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EFFECT OF AGGREGATION ON POPULATION RECOVERY

MODELED BY A FORWARD-BACKWARD

PSEUDOPARABOLIC EQUATION

VÍCTOR PADRÓN

Abstract. In this paper we study the equation

ut = ∆(φ(u) − λf(u) + λut) + f(u)

in a bounded domain of R
d, d ≥ 1, with homogeneous boundary conditions of

the Neumann type, as a model of aggregating population with a migration rate
determined by φ, and total birth and mortality rates characterized by f . We
will show that the aggregating mechanism induced by φ(u) allows the survival
of a species in danger of extinction. Numerical simulations suggest that the
solutions stabilize asymptotically in time to a not necessarily homogeneous
stationary solution. This is shown to be the case for a particular version of
the function φ(u).

1. Introduction

In this paper we will study the equation

(1.1) ut = ∆(φ(u) − λf(u) + λut) + f(u), x ∈ Ω, t ≥ 0,

with boundary conditions

(1.2) η · ∇(φ(u) − λf(u) + λut) = 0, x ∈ ∂Ω, t ≥ 0.

Here, Ω is a bounded domain in R
d, d ≥ 1, with regular boundary ∂Ω; η is an

exterior normal vector on the boundary ∂Ω of Ω; λ > 0 is a constant. The functions
φ and f satisfy the following hypothesis:

Hypothesis 1. (1) φ is locally Lipschitz continuous, bounded and nonnegative.

(2) There exist 0 < α < β ≤ +∞ such that φ is strictly increasing in (0, α),
strictly decreasing in (α, β) and increasing, but not necessarily strictly in-

creasing, in [β,+∞].
(3) φ(0) = 0, φ′(0) 6= 0.
(4) f is locally Lipschitz continuous.

(5) There exist 0 < a < b < ∞ such that f is negative in (0, a) ∪ (b,+∞) and

positive in (a, b).
(6) f(0) = 0 and lim supu→∞ |φ(u) − λf(u)| > φ+ := φ(α).
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(CDCHT) of the Universidad de Los Andes.

c©2003 American Mathematical Society

2739

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Figure 1. (a) f(u) = u(u−a)(b−u), with a = 1/2 and b = 1; (b)
φ(u) = (u3/3− (α+β)u2/2+αβu), with α = 1/4 and β = 5/8; (c)

φ(u) = ue−
u
α , with α = 1/4; (d) φ(u) = u exp (β−α)2

α(u−β) if 0 ≤ u < β

and φ(u) = 0 if u ≥ β, with α = 1/4 and β = 5/8.

For example, the following functions are admissible: f(u) = u(u − a)(b − u)
where a, b are constants such that 0 < a < b; φ(u) = (u3/3 − (α + β)u2/2 + αβu)
where α, β are constants such that 0 < α < β < 3α; φ(u) = ue−

u
α where α > 0 is a

constant; and φ(u) = u exp (β−α)2

α(u−β) if 0 ≤ u < β and φ(u) = 0 if u ≥ β, where α, β

are constants such that 0 < α < β. See Figure 1 for a graphical representation of
some of these functions.

This problem arises as a model for populations with the tendency to form groups.
In this case u(x, t) represents the population density for x ∈ Ω, at the time t ≥ 0;
φ(u) = uϕ(u) and f(u) = uσ(u), where ϕ(u) is the migration rate and σ(u) is
the net rate of population supply given by birth and death. Since we are mainly
interested in aggregating populations, we will assume that ϕ(u) is decreasing; that
is, the migration of individuals from their present location is bigger if the population
in this location is relatively small, and it is smaller if the population is high. The
reproduction rate σ(u) is of the logistic type with a threshold, that is, it satisfies the
Allee effect. The Allee effect was originally proposed by W.C. Allee [1] to model the
reduction of reproductive opportunities at low population densities. A population
may exhibit Allee effects for a variety of reasons; see M.A. Lewis and P. Kareiva [8]
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and the literature therein. The main feature of the Allee effect is that below a
threshold value the death rate is higher than the birth rate because, on average,
the individuals cannot reproduce successfully. This, in turn, imposes a threat to
the survival of the species at low densities.

We will show in this paper that the density dependent aggregating model (1.1)-
(1.2) contains mechanisms for the survival of a population menaced to extinction
by the Allee effect. In fact, we will give conditions for a population located in a
neighborhood of low density, to cluster together in an attempt to raise their local
population above the threshold at which birth rate begins to exceed death rate. We
give the name of recovery, properly defined below, to this kind of behavior.

The concept of recovery, first used without this name by P. Grindrod [5], was
introduced by M. Lizana and V. Padrón [9] to study this type of phenomena and
can also be seen as a measure of capability of a model to produce aggregation.

Extensive literature exists examining the role of diffusion in biological mod-
els: D.G. Aronson [2, 3], M.E. Gurtin & R.C. MacCamy [7], J.D. Murray [10],
A. Okubo [12], J.G. Skellan [15, 16], etc. However, phenomena such as insect
swarming, fish schooling, animal grouping, and splitting and subsequent reamal-
gamation of herds are relatively common forms of behavior. In these cases there
is a factor operating in the population which counteracts against diffusion and en-
courages individuals to aggregate; see A. Okubo [12, Ch. 7, pp. 110–131], where
the ecological significance of grouping is discussed. Other models for aggregating
populations, different from the one considered in this paper, that are based on par-
tial differential equations, have been studied in the literature. We recommend the
article of D. Grunbaum and A. Okubo [6] and the numerous references therein.

Problem (1.1)–(1.2) with f(u) ≡ 0 was studied by A. Novick-Cohen and R.L.
Pego [11] and by V. Padrón [13]. A finite-dimensional model analogous to (1.1)–
(1.2) was studied by M. Lizana and V. Padrón in [9].

Density dependent models of population dynamics are usually based on equations
of the form

(1.3) ut = ∆φ(u) + f(u).

In deriving (1.3) it is assumed that individuals disperse to avoid crowding (see
Gurtin & MacCamy [7]). Note that, in general, φ′(0) = 0 so that (1.3) is a degen-
erate parabolic equation. However, if φ′(u) > 0 for u > 0 , then equation (1.3) can
be dealt with by means of existing theory (Aronson [3] , Gurtin & MacCamy [7]).
In the case of aggregating populations, φ′(u) may be negative for positive values of
u; therefore, the standard initial boundary value problems for (1.3) are ill posed.

One possibility to overcome this difficulty is to substitute (1.3) by

(1.4) ut = ∆J + f(u),

where J(x, t) is the average

J(x, t) :=

∫

Ω

K(x, y)φ(u(y, t)) dy,

with a nonnegative K(x, y). A particular convenient choice (see P. Grindrod [5])
is to define K(x, y) as the Green function of (I − λ∆), for a constant λ > 0, in
the domain Ω. We can also impose no-flux boundary conditions on J to assure the
isolation of Ω.
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That is, for each t ≥ 0, J(x, t) is the solution to the problem

(1.5)

{

(I − λ∆)J(x, t) = φ(u(x, t)), x ∈ Ω,
η · ∇J = 0, x ∈ ∂Ω.

In §2 of this paper we will show (Proposition 3) that problem (1.4)–(1.5) is equiv-
alent to (1.1)–(1.2). Also in this section we will show the existence and uniqueness
of the solutions of (1.1)–(1.2) globally defined for all t ≥ 0, and we will obtain some
results related to the regularity of the solutions.

In §3, we will show that the aggregating mechanism that induces φ(u), in the
regions where φ′(u) < 0, allows for the survival of a species in danger of extinc-
tion due to its low population density. In this section we show some numerical
simulations that suggest that the solutions stabilize asymptotically in time to a
not necessarily homogeneous stationary solution. In §4 we will show that this is
the case when φ(u) ≡ 0 for u ≥ a. We will show that the solutions of (1.1)–(1.2)
converge pointwise to a stationary solution u∞(x), not necessarily homogeneous, as
t → ∞. In this section we will also show that there are populations located below
the threshold value u = a that overcome this difficulty by aggregating to increase
their population density to the region (a, b) where the net rate of population supply
becomes positive. In fact, in the last result of this paper we will prove that these
populations stabilize to a discontinuous steady state solution u∞(x) of the type

u∞(x) =

{

b if x ∈ Ω,
0 if x ∈ Ω \Ω0,

where Ω0 is a subset of Ω of positive measure.

2. Existence and uniqueness of solutions

In this section we will show a result concerning the existence and uniqueness of
solutions of (1.1)–(1.2) globally defined in time. We also show certain regularity
properties, and a useful representation of the solution by a parameterized ODE.

First we will reformulate problem (1.1)–(1.2) as

(2.1) ut = λ−1[(I − λ∆)−1 − I]φ(u) + f(u)

where the operator (I − λ∆)−1 is defined by setting h = (I − λ∆)−1k. Here h is
the solution to the problem

(2.2)

{

(I − λ∆)h(x) = k(x), x ∈ Ω,
η · ∇h = 0, x ∈ ∂Ω.

Now we show the existence and uniqueness of local solutions for problem (2.1).
Later we will show, in Proposition 3, that the solutions of (2.1) are precisely the
solutions of (1.1)–(1.2).

Theorem 1 (Local Existence). Suppose that φ and f are locally Lipschitz and that

u0 ∈ X, where X is the space L∞(Ω) or C(Ω̄). Then, there exists T > 0 such

that the equation (2.1) has a unique solution u(t) with u(t) ∈ C1([0, T ], X) and

u(0) = u0. If φ and f are Cm, 1 ≤ m ≤ ∞, then u ∈ Cm+1([0, T ], X). If φ and f
are analytic, then u ∈ H([0, T ], X), the space of analytic functions with values in

X.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RECOVERY ON A PSEUDOPARABOLIC EQUATION 2743

Proof. We will regard (2.1) as an ODE on the Banach space X . Theorem 1 will
follow from standard results for such ODEs (e.g. see [4]). We need only to verify
that the map

u→ ψ(u) := λ−1[(I − λ∆)−1 − I]φ(u) + f(u)

is locally Lipschitz, Ck, or analytic in X if ψ is. But this is true when the map

k → (I − λ∆)−1k

is bounded in X . This follows from the following lemma, the proof of which is given
in [11, Lemma 2.2]. �

Lemma 2. Let k ∈ L∞(Ω). Then, problem (2.2) has a unique solution h that is in

W 2,p(Ω) for all p such that 1 < p <∞. If k(x) is not a constant almost everywhere,

then

ess inf
Ω

k(·) < h(x) < ess sup
Ω

k(·)

for all x ∈ Ω.

Remark 1. In the same way as in Theorem 1, we can prove that (2.1) has a local
solution defined in an interval of the form (−T, 0]. We can do this by inverting the
direction of time in (2.1) with the change of variable τ = −t and solving the resulting
problem. Therefore, we can assume that (2.1) has a unique solution defined in an
interval of the form [S, T ] with S < 0 and T > 0.

Proposition 3. The solution u(t) of Theorem 1 is the unique solution of (1.1)–
(1.2).

Proof. Let us define

(2.3) J(x, t) := φ(u) − λf(u) + λut.

Then, from (2.1) we have

J = (I − λ∆)−1φ(u).

Therefore J ∈ C((T1, T2),W
2,p(Ω)) for 1 < p <∞, η · ∇J = 0 in ∂Ω, and

∆J = λ−1(λ∆ − I + I)(I − λ∆)−1φ(u) = ut − f(u).

Hence, equation (1.1) is satisfied. Conversely, if u(x, t) is a solution of (1.1)–(1.2),

ut = ∆(φ(u) − λf(u) + λut) + f(u).

Therefore,

(I − λ∆)−1ut = (I − λ∆)−1∆(φ(u) − λf(u) + λut) + (I − λ∆)−1f(u)
= ∆(I − λ∆)−1(φ(u) − λf(u) + λut) + (I − λ∆)−1f(u)
= ∆(I − λ∆)−1(φ(u) − λ∆(I − λ∆)−1f(u) + λ∆(I − λ∆)−1ut

+ (I − λ∆)−1f(u).

Hence,

(I − λ∆)(I − λ∆)−1ut = ∆(I − λ∆)−1φ(u) + (I − λ∆)(I − λ∆)−1f(u).

That is,

ut = ∆(I − λ∆)−1φ(u) + f(u).

This shows that u is a solution of (2.1). Therefore, it is unique. �
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The following lemma, the proof of which is similar to [11, Lemma 2.5], will be
useful in the sequel. It will allow us to regard the solutions u(x, t) of (1.1)–(1.2) for
almost all x as a classical solution of the ordinary differential equation (2.3).

Let B(Ω) be the space of functions in Ω that are bounded in the sup-norm.
Recall that L∞(Ω) is the space of equivalence classes of functions in B(Ω) that
differ on a set of measure zero.

Lemma 4. Let u(t) be the solution of (1.1)–(1.2) in L∞(Ω) given by Theorem 1,

defined in a maximal interval (S, T ). Given any representative u0∗ of the equiva-

lence class u0, there exists a set Ω∗ ⊂ Ω such that Ω\Ω∗ has measure zero, and

a function u∗ ∈ C((S, T ), B(Ω)), with u∗(t) ∈ u(t) for all t ∈ (S, T ), such that if

x ∈ Ω∗, then the function t→ u∗(x, t) is C1 in (S, T ) and is a classical solution of

the ordinary differential equation

(2.4) λ
du(t)

dt
= λf(u(t)) − φ(u(t)) + J(x, t).

Next we will establish a result about the regularity of the solutions of (1.1)–(1.2).

Proposition 5 (Regularity). Let u(t) be the solution of (1.1)–(1.2) obtained by

Theorem 1 and defined in a maximal interval (S, T ). Let t ∈ (S, T ) and fix x ∈ Ω∗.
Then,

If u0 is continuous in x, then u(·, t) is continuous in x.
If u0 is not continuous in x, then u(·, t) is not continuous in x.

Proof. Regarding x as a parameter in equation (2.4), this result follows from stan-
dard results on continuous dependence on initial values for solutions of ODEs.
Continuity at time 0 implies continuity at time t and vice versa. �

Now we describe some positively invariant regions for solutions of (1.1)–(1.2).
A set U ⊂ R is positively invariant for the problem (1.1)–(1.2) if for u0(x) ∈ U

and all x ∈ Ω∗, we have u(x, t) ∈ U for all t ≥ 0.

Proposition 6 (Positively Invariant Regions). 1) Let M be such that (φ−λf)(M)
> φ+; then U = [0,M) is positively invariant. In particular, if α < a, U = [0, α)
is positively invariant.

2) If β = a and φ(u) = 0 for all u ≥ a, then U = (a,+∞) and Uǫ = [b− ǫ, b+ ǫ],
with ǫ < b− a, are positively invariant.

Proof. Let u(x, t) be a solution of (1.1)–(1.2) with u(x, 0) = u0(x) defined on a
maximal interval (S, T ).

From (2.1) we obtain, if J(x, t) := φ(u(x, t)) − λf(u(x, t)) + ut(x, t), that

J = (I − λ∆)−1φ(u(x, t)).

Then, since u(·, t) ∈ L∞(Ω), we have by Lemma 2 that for u(x, t) 6≡ constant

ess inf
Ω

φ(u(·, t)) < J(x, t) < ess sup
Ω

φ(u(·, t))

for all x ∈ Ω and all t ∈ (S, T ).
Moreover, from Lemma 4 we know that there exists Ω∗ such that the measure

of Ω\Ω∗ is zero and that for all x ∈ Ω∗ the function t→ u(x, t) is C1 on (S, T ) and
is a classical solution of the ODE

λ
du

dt
= J(x, t) − [φ(u) − λf(u)].
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Now, suppose that u0(x) ∈ U = [0,M) for all x ∈ Ω∗.
If u0(x) ≡ constant, it can be shown that for all x ∈ Ω, u(t) := u(x, t) is a

solution of the ODE
du

dt
= f(u)

in the interval (S, T ). From this we obtain that U = [0,M) is positively invariant.
Suppose now that u0(x) 6≡ constant and that u0(x) ∈ U = [0,M) for all x ∈ Ω∗.

Let u(x0, t0) = 0 for t0 ≥ 0, x0 ∈ Ω∗ such that 0 ≤ u(x, t0) ≤ M for all x ∈ Ω∗.
Since

0 < J(x, t0) < ess sup
Ω

φ(u(·, t0)) ≤ φ+

for all x ∈ Ω, we obtain, for x ∈ Ω∗ and t ∈ (S, T ), that

λ
du

dt
(x0, t0) = J(x0, t0) − [φ(u(x0, t0)) − λf(u(x0, t0))] = J(x0, t0) > 0.

This proves that u(x, t) ≥ 0 for all x ∈ Ω∗ and t ≥ 0.
Suppose now, by contradiction, that there exist t0 > 0 and x0 ∈ Ω∗ such that

u(x0, t0) = M .
Hence,

λ
du

dt
(x0, t0) = J(x0, t0) − [φ(u(x0, t0)) − λf(u(x0, t0))]

= J(x0, t0) − [φ− λf ](M)

< φ+ − φ+ = 0.

This contradicts the fact that 0 ≤ u0(x) < M for all x ∈ Ω∗. This completes the
proof of 1).

Suppose now that β = a, φ(u) = 0 for u ≥ a and that u0(x) ∈ (a,+∞) for all
x ∈ Ω∗. If u0(x) ≡ constant, the result is obtained from the fact that u(t) := u(x, t)

satisfies the equation du(t)
dt

= f(u(t)). Suppose then that u0(x) 6≡ constant; in this
case we know that for all x ∈ Ω, u(x, t) satisfies the equation

(2.5) λ
du

dt
= J(x, t) − φ(u) + λf(u).

Here J(x, t) > 0. Suppose that there exist t0 > 0 and x0 ∈ Ω∗ such that u(x0, t0) = a
and u(x0, t) > a for 0 ≤ t < t0. Then, from (2.5) we obtain that

λ
du

dt
(x0, t0) = J(x0, t0) > 0,

which is a contradiction. This proves the first part of 2).
The second part of 2) follows from the fact that all solutions of (1.1)–(1.2) that

satisfy u(x, t) ≥ a for all x ∈ Ω∗ and all t in an interval I of R, satisfy the ODE

(2.6)
du

dt
(t) = f(u(t))

on I. This follows from the fact that if u(x, t) ≥ a for all x ∈ Ω∗, then φ(u(x, t)) ≡ 0
on Ω∗. Moreover, since J(x, t) is a solution of the equation ∆w = φ(u(x, t)), this
implies that J(x, t) ≡ 0 on Ω∗, and we obtain 2). �

Remark 2. Notice that part 1) of Proposition 6 allows us to obtain an a priori
bound for the solutions of (1.1)–(1.2).
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Theorem 7 (Global Existence). If u0 ∈ X, where X = L∞(Ω) or C(Ω̄), then

there exists a unique solution u(x, t) of (1.1)–(1.2) with initial data u0 such that

u ∈ C1([0,∞), X).

Proof. The global existence is obtained by standard results on ODEs given the a
priori bound obtained by part 1) of Proposition 6 for the norm ||u(t)||L∞

of the
solutions. �

3. Recovery property

In this section we will give conditions on φ and f that allow a population located
in a neighborhood of low density to cluster together in an attempt to raise their
local population above the threshold at which the birth rate begins to exceed the
death rate. We give the name of recovery to this property.

Definition 1. We will say that problem (1.1)–(1.2) exhibits recovery if there exists
a solution u(x, t) of (1.1)–(1.2) with 0 ≤ u(x, 0) < a for all x ∈ Ω, such that for
some t0 > 0 and Ω0 ⊂ Ω of positive measure, u(x, t0) > a for almost all x ∈ Ω0.
We will say that the recovery is permanent if u(x, t) > a for all t > t0 and almost
every x ∈ Ω0.

The following result gives a necessary and sufficient condition for problem (1.1)–
(1.2) to exhibit recovery.

Let γ := inf Aα if Aα 6= ∅ and γ := +∞ if Aα = ∅, where Aα := {u > 0 : φ(u) >
φ(α) := φ+}.

Proposition 8. Problem (1.1)–(1.2) exhibits recovery if and only if α < a < γ.

Proof. Suppose first that problem (1.1)–(1.2) exhibits recovery but nevertheless
a ≤ α or γ ≤ a. Here we assume that γ < +∞ in the case that γ ≤ a. This implies
that there exist a first value t∗0 > 0 and x0 ∈ Ω∗ such that ess supΩ u(·, t

∗
0) ≤

u(x0, t
∗
0) = a. It is obvious that in this case ∂u

∂t
(x0, t

∗
0) ≥ 0.

Since u ≡ a is an equilibrium solution of (1.1)–(1.2), we can assure that u(x, t∗0) <
a for all x in a subset of positive measure.

Since we assume that a ≤ α or γ ≤ a, we have

J(x0, t
∗
0) < ess sup

Ω
φ(u(·, t∗0)) ≤ φ(u(x0, t

∗
0)) = φ(a).

Therefore,

λut(x0, t
∗
0) = λf(a) − φ(a) + J(x0, t

∗
0) < 0,

and this is a contradiction.
Conversely, suppose that α < a < γ and let u(x, t) be a solution of (1.1)–(1.2)

such that u(x, 0) = a for x ∈ Ω0, and u(x, 0) = α if x ∈ Ω\Ω0, where Ω0 is a subset
of Ω of positive measure.

Since

φ(a) < J(x, 0) < φ(α),

we have that

λut(x, 0) = λf(a) − φ(a) + J(x, 0) > 0,
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Table 1. Numerical values of the solution u(x, t) of (1.1)–(1.2)

with Ω = (0, 1), λ = .05, φ(u) = 9(u3

3 − 59u2

120 + 11u
60 ), f(u) =

.36u(u− .5)(1 − u), and initial data u0(x) = 29
60e

−
(x−.5)2

.26−(x−.5)2 .

t\x .08 .18 .28

0 0.05859554676105 0.25238617471082 0.38451126541657

10 0.03026187118585 0.03064667102072 0.03132217672434

20 0.03025810169809 0.03064288101552 0.03131835069636

30 0.03025810131471 0.03064288063004 0.03131835030722

40 0.03025810131468 0.03064288063002 0.03131835030719

50 0.03025810131468 0.03064288063002 0.03131835030719

60 0.03025810131468 0.03064288063002 0.03131835030719

70 0.03025810131468 0.03064288063002 0.03131835030719

80 0.03025810131468 0.03064288063002 0.03131835030719

90 0.03025810131468 0.03064288063002 0.03131835030719

100 0.03025810131468 0.03064288063002 0.03131835030719

t\x .38 .48

0 0.45580934769276 0.48258917130442

10 0.86415065391787 0.86534431914688

20 0.86414295318602 0.86533667442184

30 0.86414295240276 0.86533667364427

40 0.86414295240270 0.86533667364422

50 0.86414295240270 0.86533667364422

60 0.86414295240270 0.86533667364422

70 0.86414295240270 0.86533667364422

80 0.86414295240270 0.86533667364422

90 0.86414295240270 0.86533667364422

100 0.86414295240270 0.86533667364422

for all x ∈ Ω0. This, together with the continuity of the solutions of (1.1)–(1.2)
with respect to the initial data and the fact that the solutions of (1.1)–(1.2) can be
extended locally to t < 0, proves our assertion. �

Proposition 8 tells us that (1.1)–(1.2) exhibits recovery. This is illustrated in
Figure 2 where the phase portrait of the solution u(x, t) of (1.1)–(1.2) is plotted.
Although u(x, t) converges uniformly to zero as t → ∞, we observe an almost
immediate recovery from an initial data u0 located below the threshold level a = .5,
which is sustained for a relatively long interval of time.

The numerical experiments shown in Figure 3, and the corresponding data se-
quence recorded in Table 1, suggest that (1.1)–(1.2) also exhibits permanent recov-
ery. Here we have chosen the same initial distribution as in Figure 2, but changed
the value of β in φ(u) from β = 2/3 in Figure 2 to β = 11/15 in Figure 3. Another
instance of permanent recovery is shown in Figure 4 with the same equation as in
Figure 3 but with different initial data.

In the next section we will prove, for a particular class of functions φ(u), that
(1.1)–(1.2) exhibits permanent recovery.
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Figure 2. Phase portrait of the solution u(x, t) of (1.1)–(1.2)

with Ω = (0, 1), λ = .05, φ(u) = 9(u3

3 − 11u2

24 + u
6 ), f(u) =

.36u(u− .5)(1 − u), and initial data u0(x) = 29
60e

−
(x−.5)2

.26−(x−.5)2 .

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
t

u
(x

,t
)

Figure 3. Phase portrait of the solution u(x, t) of (1.1)–(1.2)

with Ω = (0, 1), λ = .05, φ(u) = 9(u3

3 − 59u2

120 + 11u
60 ), f(u) =

.36u(u− .5)(1 − u), and initial data u0(x) = 29
60e

−
(x−.5)2

.26−(x−.5)2 .
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Figure 4. Phase portrait of the solution u(x, t) of (1.1)–(1.2)

with Ω = (0, 1), λ = .05, φ(u) = 9(u3

3 − 59u2

120 + 11u
60 ), f(u) =

.36u(u−.5)(1−u), and initial data u0(x) = .23(1 + sin(6πx+ 3
2π)).

4. Stabilization in a particular case

In this section we study problem (1.1)–(1.2) when β = a and φ(u) = 0 for u ≥ a.
For example, this condition is satisfied by

(4.1) φ(u) =

{

u exp (a−α)2

α(u−a) if 0 ≤ u < a,

0 if u ≥ a,

with 0 < α < a.
We will show that all solutions of (1.1)–(1.2) stabilize to a not necessarily homo-

geneous steady state solution.
We will begin with the following lemma which describes the dissipative nature

of problem (1.1)–(1.2) in this particular case.

Lemma 9. Given a C1 function h : R → R such that h(0) = 0 and h ≥ 0 on

[0,∞), let H(z) :=
∫ z

0 h(φ(s)) ds. Let u(x, t) be a solution of (1.1)–(1.2) defined

for all t ≥ 0.

1) If h′(z) ≥ 0 for all z, then
∫

Ω
H(u(x, t)) dx is a nonincreasing function of

t for t ∈ [0,∞).
2) limt→∞

∫

Ω
H(u(x, t)) dx exists, independently of the sign of h′(z).

Proof. Let h ∈ C1 be such that h′(z) ≥ 0 for all z. Then

d

dt

∫

Ω

H(u(x, t)) dx =

∫

Ω

h(φ(u))ut dx

=

∫

Ω

h(φ(u))[ut − f(u)] dx+

∫

Ω

h(φ(u))f(u) dx
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= −

∫

Ω

[h(J) − h(φ(u))][ut − f(u)] dx+

∫

Ω

h(J)[ut − f(u)] dx

+

∫

Ω

h(φ(u))f(u) dx

= −λ

∫

Ω

h′(z(x, t))[ut − f(u)]2 dx+

∫

Ω

h(J)∆J dx

+

∫

Ω

h(φ(u))f(u) dx

= −λ

∫

Ω

h′(z(x, t))[ut − f(u)]2 dx+

∫

Ω

∇ · (h(J)∇J) dx

−

∫

Ω

h′(J)|∇J |2 dx+

∫

Ω

h(φ(u))f(u) dx

= −λ

∫

Ω

h′(z(x, t))[ut − f(u)]2 dx−

∫

Ω

h′(J)|∇J |2 dx

+

∫

Ω

h(φ(u))f(u) dx

≤ 0,

from which we obtain 1). Now we consider part 2). When h′(z) ≥ 0, the result
follows from the fact that

∫

Ω
H(u(x, t)) dx is decreasing and bounded below; in fact,

since u0(x) ≥ 0, Proposition 6 implies that
∫

Ω
H(u(x, t)) dx ≥ 0.

If h(z) is not increasing, let k(z) := z+ ǫh(z), with ǫ > 0 small enough such that
k′(z) ≥ 0 for |z| ≤ sup(x,t) |φ(u(x, t))|. If K ′(z) = k(φ(z)), and Φ′(z) = φ(z), then

ǫ

∫

Ω

H(u)(t) =

∫

Ω

K(u)(t) −

∫

Ω

Φ(u)(t) + C.

As in part 1), the limit of the right hand side exists, and we obtain 2). �

In the following result we will show, under a “nondegeneracy condition” on φ,
that the solutions of (1.1)–(1.2) converge pointwise to a stationary solution u∞(x)
as t→ ∞.

For 0 < r < φ+, denote by ui(r), i = 1, 2, the two roots of φ(u) = r that satisfy

φ(ui(r)) = r , i = 1, 2 , u1(r) < u2(r).

Hypothesis 2. There are no nonnegative constants µi, i = 0, 1, 2, not all zero,

such that
∑2

i=1 µiui(r) ≡ µ0 independently of r for all r in any open subinterval of

(0, φ+).

Hypothesis 2 does not allow the existence of a continuum of steady states for
problem (1.1)–(1.2) with f ≡ 0 (see [13] for a discussion on the justification of this
hypothesis), and will be needed in the following theorem. It is not difficult to verify
that Hypothesis 2 is satisfied by φ(u) given by (4.1).

Theorem 10. Suppose that φ and f satisfy Hypothesis 1 with β = a and φ(u) = 0
for u ≥ a. Let u0 ∈ L∞(Ω) be such that u0(x) ≥ 0 for almost every x in Ω. Let

u(x, t) be a solution of (1.1)–(1.2) with initial data u0, defined for all t ≥ 0. If φ
satisfies Hypothesis 2, then

u∞(x) := lim
t→∞

u(x, t)

exists for almost every x ∈ Ω, φ(u∞(x)) = constant, and f(u∞(x)) = 0.
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Remark 3. The convergence of u(x, t) is not necessarily uniform. See Proposition 5
and the comments previous to Proposition 14 at the end of this section.

Proof. The proof is divided into three lemmas. Let

φpr(t) := |Ω|−1

∫

Ω

φ(u(x, t)) dx = |Ω|−1

∫

Ω

J(x, t) dx.

Here u(x, t) is the solution of (1.1)–(1.2) and J(x, t) = φ(u(x, t)) − λf(u(x, t)) +
λut(x, t). �

Lemma 11. Under the hypotheses of Theorem 10, as t→ ∞ we have

||ut(·, t) − f(u(·, t))||L2 → 0,(4.2)

||J(·, t) − φpr(t)||L∞
→ 0,(4.3)

||φ(u(·, t)) − φpr(t)||L2 → 0.(4.4)

Proof. Property (4.4) is obtained from (4.2) and (4.3).
Let us choose a primitive Φ(z) :=

∫ z

0 φ(s) ds. Then,

d

dt

∫

Ω

Φ(u(x, t)) dx ≤ −

∫

Ω

[λ(ut − f(u))2 + |∇J |2] dx.

Therefore, for all T > 0 we have

λ

∫ T

0

∫

Ω

(ut−f(u))2 dx dt+

∫ T

0

∫

Ω

|∇J |2 de dt ≤

∫

Ω

Φ(u0(x)) dx−

∫

Ω

Φ(u(x, T )) dx.

Since limT→∞

∫

Ω Φ(u(x, T )) dx exists, it follows that

ν

∫ ∞

0

∫

Ω

(ut − f(u))2 dx dt ≤ C.

Here and in what follows, C will denote a generic constant independent of t. Now,
we will obtain (4.2) if we prove that h(t) :=

∫

Ω
(ut(x, t)−f(u(x, t)))2 dx is uniformly

continuous in t ∈ [0,∞).
Since ||u(·, t)||L∞

is uniformly bounded, it follows from

ut − f(u) = λ−1((I − λ∆)−1 − I)φ(u),

that ||ut(·, t) − f(u(·, t))||L∞
is uniformly bounded.

For t > s ≥ 0, we have

|h(t) − h(s)| = |

∫

Ω

(ut(x, t) − f(u(x, t)))2 − (ut(x, s) − f(u(x, s)))2 dx|

≤ C

∫

Ω

|ut(x, t) − ut(x, s) − (f(u(x, t)) − f(u(x, s)))| dx

= C

∫

Ω

|∆(I − λ∆)−1(φ(u(x, t)) − φ(u(x, s)))| dx

≤ C||φ(u(·, t)) − φ(u(·, s))||L∞

≤ C||u(·, t) − u(·, s)||L∞

≤ C(t− s).

This proves that h(t) is uniformly Lipschitz continuous, and (4.2) follows.
Interpolating between L2 and L∞, we obtain that

||ut − f(u)||Lp
→ 0 as t→ ∞ for 2 ≤ p <∞.
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2752 VÍCTOR PADRÓN

To obtain (4.3), we observe that J(·, t) − φpr(t) is the unique solution of the
Neuman problem

∆w(x) = ut(x, t) − f(u(x, t)) in Ω with η · ∇w = 0 in ∂Ω.

Hence
∫

Ωw = 0. This implies that for all p such that 1 < p < ∞, there exists a
constant C such that

||J(·, t) − φpr(t)||W 2,p ≤ C||ut − f(u)||Lp
.

When 2p > d, it follows that W 2,p is continuously embedded in L∞. This implies
(4.3). �

Lemma 12. Under the hypotheses of Theorem 10

lim
t→∞

φpr(t) exists.

Proof. Suppose that the limit does not exist. Choose p and q such that

(4.5) lim inf
t→∞

φpr(t) < p < q < lim sup
t→∞

φpr(t).

Hence, 0 < p < q < φ+. Recall the definition of ui(r) in Hypothesis 2. We
choose ǫ > 0 small enough such that |u1(r) − u2(r)| > 5ǫ if r ∈ [p, q]. Let

Q := {t : φpr(t) ∈ [p, q]}.

Let us define, for t ∈ Q, i = 1, 2,

Sǫ
i (t) := {x ∈ Ω : |u(x, t) − ui(φpr(t))| < ǫ},

µǫ
i(t) := |Sǫ

i (t)|, the measure of Sǫ
i (t),

Sǫ
0(t) := Ω \

2
⋃

i=1

Sǫ
i (t),

µǫ
0(t) := |Sǫ

0(t)|.

The sets Sǫ
i (t), i = 0, 1, 2, are disjoint. To prove Lemma 12, we need three sublem-

mas. �

Sublemma 1.

limt→∞,t∈Q

2
∑

i=1

µǫ
i(t) = |Ω|.

Proof. It follows from Lemma 11 that the set

Sδ
f (t) := {x ∈ Ω : |φ(u(x, t)) − φpr(t)| > δ}

satisfies |Sδ
f (t)| → 0 as t → ∞, t ∈ Q, for all δ > 0. Since φ is strictly monotonic

in each of the subsets {ui(r) : r ∈ [p, q]}, i = 1, 2, we can choose δ > 0 such that
|u − ui(r)| > ǫ implies |φ(u) − r| > δ for r ∈ [p, q]. Hence Sǫ

0(t) ⊂ Sδ
f (t), and we

obtain the lemma. �

Sublemma 2. For a given function h ∈ C1(R) with support supp h ⊂ (0,∞), we

define H(z) :=
∫ z

0
h(φ(s)) ds. Hence,

lim
t→∞

∫

Ω

H(u(x, t)) dx = limt→∞,t∈Q

2
∑

i=1

µǫ
i(t)H(ui(φpr(t))).

In particular, the limit on the right hand side exists.
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Proof. From Lemma 9 the limit on the left hand side exists. We write

∫

Ω

H(u(x, t)) dx =

∫

Sǫ
0(t)

H(u) +
2
∑

i=1

∫

Sǫ
i (t)

H(u) −H(ui(φpr(t)))

+
2
∑

i=1

∫

Sǫ
i (t)

H(ui(φpr(t)))

:= T0(t) +
2
∑

i=1

Ti(t) +
2
∑

i=1

µǫ
i(t)H(ui(φpr(t))).

Now, |T0(t)| ≤ Cµǫ
0(t) → 0 as t→ ∞ in Q (note that since supp h ⊂ (0,∞), H(u)

is uniformly bounded).
For i = 1, 2

|Ti(t)| ≤ C

∫

Sǫ
i (t)

|u(x, t) − ui(φpr(t))| dx,

where C = ||h(φ(·))||L∞(R). For all δ, 0 < δ < ǫ, we have Sδ
i (t) ⊂ Sǫ

i (t), therefore

|Ti(t)| ≤ C(δµδ
i (t) + ǫ(µǫ

i(t) − µδ
i (t))).

Adding this inequality over i = 1, 2, and using Sublemma 1, we obtain

lim sup
t→∞,t∈Q

2
∑

i=1

|Ti(t)| ≤ Cδ, for all δ > 0.

Hence these terms converge to zero, and we obtain Sublemma 2. �

Sublemma 3. For each i = 1, 2, µi := limt→∞,t∈Qµ
ǫ
i(t) exists.

Proof. Let us choose two nonnegative C1 functions h−(r), h+(r) such that their
supports satisfy supp h− ⊂ (0, p), supp h+ ⊂ (q, φ+). Let

H± :=

∫ z

0

h±(φ(s)) ds.

For t ∈ Q we can see that H±(ui(φpr(t))) is independent of t. In fact, for r ∈ [p, q]
there exist positive constants γ±i , i = 1, 2, independent of r, such that

H−(u1(r)) = γ−1 ,

H−(u2(r)) = γ−1 ,

H+(u1(r)) = 0,

H+(u2(r)) = γ+
1 + h+

2 ,

where

γ−1 =

∫ u1(p)

0

h−(φ(s)) ds,

γ+
1 =

∫ α+

u1(q)

h+(φ(s)) ds,

γ+
2 =

∫ u2(q)

α+

h+(φ(s)) ds.
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Applying Sublemmas 1 and 2 we find that

(4.6)

(

γ−1 γ−1
0 γ+

1 + γ+
2

)(

µǫ
1(t)
µǫ

2(t)

)

=

(

H∞
−

H∞
+

)

+ o(1)

as t→ ∞ in Q, where H∞
± := limt→∞

∫

ΩH±(u(x, t)) dx. The matrix in (4.6) is not
singular, and from this we obtain Sublemma 3.

Now, we are ready to prove Lemma 12. From Sublemmas 3 and 2 we have that
for all H as in Sublemma 2,

lim
t→∞

∫

Ω

H(u(x, t)) dx = limt→∞,t∈Q

2
∑

i=1

µiH(ui(φpr(t))).

In particular, the right hand side must be equal to

2
∑

i=1

µiH(ui(r)) for all r ∈ [p, q].

Indeed, suppose that there exist t and s in Q such that

2
∑

i=1

µiH(ui(φpr(t))) 6=
2
∑

i=1

µiH(ui(φpr(s))).

Hence, from (4.5) and since φpr ∈ C([0,∞),R) (note that u ∈ C([0,∞), L∞(Ω)) and
φ is uniformly continuous), there exist sequences tn, sn ∈ Q such that tn, sn → ∞
as n → ∞, and φpr(tn) = φpr(t), φpr(sn) = φpr(s). This is a contradiction to the
fact that the previous limit exists.

Let hn(z) be a sequence of C1 functions such that hn(z) ≡ 1 for z ≥ φ( 1
n
) and

supp hn ⊂ (0,∞). Hence, for n big enough we have

lim
t→∞

∫

Ω

Hn(u(x, t)) dx =

2
∑

i=1

µiHn(ui(r))

=

2
∑

i=1

µi

(

∫ 1
n

0

hn(φ(z)) dz +

∫ ui(r)

1
n

hn(φ(z)) dz

)

=

2
∑

i=1

µiui(r) +

(

∫ 1
n

0

hn(φ(z)) dz −
1

n

)

|Ω|.

Therefore,

µ0 := lim
n→∞

lim
t→∞

∫

Ω

Hn(u(x, t)) dx =

2
∑

i=1

µiui(r)

for all r ∈ [p, q]. If φ satisfies Hypothesis 2, this takes us to a contradiction, and
the proof of Lemma 4.3 is finished.

To finish the proof of Theorem 10, we recall that for almost every x ∈ Ω, the
function t 7→ u(x, t) is C1 and satisfies λut = λf(u) − φ(u) + J(x, t). Let φ∞ =
limt→∞ φpr(t). From Lemmas 11 and 12 we obtain

(4.7) λut = −(φ(u) − λf(u) − φ∞) + e(x, t)

where |e(x, t)| → 0 as t → ∞ uniformly for x ∈ Ω. By the following lemma,
proved in [13, Lemma 6], and Proposition 6, we obtain that u(x, t) converges almost
everywhere to a function u∞ : Ω → [0,∞], and φ(u∞(x)) − λf(u∞(x)) = φ∞
almost everywhere. From equation (4.7) we also obtain that ut(x, t) → 0 almost
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everywhere as t → ∞. Therefore, from Lemma 11 we obtain that f(u∞(x)) =
limt→∞ f(u(x, t)) = 0 almost everywhere. This allows us to conclude that u∞
satisfies φ(u∞(x)) = φ∞ and f(u∞(x)) = 0 almost everywhere, and the proof of
Theorem 10 is finished. �

Lemma 13. Suppose that g : R → R is continuous and not identically zero on any

open interval. Suppose that z(t) ∈ C1(0,∞) is a solution of the equation

z′(t) = g(z(t)) + e(t)

where e(t) is continuous and limt→∞ e(t) = 0. Then, limt→∞ z(t) = z∞ exists, and

if z∞ is finite, g(z∞) = 0.

The next result proves that the discontinuous steady state solutions of (1.1)–(1.2)
may be a limit of continuous initial data u0; by Proposition 5 we know that this
initial data produce continuous solutions. Nevertheless, the convergence cannot be
uniform since in a small L∞ neighborhood of a discontinuous solution there exist
no continuous functions.

Proposition 14. Let u0 ∈ L∞(Ω) be such that u0(x) ≥ 0. Then, for all x ∈ Ω∗

we have
If u0(x) < α, then u(x, t) < α for all t ≥ 0.
If u0(x) > a, then u(x, t) > a for all t ≥ 0.

Therefore u∞(x) := limt→∞ u(x, t), which exists by Theorem 10, is a stationary

solution of (1.1)–(1.2) and for all x ∈ Ω∗

If u0(x) < α, then u∞(x) = 0.
If u0(x) > a, then u∞(x) = b.

Proof. The proof is similar to the proof of Proposition 6 and is omitted. �

Remark 4. As a consequence of this result we obtain that problem (1.1)–(1.2), with
β = a and φ(u) = 0 for u ≥ a, exhibits permanent recovery. Certainly, from Propo-
sition 8 we have that problem (1.1)–(1.2) exhibits recovery. Since Proposition 14
implies that if u(x, t0) > a then u(x, t) > a for all t ≥ t0, the recovery is permanent.
Moreover, by the proof of Proposition 8, there exist a proper subset Ω0 of Ω with
positive measure and t0 > 0 such that u(x, t0) > a for almost every x ∈ Ω0 and
u(x, t0) < α for almost every x ∈ Ω \ Ω0. By Theorem 10 and Proposition 14, we
have that limt→∞ u(x, t) = u∞(x) where

u∞(x) =

{

b if x ∈ Ω0,
0 if x ∈ Ω \ Ω0,

is an equilibrium solution of (1.1)–(1.2).
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