelf obstacle on nonlinear long wave
runup. Tsunami waves with four shelf nonlinearities, ranging
from 0.1 to 4, were examined over a wide range of obstacle
heights, obstacle lengths, and final beach slopes. Many of the
setups involve breaking, either through approaching the obstacle
as a large breaking bore, incipient breaking on top of the obstacle,
or breaking during the beach uprush. A Boussinesq wave model
with a calibrated and established breaking model is employed for
the numerical simulations. The general conclusion of this study is
that, for highly nonlinear waves ���0.5�, the obstacle will always
act to reduce the runup and the maximum overland velocity.
However, for very small obstacle lengths, particularly for ex-
tremely large waves, this reduction may be practically inconse-
quential. Interestingly, for weakly nonlinear waves ���0.1�, due
to front steepening over the obstacle, greater overland velocities
can result with long obstacle lengths. Again, though, even for
weakly nonlinear waves, reduced runup should be expected. Con-
sistent with previous studies, it is found that the final beach slope
is of primary importance for determining the runup. For weakly
nonlinear, nonbreaking tsunami waves, the largest runup occurred
on the mildest beach slope. Inversely, for the extremely nonlinear,
strongly breaking waves, the largest runup was found on the
steepest beach slope.

The work here focuses on 1HD effects, and thus would be
applicable to, for example, nearshore regions characterized by
long and continuous reefs or breakwaters. 2HD effects due to
alongshore breaks in such systems need to be quantified in a
similar manner as done here or through site-specific numerical
modeling. These breaks, as observed in tsunami field studies �e.g.
Liu et al. 2005�, despite widths of a small fraction of the wave-
length, can lead to significantly increased runup and flow veloci-
ties. Local 2HD features, such as these, should be considered

Table 1. Numerical Simulation Parameters

Shelf nonlinearity h /h0 Hdw/h �x /h0

�=H /h0�0.1 20 0.0035 0.5

�=H /h0�0.5 45 0.007 1.0

�=H /h0�1 60 0.01 1.0

�=H /h0�4 100 0.045 1.5
when applying the data contained in this paper.
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Appendix. Numerical Simulation Parameters

Table 1 provides the scaled water depth in the deeper water por-
tion of the domain, h, where the solitary wave is initially located
�h /h0�, the scaled wave height of the initial condition, when the
solitary wave is depth h �Hdw/h�, and constant grid length ��x�
for all results presented in this paper. Note that the values given in
the table were chosen such that the target nearshore wave height
and wavelength resulted.
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