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We report numerical evidence of the effects of a periodic modulation in the delay time of a
delayed dynamical system. By referring to a Mackey–Glass equation and by adding a modula-
tion in the delay time, we describe how the solution of the system passes from being chaotic to
shadow periodic states. We analyze this transition for both sinusoidal and sawtooth wave mod-
ulations, and we give, in the latter case, the relationship between the period of the shadowed
orbit and the amplitude of the modulation. Future goals and open questions are highlighted.

In nature a nonzero delay time occurs always be-
tween the instants at which a cause and its effects
take place. In some situations, such a delay comes
out to be negligible with respect to the timescales
of the dynamics and therefore the usual ordinary
differential equation model well represents the nat-
ural behavior. However, there are relevant cases in
which finite propagation speeds of signals, transport
effects, finite reaction times, or finite response times
of the system must be taken into account. As a re-
sult, the most suitable model equations to describe
these cases are the so-called delayed dynamical
system (DS). DS are equations of the form

ẋ = F(x, xd, λ) , (1)

where x is a m-dimensional vector (m ≥ 1) rep-
resenting the order parameter of the system, dot
denotes temporal derivative, F is a generic nonlin-
ear function, λ is a family of control parameters,
xd ≡ x(t− τ), and τ is the delay time.

Because of their infinite dimensionality, DS
provides a natural link between concentrated and

space extended systems (ES). The analogy between
DS and ES was first given experimentally for a
CO2 laser with delayed feedback [Arecchi et al.,
1992], and then supported by a theoretical model
[Giacomelli & Politi, 1996]. The DS to ES conver-
sion is based on the following two variable represen-
tations of the time

t = σ + θτ , (2)

where 0 ≤ σ ≤ τ is a continuous space-like
variable and θ is a discrete temporal variable
[Arecchi et al., 1992]. By means of Eq. (2) the long
range interactions caused by the delay are converted
into short range interactions along the direction θ,
since xd ≡ x(σ, θ − 1). In this framework, the
formation and propagation of space-time struc-
tures, such as defects [Giacomelli et al., 1994]
and/or spatiotemporal intermittency, have been
identified [Giacomelli & Politi, 1996] and controlled
[Boccaletti et al., 1997].

There are aspects which confirm such analogy.
One example is the growth of the number of positive
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Lyapunov exponents with the delay τ for DS, which
is linear similar to what happens in one-dimensional
ES with the size of the system in the regime of
weak space-time chaos [Pomeau et al., 1984]. A
linear relation between delay and attractor dimen-
sions was found by Farmer [1982] for the Mackey–
Glass system [Mackey & Glass, 1977] and the Ikeda
map [Ikeda & Matsumoto, 1986], thus indicating
that increasing the delay time has the same effect
as increasing the size of a one-dimensional extended
system. There are aspects, however, for which the
analogy between DS and ES fails. An example is the
metric entropy, which is constant as a function of
the delay time for DS in a chaotic regime, whereas
in general it can vary as a function of the system
extension for ES.

The increasing attention that the scientific
community devoted to DS is witnessed by the huge
number of DS proposed in the literature to model
a variety of different systems. In biophysics, the
Mackey–Glass model has been introduced to de-
scribe the process of blood cells creation [Mackey &
Glass, 1977]. Other examples of DS are the logistic
equation modeling the population evolution [May,
1976], or the Ikeda equation [Ikeda, 1979] modeling
the evolution of the light in a ring cavity, or the
Lang–Kobayashi model [Lang & Kobayashi, 1980]
describing a semiconductor laser in the single-mode
regime with delayed optical feedback.

In this Letter, we will perform a step forward
by taking into account the effects of a variable delay
on the dynamical behavior of a system, i.e. consid-
ering τ = τ(t). We argue that this provides an even
more realistic viewpoint, insofar as the existence of
variable delays is a ubiquitous phenomenon in na-
ture. As an example, one can refer to the influ-
ence of stochastic processes over transport speeds
in chemical reactions or electronic noise through a
communication channel, leading to xd = x(t−τ+ξ),
ξ being a white noise term with zero mean and δ-
correlation in time. Besides stochastic processes,
one can have other types of variable delays, such
as periodic delays (xd = x(t − τ + f(t)), f being a
periodic function. This latter case is present, e.g. in
external forcings where the amplitude of the force
may determine the delay effects. One example is
biological biorhythms: the capacity of assimilation
of nutrients by an organism varies cyclicly during
the day.

As one can expect, a variable delay may cru-
cially change the dynamics of a DS. A recent work
has pointed out that a very tiny change in time

of the delay can even control a high dimensional
chaotic DS giving rise to simple periodic behavior
[Maza et al., 1998].

Furthermore, the fractal dimensions for a DS
increase linearly with the delay [Farmer, 1982],
therefore the robustness of high dimensional chaotic
DS (DS with large delays) against modulations in
the delay time is an interesting issue.

We address numerically the effects of a periodic
modulation in the delay time for the Mackey–Glass
model, focussing on the strong changes induced by
this modulation on the dynamics.

The system under study is

ẋ = −0.1x(t) + 0.2
x(t− τ(t))

1 + x(t− τ(t))10
, (3)

where x(t) is the concentration of mature cells in
blood at time t, and τ(t) is the delay between the
initiation of cellular production in the bone mar-
row and the release of mature cells into the blood.
The above model equation represents a new kind of
dynamical systems, that we will call from now on
delayed dynamical systems with variable delay, or
variable delayed dynamical systems (VDS).

The case of constant delay (τ(t) = τ0) has been
extensively studied in literature [Mackey & Glass,
1977; Farmer, 1982], and has been taken as a proto-
typic example for testing the robustness of control
[Boccaletti et al., 1997; Maza et al., 1998] and syn-
chronization [Pyragas, 1998; Bünner & Just, 1998;
Boccaletti et al., 2000] techniques over high dimen-
sional chaotic states. Linear stability analysis of
Eq. (3) shows that x = 1 is a stable fixed point for
τ ≤ 4.7. Numerically, one observes a stable limit
cycle of period one for 4.7 ≤ τ ≤ 13.3. At τ = 13.3,
a period doubling bifurcation cascade starts until
τ = 16.8, where a chaotic behavior sets in, inter-
mingled with some periodic windows.

For the time being, we consider two different
kinds of periodic modulation, namely a sinusoidal
one of the form

τ(t) = τ0 +A sin(ωt) , (4)

τ0 being the zero frequency component, A ≤ τ0 the
amplitude and ω/2π the frequency of the modula-
tion, and a periodic sawtooth wave of the form

τ(t) = τ0 + τ0(νt− Int(νt)) (5)

τ0 being the zero frequency component, ν the fre-
quency of the modulation and Int(νt) being the in-
teger part of νt. In this latter case, the amplitude
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of the modulation coincides with τ0, and therefore
the value of the delay time is ranging in the inter-
val τ0 ≤ τ(t) ≤ 2τ0. Furthermore, the modulation
considered in Eq. (5) is not continuous at all times
tn = n/ν, n = 1, 2, . . . .

For a DS, when analytical treatment is possible,
the search for solutions can be performed with two
techniques, namely the integration by time inter-
vals in which the value of x in a given time interval
of length τ is used to update the DS in the next
time interval of length τ , and the Laplace trans-
form, allowing to convert a DS into a set of al-
gebraic transcendental equations, thus being very
useful for the linear stability analysis. However, as
one can expect, very few situations call for analyti-
cal solutions, and often one has to rely on numerical
integration schemes.

One possible approach consists in expanding
the delayed variables xd = x(t − τ) in Taylor se-
ries around t0 (x(t0 − τ) = x(t0) − τ(dx/dt)|t0 +
(τ2/2)(d2x/dx2)|t0 + · · · ). However, this technique
is subjected to some drawback, and in some cases it
does not work correctly [MacDonald, 1989]. There-
fore, a more robust technique comes out to be
adapting a given numerical method for ordinary dif-
ferential equations to integrate the particular DS
under study. The most simple algorithm for fixed
delay consists in storing an array of x values in the
interval [t− τ, t] to integrate the equations at time
t. A new strategy has been recently introduced
[Baker et al., 1994], which makes use of a fifth-
order Hermite interpolant together with an embed-
ded Runge–Kutta [Dormand & Pierce, 1980] and
a tracking process of discontinuities (for details we
address the reader to [Baker et al., 1994]). In the
following we will extend this latter strategy to nu-
merically integrate our VDS for the two different
choices of delay modulation.

Let us begin by reporting the results of the
numerical integrations of Eq. (3) with a sinusoisal
modulation in the delay, for different values of τ0,
A and ω. In the considered trial, τ0 > 16.8 (the
onset of chaotic dynamics at fixed τ). For each τ0,
three different values of A have been considered,
namely A = τ0/1000, A = τ0/100 and A = τ0/10.
The above choices implies that in all integrations
the system is considered inside the regime which
would be chaotic at fixed delay time, i.e. we move
our parameter in a region where similar values of a
fixed delay would induce high dimensional chaotic
dynamics.

For the majority of chosen modulation param-
eters, the solutions are chaotic. However, some is-
lands of parameters exist where the system shows
a periodic behavior. Looking at Fig. 1 one can
appreciate the effect of the modulation in the de-
lay time, inducing a passage of the system from a
high dimensional chaotic state of dimension D ' 5
[Farmer, 1982] to a periodic state. For other choices
of parameters, the chaotic attractor collapses into
periodic orbits of different periods.

From a general point of view, this collapse of
the chaotic attractor into a periodic one occurs
only for very particular choices of the parameters.
Namely, we have not encountered collapses phenom-
ena for amplitudes of the modulation lower than
10%τ0, and therefore we have concentrated our ef-
forts to produce ordered evolutions for perturba-
tions larger than the above threshold. As for the
frequency of the modulation, as one can expect,
very low frequencies are not effective in changing
the chaotic dynamics (which, indeed, would corre-
spond to ω = 0), and one has to force with a min-
imum characteristic modulation time to induce an
ordered (periodic) solution.

Fig. 1. Numerical simulation of Eq. (3) with a sinusoidal
modulation in the delay time. Horizontal axis reports time
in a.u., vertical axis reports the variable x in a.u. The sepa-
ration between tics in the horizontal axis corresponds to 500
time units. The modulation is switched on at time t = 15 000.
Other parameters: τ0 = 50, A = 8, ω/2π = 0.027. For
this choice of parameters, the system experiences a transi-
tion from a high dimensional chaotic behavior to a periodic
orbit of period 1 (left part of the plot) which is eventually set
in the system (right part of the plot).
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A much richer scenario is induced by the modu-
lation of Eq. (5). In this case, the parameter space
reduces to two dimensions, and numerical simula-
tions have been performed for the same range of τ0

and ν = ω/2π as above.
Our numerics indicate that, for all chosen τ0 >

20 and for sufficiently high modulation frequency,
the system always gives rise to a solution that shad-
ows around a periodic behavior. This is reported
in Fig. 2, where one can observe the appearance
of a periodic orbit that envelopes the solution as
the result of the application of the modulation in
the delay time. We point out that Eq. (3) is al-
ways considered inside regions where its dynamics
at fixed delay time would be confined within a high
dimensional chaotic attractor. As an example, in
the range 50 ≤ τ(t) ≤ 100 (τ0 = 50), the linear

relation found by Farmer at fixed delay time would
imply a dimensionality 5 ≤ D ≤ 10 [Farmer, 1982],
whereas the system (3) always evolves around a reg-
ular periodic dynamics for suitable choices of ν.

Furthermore, when the modulation (5) is active
over the delay time, the transition from a chaotic at-
tractor to the enveloping regular state is smooth as
a function of the modulation frequency ν. This may
be better appreciated looking at the Fourier spectra
of Fig. 2 for fixed τ0 and at different frequencies of
modulation, and noticing that the effect of increas-
ing ν results in new frequencies being destroyed in
the dynamics until leading to a situation where only
few Fourier components survive in the spectrum.

From what have been said above we can speak
of a universal periodic orbit enveloping the solution
of our VDS, induced by a triangular modulation in

Fig. 2. Temporal evolution of the solution of Eq. (3) (first, third and fifth rows) and corresponding power spectra (second,
fourth and sixth rows) for a modulation in the delay with a sawtooth wave. τ0 = 50 (first column), τ0 = 100 (second column)
and τ0 = 150 (third column). The frequency of the modulation is chosen to be ν = 0 (first and second rows), ν = 0.04 (third
and fourth rows) and ν = 0.2 (fifth and sixth rows). Notice the appearance of an enveloping limit cycle for sufficiently high
forcing frequency.
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the delay time. It is worth highlighting that in this
case the enveloping cycle is a period two periodic or-
bit, while other periods can be induced by different
types of sawtooth waves.

Another feature of the observed behavior is that
the greater is τ0 the faster the appearance of the en-
veloping periodic orbit as a function of ν, thus in-
dicating that very high dimensional attractors are
more sensitive to variations in the delay time.

Let us move now to address how the frequency
of the shadowed periodic orbit depends upon τ0.
This is shown in Fig. 3, where the frequency of the
enveloping orbit F is reported to be a monotonically
decreasing function of τ0, fitted by F (τ0) = a+b/τ c0
(a = −10−4, b = 0.139 and c = 0.88) in the whole
considered range of parameters (20 ≤ τ0 ≤ 1000).
Similar curves have been found for other periodic
cycles emerging with different sawtooth modula-
tions. A direct consequence is that one can choose
the frequency of the envelope of the solution by just
properly tuning the amplitude of the modulation.

We believe these results could have applications
in many fields such as electronics, e.g. for converting
between different signal shapes; control of remote
systems, laser physics or biophysics, where a mod-
ulation of the delay time can be induced to yield a
desirable periodic behavior in a relatively complex
dynamical system.

In conclusion, we have reported numerical evi-
dence of the effects of a periodic variable delay time
in the Mackey–Glass equation. The obtained results
open several questions, such as how to characterize
more quantitatively the transition to ordered states,

Fig. 3. Frequency of the enveloping limit cycle versus ampli-
tude of the modulation τ0. Dots: numerical results; continu-
ous line: estimating function F (τ0) = a+b/τ c0 for a = −10−4,
b = 0.139 and c = 0.88.

and how to build up a suitable analytical approach
for VDS (similarly to what have been done for DS
in [Giacomelli & Politi, 1996]) in order to assess
how feasible is their analogy with space-extended
systems.
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