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Abstract: In the study, we inspect the impact of cross diffu-

sion and alignedmagnetic field on Casson fluid flow along

a stretched surface of variable thickness. The differential

equations explaining the flow situation have been transi-

tioned with the succor of suited transfigurations. The so-

lution of the problem is achieved by using bvp5c Matlab

package. From the solution, it is perceived that the flow,

temperature and concentration fields are affected by the

sundry physical quantities. Results explored for the flow

over a uniform and a non-uniform thickness surfaces. The

influence of emerging parameters on the flow, energy and

mass transport are discussed with graphical and tabular

results. Results show that the thermal, flow and species

boundary layers are uneven for the flow over a uniform

and non-uniform thickness stretched surfaces.

Keywords:Cross diffusion, Cassonfluid, Alignedmagnetic

field, Slendering sheet

1 Introduction

The convective mass and heat transfer past a stretched

surface plays an essential part in modern industries for

intends of reliable apparatus. The researchers showing

distinct fascination on mass and heat transfer in non-

Newtonian flows because of its significance in the recent

applications and technology in thermal engineering and

in addition other astrophysical and geophysical studies.

Rashidi et al. [1] analytically studied the thermal radiation

*Corresponding Author: R. Saravana, Department of Mathematics,

Madanapalle Institute of Technology and Science, Madanapalle 517

325, India, E-mail: saravanasvu@gmail.com

M. Sailaja, Department of Mathematics, Dravidian University, Kup-

pam 517 425, India

R. Hemadri Reddy, Department of Mathematics, School of Advanced

Science, VIT University, Vellore 632 014, India

effect on micropolar fluid flow between porous medium.

Bhattacharya et al. [2] extended this work by considering

the flow towards a porous shrinking surface. The mass

and heat transfer inmagnetohydrodynamic flowpast a flat

plate with heat source/sink was presented by Chamkha et

al. [3]. MHDviscous flowpast an infinite vertical platewith

constantmassfluxhasbeen reportedbySaravanaet al. [4].

Alam et al. [5] illustrated the impacts of thermophoresis

and variable suction on MHD mass and heat transfer flow

towards an inclined plate with thermal radiation.

The effects of cross diffusion on chemically react-

ing MHD flow past a permeable stretched surface with

Brownian motion and thermophoresis was numerically

analyzed by Kandasamy et al. [6]. Unsteady liquid film

flow of pseudo-plastic nanoliquid with viscous dissipa-

tion and variable thermal conductivity was studied by Lin

et al. [7]. The analytical investigation of multi and single-

phasemodels used for the reduction of nanofluid flowwas

studied by Turkyilmazoglu [8]. A chemical reaction and

transpiration effect on magnetohydrodynamic flow over

a wedge was theoretically investigated by Kandasamy et

al. [9]. An analytical investigation for chemically reacting

MHD flow towards a surface was proposed by Ouaf [10]. A

variable temperature effect on mixed convection flow over

a wedge was presented by Hossain et al. [11]. MHD flow

and heat transfer over an isothermal sheet with chemical

reaction effect was proposed by Kabeir et al. [12]. Chem-

ical reaction and thermal radiation effects on MHD flow

past a permeable stretched surface by considering suction

was discussed by Mohankrishna et al. [13]. MHD viscous

flow past an expanding surface was analytically studied

by Turkyilmazoglu [14]. Sandeep and Sulochana [15] nu-

merically studied the mixed convection micropolar fluid

flow towards an expanding/contracting surface with non-

uniform heat source/sink.

MHD heat transfer flow of a non-Newtonian fluid past

a shrinking surface was numerically explained by Akbar

et al. [16]. A theoretical investigation on heat transfer and

Carreau liquid flow was done by Jenny [17]. Mixed convec-

tion flow over a rotating cone was numerically studied by

Anilkumar and Roy [18]. A new buoyancy induced model

of Al-water nanofluid over a parabolic region was numer-
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ically studied by Sandeep and Animasaun [19]. Further,

they extended their work by considering the flow over a

stagnation region [20]. Chankha et al. [21] discussed the

effect of thermal radiation on the flow over a wedge filled

with porous medium. Cross diffusion effects on the MHD

non-Newtonian fluid flows over a parabolic region was

presented by Kumaran and Sandeep [22]. Koriko et al. [23]

studied the flow over upper flat surface of a paraboloid of

revolution with of Brownian motion and thermophoresis.

Very recently, the reserchers [24–26] investigated the MHD

flow over various flow geometries by considering the ther-

mal radiation and Cattenao-Christov heat flux.

By keeping the above references in view, In this pa-

per, we inspect the impact of cross diffusion and aligned

magnetic field on magneto hydrodynamic Casson fluid.

The flow is considered beside a stretched surface of vari-

able thickness. The governing partial differential equa-

tions of the flow, heat and mass transfer are transformed

into ODE’s equations solved numerically by using bvp5c

Matlab package. From the solution, it is perceived that the

flow, concentration and temperature fields are affected by

the sundry physical quantities.

2 Formulation of the problem

A steady 2D flow of magnetohydrodynamic Casson fluid

over a slendering stretched sheet is considered. The x-axis

is considered along the sheet and the y-axis is perpendic-

ular to it. It is supposed that y = A(x + b)
1−m
2 , uw(x) =

(x + b)
mU0, vw = 0, m = ̸ 1. This study induced magnetic

field is neglected. Combined influence of Soret and Du-

four impacts are considered. An aligned magnetic field of

strength B0 is employed as depicted in Fig. 1 at different

angles. In this study,m ≠ 1 dealswith the slendering sheet

and m = 1 deals with the uniform thickness sheet.

With the above assumptions, the governing equations

can be expressed as (refer [27])

∂u

∂x
+
∂u
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Fig. 1: Physical Model

with the conditions
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where
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[
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f1

]

ξ1(x + b)
1−m
2 , (6)

h*2 =

[

2 − a
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2 − d

d
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Tw − T∞ = T0(x + b)
1−m
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we now suggest the following similarity transformations:

ψ = f (η)

(

2

m + 1
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m+1
)0.5

(10)
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(
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2
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θ(Tw(x) − T∞) − T∞ = T (12)

If stream function ψ be described as u =
∂ψ
∂y
andv =

−
∂ψ
∂x

u = U0(x + b)
m f ′(η) (13)

with the help of (12), (13), equations (2)-(4) converted as

(

1 + β−1
)

f ′′′ + f ′′f −
2m

m + 1
f ′2 −Msin2αf ′ = 0, (14)

θ′′ + Pr fθ′ + PrDuϕ′′
− Pr

1 − m

m + 1
f ′θ = 0, (15)
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ϕ′′
− Sc

1 − m

m + 1
f ′ϕ + Scfϕ′ + ScSrθ′′ = 0, (16)

and the corresponding conditions are

f (0) = λ
(

1−m
m+1

) [

1 + h1f
′′(0)
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]

,
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
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
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Λ = Γ
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The physical quantities of engineering interest, the

friction factor, local Nusselt and Sherwood numbers are

given by Cf = 2
µ ∂u∂y
ρU2

w

Shx =
(x + d) ∂C

∂y

Cw(x) − C∞
(19)
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(x+b) ∂T∂y
Tw(x)−T∞

y using (5), (19) becomes
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Where Rex =
UwX
ν andX = (x + b)

Discussion of the results

The set of ODEs (14)-(16) with the conditions (17) is numer-

ically solved by employing bvp5c technique. For compu-

tational purposes, the pertinent parameter values consid-

ered as Sc = 0.2, Pr = 6, β = 0.5,M = 3, Sr = 0.3, γ = π/3,

h1 = h2 = h3 = 0.5, Du = 0.2,λ = 0.2. These values are

kept as common in the entire study exclude the varied val-

ues as shown in respective tables and figures.

Figs. 2-4 explored the impact of M on velocity, tem-

perature and concentration distributions of the flow over

a variable and uniform thickness stretched surfaces. We

observed that the increasing values of the M suppresses

the velocity field and boost the concentration and thermal

fields in both cases. It is also observed that the influence of

the M is large on the flow past a uniform thickness sheet

whencompared to variable thickness sheet. Physically, ris-

ing values of the M develop the negative force to the flow

field known as Lorentz force. This leads to decline the ve-

locity boundary layer thickness. The similar results have

been observed in Figs. 5-7 for rising values of the aligned

angle. This may be due to the fact that the increasing the

aligned angle, strengthen the M hence develop the resis-

tive force.

The impacts of Soret number on thermal and concen-

tration fields are depicted in Figs. 8 and 9. It is clear that

the boosting value of Sr enhances both the concentration

and temperature fields. But we noticed an opposite trend

to above in the concentration field for improving values of

the Dufour number (See Figs. 10 and 11). Physically, the

Soret and Dufour effects are a combined effect, which reg-

ulates the concentration and thermal fields. The effects

of Casson parameter on concentration and temperature

fields are depicted in Figs. 12 and 13. It is observed that

the increasing value of the Cassonparameter enhances the

concentration and temperature fields in both cases. Gener-

ally, increasing values of the Casson parameter reduce the

viscous nature of the flow field. This leads to increase the

temperature and mass fields.

The effects of dimensionless velocity slip parameter

on f ′(η), θ(η) and ϕ(η) fields are shown in Figs. 14-16. It

is clear that the increasing value of velocity slip parame-

ter decline f ′(η) and boosts the. It is evident from Figs. 15

and 16 that the slip influence is highly on θ(η) and. The im-

pact of concentration and temperature slip parameters of

thermal and concentration fields is depicted in Figs. 17-20.

It is clear that the increasing values of h2 and h3 depreciate

both θ(η) and ϕ(η) fields in both cases.

Tables 1 and 2 shows the variation in the wall friction,

reduced Nusselt and Sherwood numbers at different perti-

nent parameters. It is clear that the increasing values ofM,

α, Sr, β and h1 suppresses the mass and heat transfer rate

of the flows past a uniform and variable thickness stretch-

ing sheets. Increasing values of the Dufour number and

temperature slip parameter declines Nusselt number and

enhances the Sherwood number. But concentration slip

parameter shows the opposite trend to the above. Varying

values of the Soret, Dufour numbers, velocity and temper-

ature slips is not showing a significant influence on wall

friction, while M have tendency to decline the skin fric-

tion coefficient. Table 3. Shows the validation of numerical

technique with the Newtonian fluid.

Numerical Procedure (bvp5c)

Bvp5c is a one of the boundary value problem solver in

Matlab package. The bvp5c function is used exactly like

bvp4c, with the exception of the meaning of error toler-

ances between the two solvers. If S(x) approximates the

solution y(x), bvp4c controls the residual |S′(x)–f(x,S(x))|.
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This controls indirectly the true error |y(x)–S(x)|. bvp5c

controls the true error directly.

Fig. 2: Influence of M on velocity field

Fig. 3: Influence of M on temperature field

3 Conclusions

The influence of cross diffusion and alignedmagnetic field

onmagnetohydrodynamic Cassonfluid is investigated the-

oretically along a stretched surface of variable thickness.

The differential equations explaining the flow situation

have been transitioned with the succor of suited transfig-

urations. The solution of the problem is achieved by using

bvp5c Matlab package. From the solution, it is perceived

that the flow, temperature and concentration fields are af-

Fig. 4: Influence of M on concentration field

Fig. 5: Influence of α on velocity field

Fig. 6: Influence of α on temperature field
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Table 1: Variations in physical quantities for the flow over a variable thickness sheet

M Sr Du α0 β h1 h2 h3 Cf Nux Shx

1 −0.505140 0.495539 0.582760

2 −0.588985 0.466246 0.549117

3 −0.652936 0.441628 0.520833

0.5 −0.652936 0.429327 0.442860

1.0 −0.652936 0.402005 0.266693

1.5 −0.652936 0.378817 0.113314

0.5 −0.652936 0.282406 0.581449

1.0 −0.652936 0.058035 0.668925

1.5 −0.652936 −0.126725 0.743023

30 −0.505140 0.495539 0.582760

45 −0.588985 0.466246 0.549117

60 −0.652936 0.441628 0.520833

0.5 −0.652936 0.441628 0.520833

1.0 −0.742597 0.403642 0.477147

1.5 −0.784471 0.384937 0.455596

0.2 −0.828335 0.488521 0.575301

0.4 −0.702013 0.455775 0.537274

0.6 −0.610565 0.428658 0.505754

0.5 −0.652936 0.441628 0.520833

1.0 −0.652936 0.337275 0.552628

1.5 −0.652936 0.272812 0.572269

0.5 −0.652936 0.441628 0.520833

1.0 −0.652936 0.459920 0.388086

1.5 −0.652936 0.470782 0.309263

Fig. 7: Influence of α on concentration field

fected by the sundry physical quantities. Results explored

for the flow over a uniform and a non-uniform thickness

surfaces. The numerical observations are as follows:

• The thermal and concentration boundary thick-

nesses are non-uniform for the flow over a uniform

and variable thickness stretched surfaces.

• The heat and mass transfer rate is high in the flow

over a variable thickness surface when compared to

the uniform thickness surface.

Fig. 8: Influence of Sr on temperature field

• Aligned magnetic field regulates the flow, thermal

and concentration fields.

• Cassonparameter has tended to decline the heat and

mass transfer rate.

• Cross diffusion regulates the temperature and con-

centration fields.

• Slip parameters monitor the heat and mass transfer

performance.
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Table 2: Variations in physical quantities for the flow over a uniform thickness sheet

M Sr Du α0 β h1 h2 h3 Cf Nux Shx

1 -0.521103 0.462819 0.472203

2 -0.599633 0.431194 0.440696

3 -0.660650 0.404706 0.414282

0.5 -0.660650 0.393374 0.346888

1.0 -0.660650 0.368633 0.195334

1.5 -0.660650 0.348083 0.064136

0.5 -0.660650 0.245853 0.470118

1.0 -0.660650 0.023572 0.550903

1.5 -0.660650 -0.158344 0.619420

30 -0.521103 0.462819 0.472203

45 -0.599633 0.431194 0.440696

60 -0.660650 0.404706 0.414282

0.5 -0.660650 0.404706 0.414282

1.0 -0.749609 0.363967 0.373563

1.5 -0.791064 0.344614 0.354158

0.2 -0.842679 0.450978 0.460942

0.4 -0.711336 0.418563 0.428264

0.6 -0.617033 0.392084 0.401538

0.5 -0.660650 0.404706 0.414282

1.0 -0.660650 0.323705 0.437529

1.5 -0.660650 0.269721 0.453023

0.5 -0.660650 0.404706 0.414282

1.0 -0.660650 0.420215 0.323921

1.5 -0.660650 0.430170 0.265920

Fig. 9: Influence of Sr on concentration field

Nomenclature

u, v: Velocity components in x and ydirections (m/s)

x: Direction along the surface (m)

y: Direction normal to the surface (m)

Cp: Specific heat capacity at constant pressure (J/kg K)

f : Dimensionless velocity

A: constant related to stretching sheet

B(x): Magnetic field parameter (kg/s2 A)

T: Temperature of the fluid (K)

Fig. 10: Influence of Du on temperature field

k: Thermal conductivity (W/m K)

Dm: Molecular diffusivity of the species concentration

(m2/s)

kT : Thermal diffusion ratio (m2/s)

Cs: Concentration susceptibility

C: Concentration of the fluid (mol/m3)

Tm: Mean fluid temperature (K)

T∞: Temperature of the fluid in the free stream (K)

C∞: Concentration of the fluid in the free stream (K)
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Fig. 11: Influence of Du on concentration field

Fig. 12: Influence of β on temperature field

Fig. 13: Influence of β on concentration field

Fig. 14: Influence of h1 on velocity field

Fig. 15: Influence of h1 on temperature field

Fig. 16: Influence of h1 on concentration field
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Fig. 17: Influence of h2 on temperature field

Fig. 18: Influence of h2 on concentration field

Fig. 19: Influence of h3 on temperature field

Fig. 20: Influence of h3 on concentration field

Table 3: Validation of the results of f ′′(0) with Ref. [26] for Newton-

ain Case

λ h1 Ref. [26] Present Results

0.2 0 −0.924828 −0.9248291230

0.25 0.2 −0.733395 −0.7333964851

0.5 0.2 −0.759570 −0.7595702140

h*1: Dimensional velocity slip parameter

h*2: Dimensional temperature jump parameter

h*3: Dimensional concentration jump parameter

a: Thermal accommodation coefficient

b: Physical parameter related to stretching sheet

d: Concentration accommodation coefficient

m: Velocity power index parameter

Pr: Prandtl number

M: Magnetic interaction parameter

Du: Dufour number

Sc: Schmidt number

Sr: Soret number

h1: Dimensionless velocity slip parameter

h2: Dimensionless temperature jump parameter

h3: Dimensionless concentration jump parameter

Cf : Skin friction coefficient

Nux: Local Nusselt number

Shx: Local Sherwood number

Rex: Local Reynolds number

Greek Symbols

ϕ: Dimensionless concentration

η: Similarity variable

σ: Electrical conductivity of the fluid (S/m)

γ: Ratio of specific heats
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θ: Dimensionless temperature

ρ: Density of the fluid (kg/m3)

β: Casson fluid parameter

µ: Dynamic viscosity (Pa s)

υ: Kinematic viscosity (m2/s)

λ: Wall thickness parameter

ξ1: Mean free path (constant)

α: Aligned angle
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