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Effect of Antenna Size on Gain, Bandwidth, and
Efficiency’

Roger F. Harrington 2

(June 29, 1959)

A theoretical analysis is made of the effect of antenna size on parameters such as gain,
bandwidth, and efficiency. Both near-zone and far-zone directive gains are considered. It
is found that the maximum gain obtainable from a broad-band antenna is approximately
equal to that of the uniformly illuminated aperture. If higher gain is desired, the antenna
must necessarily be a narrow-band deviee. In fact, the mpm lm]:-et].mct bommes frequency
sensitive so rapidly that, for large antennas, no s:;,mht,ﬂnt inerense in gain over that of the
uniformly illuminated aperture is possible. Also, if the antenna is lossy, the efficiency falls
rapidly as the gain is inereased over that of the uuifurlnl_v illuminated aperture.

1. Introduction

As a practical matter, the maximum directive gain (directivity) of an antenna depends
upon its physical size compared to wavelength.  The uniformly illuminated aperture type of
antenna has been found to give a higher gain in practice than other antennas, at least for large
apertures. However, the uniformly illiminated aperture does not represent a theoretical limit
to the gain.  Higher directive gains appear to be possible, but analyses of projected “supergain”
antennas reveal extreme frequency sensitivity at best, excessive losses at worst. This paper
gives a theoretical treatment to the general problem, from which quantitative bounds to an-
tenna performance may be obtained. The analysis considers both the near-zone and the far-
zone gain of antennas.

Let the spherical coordinate system be defined as in figure 1. The directive gain as a fune-
tion of distance from an antenna is defined as the ratio of the maximum density of outward-
directed power flux to the average density. In equation form this is

5 4rr*Re( S, )m“
G(Br)=— Re(l ) (1)

where S; is the radial component of the complex Poynting vector at a distance r, and P is the
outward-directed complex power over a sphere of radius 7.

z

Ficure 1. The spherical coordinate system.
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The field external to a sphere containing all sources can be expanded in terms of spherical
wave functions. The general form is [1] ?

E=—vX(ry) +Ej; VXV X (1)

(2)
A 1
=VX(r) Fon VXX (T
where r is the radius vector from the origin and
Y=2_ A,y (Br)Py(cos ) cos (me+am,)
ol (3)

;P=‘_Z B,oh? (Br)Pr(cos 8) cos (mé-+du,)

where A, By @nn, and &, are coefficients which do not depend on 7, 8, or ¢, and =2 /wave-
length. From the above formulas for the field can be caleulated the power over a sphere of
radius »

n_ 4T n(n+1)(n+m)! /1 :
Re(P)=cr 3 B o (L o B @

where €, 1s Neumann’s number and y=120x. The radial component of the power flux density
in the #=0 direction is

S=EH}—EH} (5)

where

}—“-"IJ::E H(f;;;‘—,l} *Ill-n Si[l alnﬁ‘n(ﬁr-} '_‘jﬂBIn cos &IuFri(ﬁr)]

Ey:Z H(;;;l) ‘41?!. cos a]'ﬂ‘ﬁ-']'i (S?‘) +j7} Blu Bin &]nF:\(Br}] (6)

=3 "D [ B sin BB+ A cos a6 |

1= D] — B cos 0, BB —La,, sin e, FiGer) |

n 28r n

and

F,(Br)=8r b3 (8r). (7)
The coordinate axes are to be oriented so the maximum radiation is in the §=0 direction. Then
the S, of (5) is the (S,)msx of (1).

Note that a,,, and &,,, donot enter into the formula for power, (4). Also, from the symmetry
of (5) and (6) it 1s evident that the density of power flux in the =0 direction is independent of
o, and &y,. Hence, they may be chosen in any convenient manner. In particular,let ay,—m/2,
ap=m, which give a field linearly polarized in the z direction. With this choice, the gain (1)
becomes

RP[(Z‘I';aFn+jbﬂP1;a}{Ebnﬁlr:—f—jffer!:) *]

G= (8)

(71- o !
"("'”. i ]}Mi}” {.|Auml=+|’.'3mn|_2)

m, i é,ﬂ(‘.!?i,---f— 1) ("ﬂ.“—' ?RJ |

3 Fipures in brackets indicate the literature references at the end of this paper,
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where
a,=nn-+1)4,, b,=nn(n+1)B,,. (9)

Equation (8) is a general formula for directive gain,

2. Maximum Gain

1f all orders of spherical wave functions are permitted there is no limit to the gain of an
antenna. However, a definite limit to the gain exists if wave functions are restricted to orders
n<N. Only the 4, and B, contribute to the numerator of (8), so the gain ean be increased
by setting

A= Bun=0 m#=l. (10)

Furthermore, the gain formula is symmetrical in a, and b, so the maximum gain will exist under
the condition

@n=D0,. (11)

Equation (8) has now been reduced to

RERCEy

42|I”| ’n+l

(7-

(12)

where
u, (Br)=F,(8r)+7 F(Br). (13)
The numerator of (12) can now be inereased without changing the denominator by setting

phase (a,)=—phase (u,) (14)
in which ecase (12) becomes

(3 el )
G= “.; i . (15)
4> |a,|? =
n=1

2n+1

Finally, the |a,| are adjusted for maximum gain by requiring 0(//0a,|=0 for all @;. The result is

N
(;(-ﬁj')llllt&: '%Z{QH_I_ 1 ) i Hu[ﬁ"') i2 U-G}

n=1

which is the maximum directive gain obtainable using wave functions of order n < N. The
maximization procedure also results in the relationship

|aa| _ @2nA-1)|u,| -
la, | T (2441) u| (17

From (13) it follows that

[wa(Br) [*= | En(Br) '+ | Fo(Br) [*4-2. (18)

As Br-so, |u,*—>4, so in the far zone (16) reduces to
’ 3 AY *
G(®)max=2.02n+1)=N>+2N (19)
=1

which has been previously published [1].
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The |u,|* functions, which enter into (16) and also into later formulas, are shown in figure 2.
The maximum directive gain for various gr and various N has been caleulated. Figure 3 shows
the ratio of the near-zone gain to the far-zone gain for several N. Note that the maximum
near-zone gain is essentially the same as the maximum far-zone gain unless gr<N. Keep in
mind that the excitation of the antenna is changed as 8r is varied so that it is always adjusted
for maximum gain at the given radius. One can think of the antenna as being focused at the

distance 7.
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3. Quality Factor

So far the antenna structure has not been mentioned. An ideal loss-free antenna of
radius /2 is defined as one having no energy storage »<_I¢, which is the same as Chu's defini-
tion [2]. The quality factor

) u.,'elucr. releet o
Rep). VoW
Q= (20)

20 Wmar T Telect
R eoH

for this ideal antenna must be less than or equal to that for any other loss-free antenna fitting
into the sphere r=1=R, since any field » << I can only add to the energy storage. In (20) the
energies W are those obtained by subtracting the radiation field from the total field. If the @
of an antenna is high, it can be interpreted as the reciprocal of the fractional bandwidth of
the input impedance. If the @ is low the antenna has broadband potentialities.

Because of the orthogonality of the spherical wave funections, the total electric energy,
magnetic energy, and power radiated is the sum of the corresponding quantities associated
with each mode., The @ can therefore be found by treating the field of each spherical wave
as if it existed on a “spherical waveguide” isolated from all other waves [2,3]. The energy
and power formulas of transmission line theory apply to each spherical waveguide if a voltage,
current, and characteristic impedance are defined for each TFE,,, wave as

i s T ogtic,
I_r-,r;,___ 4rnln T 1)(n { m)! l(fn{ﬁ'”

"8 '\ nen@nt1)n—m)!

[rp— s [ GEDGEM 55 a1 @

B ’\( nen2n+1)(n—m)!
Zri=F,(Br)[iF(8r)

and for each TV, wave as

T.r';ﬂ;;]’rb’”'_’_‘ pdrn(n-4-1) (n+tm)! FFL(Br)

Y en(2n+1) (n—m)!
I:r'nr:nmu_ Indmn(n4-1) (n-+m)! F,(8r) (22)
5} V en(20+1) (n—m)! !

Znn'=3E5(Br) [Fa(Br).

An antenna adjusted for maximum gain has equal excitation of TE and TM waves. It is
therefore convenient to define modal quality factors
2w Wit 20 W3se

JM = ]_?T)n_m,‘) o Re (_I)m n)

’ (23)

where the W, and P,,, are the sum of the energies and powers of both the TF,, and TAM,,
waves. Note that the @,’s are independent of m since the characteristic impedances, (21) and
(22), are independent of m. These are the same @,’s defined by Chu for circularly polarized
omnidirectional antennas [2].  Abstracting from Chu’s work, one has

Q.(BR)=3|F,(BR)|’8RX,(BR) (24)
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where R is the radius of the spherical antenna and
X (BR)=Im [Z73(BR)]. 25)

These ), are approximately one-half those caleulated by Chu for linearly polarized omnidiree-
tional antennas, A plot of some ¢, is given in figure 4,
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Frovre 4. Modal quality factors for wave functions of order n,
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I'he ) of an antenna having equal excitation of T'E and T'M waves is given by

2 Re(Pp)Qn

me 0@
0= S R, (26)

m,n

sinee it is merely necessary to add the energies and powers of the individual waves. For maxi-
mum gain all 2,,,=0 except P, n< N. Tt follows from (9), (11), (21), and (22) that

Re (Pyy)=Re (VIZITE*+ VINIT%)

4r 1
T B2t 1

10,2

so the formula for ) becomes

N ) Iu g 1 ) )
o ”Z} @, (;)H—I.—-l-)\Q"' o
HZ_: @al? ( 2n —|—l)
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Finally, from (17) one has

N
Zl (2?1 —I— 1 ) 1 Uy {16-’,) |2Qn (16}?)
Q="=

N o (29)
>3 @n-t1) [ (81|

as the quality factor for an ideal antenna of radius 2, adjusted for maximum gain at a radius 7,
using wave functions of order n<N. For an antenna adjusted for maximum gain at infinity

:NI‘
Z_f{ (2n+1)Q.(BR)

) * = —
Brso N*+2N

(30)

Figure 5 shows the @ of antennas focused at infinity for several N, (The dashed lines represent
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the effect of antenna losses, considered below.) Caleulations for antennas focused at other »
show that the @ is substantially independent of the radius of focus. No appreciable change in
() oceurs until » is almost equal to R, that is, the field point is almost at the antenna surface.
When =1, the @ of the antenna is close to the @, of the highest order wave present. When
BR >N, all @, are of the order of unity or less, and the quality factor is

Q<1 BR>N. (31)

In this case the antenna is potentially broad band.

4, Effect on Antenna Losses

To obtain quantitative results for the effect of conduction losses on antenna performance
an idealized model is again postulated. Intuitively one would expect the losses on a metal
antenna to be smaller the more effectively the sphere is utilized. Therefore, for the ideal lossy
antenna is postulated a spherical conductor of radius R excited by the magnetic sources

M=Exn (32)
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on its surface. So long as the sphere is a good conductor the source of (32) will generate the
desired field [4]. If the conduetivity of the sphere is poor, (32) can be modified to allow for
a field internal to the conductor.

The above postulated ideal lossy antenna is particularly simple to analyze because the
wave functions are orthogonal over its surface. The effect of the spherical conductor is that
of a discontinuity in the characteristic impedance of each “spherical waveguide’ at the radius R.
The effect of the source M is that of a voltage source in series with each waveguide at the
radius 2. The waveguides are matched in each direction, so the equivalent circuit for each
mode is a voltage source in series with the two characteristic impedances, r< Il and » >, For
r< I the characteristic impedances for the various modes are

ZTE— ’{I-*[F,l (k)| G En(Rr)]* = nofn

(33)
2= ) B )] =
where k and 5, are the wave number and intrinsic impedance in the conductor,
o= (1—;‘_;\,/‘% ne=~(147) / “- (34)

The characteristic impedance r< R is extremely small for good conductors, so V,, =0, r<R.
The current 7,, must be continuous at »=R. Hence for any mode the ratio of power dissi-
pated to power radiated is given by

f_' aiss L Re(Zm) __Re(no) (35)
rﬂ!.f |‘rmr.r| R‘-’(7mﬂ) 7'.'1{'3(7m) =

where the superseripts -+ and — refer to » >R and »<_ R, respectively. Dissipation factors D,
are defined for the case of equal TFE,,, and TM,,, excitation as

I)‘-"E ]’Jf‘\f [)’-' i ']' '
D=t ielh_Tats y Tl
rad rad rad
(36)
_ Reln,)

)
2’? [I{P -‘:rm 1{{1‘ i’/';;f)]

The D, are independent of m because the 7, are independent of m. Using (21) and (22)
one has

DR =S58 [y 8 P+ L8R ]

=R 1, 3) 1)

where the |u,|* are plotted in figure 1. Note that the 2, are essentially proportional to the
|u,|* when BR<n.

The dissipation factor for an antenna having equal excitation of T/ and TM waves is
defined as

P 2 Re(Pmu)D
dl‘s_i man - fx
I)_)-Umcl 2 RL‘ mfa) {'38)



where P, is PLEHPIYM. The second equality of (38) follows from the orthogonality property
of the modes. For maximum gain all P,,=0 except Py,, n<N, which are given by (27).
Using this and (17) one has

N
(2n+-1) [u,(8r) D, (BR)
I'):H=l S (39)
E(En—}- 1) |, (8r)|?

as the dissipation factor for an ideal lossy antenna of radius R, adjusted for maximum directive
gain at a radius 7, using wave functions of order n < N. For an antenna adjusted for maximum
gain at infinity

7

M=

1 (2n+1)D,(BR)
D2 NN

(40)

Figure 6 shows the dissipation factor of antennas focused at infinity for several N. Caleculations
for antennas focused at other values of » show that ) is essentially independent of the radius
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of focus, except when r=R. When r=R, the D of the antenna is approximately the IJ, of the
highest order wave present. If gR >N, all D, are approximately Re(n.)/n, and the dissipa-
tion factor is

D=TRe (n.)/n (41)
and the antenna has very small loss.  The efficiency of the antenna is

100 g 100
Prud+1,disu l+f)

% efliciency=

(42)
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The antenna remains reasonably efficient until D is of the order of unity. The dissipation
also changes the effective @) of the antenna, defined as

2&0“”3 lect .
= Weleet ) mae
J'-Drsm!—|_1Dt'liss 1 > 1

Qete= v (43)
9ylf mag .
== H.-’mal: ~ M,-elecl
lJrad"FPljlnn =

Because of the orthogonality of energy and power, P4+ Py 18 simply the sum of the cor-
responding quantities for each mode, that is,

I’rar]—i_!)rllus:Z(I,mn)rm'](]-_?_pn)- f44)

Thus, for an antenna containing only the 1, n modes, n <N, one has instead of (28)

iV

i
g
0 &l (2n.+1) b
ert™ N ]+D
1. |2 n
2 [a| 2n4-1

n=1

(45)

Finally, if the antenna is adjusted for maximum directive gain, the a, are given by (17) and
n

(2n+-1) |u, (8r)|°Q.(BR)
Qi __n=l . (46)

N
2 (2n4-1)[un(B) 1 +-D0(BR))

If the antenna is adjusted for maximum gain at infinity this becomes
J\" - "y
_ % (2n+1)Q, (BR)
(Jel't ‘.\rn_ 2 2 (47)
P 2 @ntD[14+D,(BR)]

The dashed lines in figure 5 show the effective @ for various N assuming Re(n.)/29=107",
which corresponds to good conductors in the vicinity of 10,000 Me., Further caleulations
show that the effective ) is essentially independent of the radius of focus, just as in the loss-
free case. For large antennas, the maximum effective () is of the order of that for a good
spherical resonator constructed of the same metal.

While the directive gain of an antenna is unaffected by dissipation (assuming that the
current distribution is unchanged), the overall gain

477 Re (S,) max

J!']rxl«i‘+'[’t1'e:.&: L48)

9(Br)=
is affected. This is the gain usually of primary interest for antenna evaluation. One can
quite simply go back and maximize ¢, since the Py, of each mode is related to the P, of each
mode by (35). The only difference in the equations for ¢ and those for g is that the factor
1/(2n-4-1) is replaced by (1-4+12,)/(2n+1). Hence, (16) becomes *

_15  (2n+t1) e
[:"max'_"4 Z 1 "T'I)n(ﬁﬁ) lun(ﬂ? )|

n=1

(49)

4 This procedure is slightly in ervor sinee dissipation factors for TE and TM modes alone are not quite equal. The correction is small, how=
ever, until the dissipation factors become quite large.
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and the wave amplitudes, related previously by (17), are related by

la:]~ A+D,)@i+1) uf =
Note that the maximum gain is now a funetion of i (antenna size) as well as » (field point).
If the antenna is focused at infinity (49) reduces to

N 91

:';rrm:m "ZI 1 _'_!W!T’T (51)
So long as Dy<1 the overall gain ¢ is substantially equal to the directive gain . If Dy >1
the maximum gain depends upon the surface resistance of the metal, Re(n,). However, the
[u,? functions, which enter into D), according to (37), rise very rapidly. For good conductors
the “cut-off’" of the summation of (46) occurs at approximately the same value of n as that
for which the ), level off.

When the overall gain instead of the directive gain is maximized it affects the dissipation
and quality factors, The dissipation factor becomes

20@a+1)|wu, (6r) D, (BR)/[1 +D,(8R))?
sl . (52)
(2n-+1)|w, (8r)*/[1 -+ D, (BR) |
1

N
1

=

instead of (39).  The principal difference between (39) and (52) is that in the latter case 1)
levels off when the 72, becomes greater than unity.  This ean be thought of as due to the non-
utilization of modes which are highly dissipative. The quality factor becomes

N
2 2n4-1)|u,(Br) [*Q,(BR) /(1 4D, (BR))?
Qr,r_r'_ il:l_f\" — ["]';.)
> Cnt-1)|u, (8r) [¥/1+D, (BR))
n=1

instead of (46). A plot of (53) would again give curves similar to the dashed lines of figure 5.

5. Discussion

To relate the analysis to practical antenna systems, define the radius 2 of an antenna
system to be the radius of the smallest sphere that can contain it.  The @ of the ideal loss-
free antenna must then be less than or equal to the @ of any other loss-free antenna of radius
R, since fields »<~ R can only add to energy storage. In other words, the @ of figure 5 is a
lower bound to the @ of an arbitrary loss-free antenna of radius /. Tt would be nice if one
could algo prove that the dissipation factor ) of the ideal lossy antenna were a lower bound to
the D2 of an arbitrary antenna of the same material and radius.  The author has not been able
to prove this. However, it will be assumed that the ) of the ideal lossy antenna is of the same
order of magnitude as for other antennas of the same material and radius.  Caleulations of the
D for some practical antennas support this assumption.

It is evident from the foregoing analysis that a marked change in the behavior of an an-
tenna of radius /2 oceurs when wave functions of order n >R are present in its field. In the
loss-free case the ) is large.  In addition to this, in the lossy ease the dissipation is large.  In
both cases the near-field is characterized by extremely large field intensities,  The normal gain
of an antenna is defined to be the maximum gain obtainable using wave functions of order
n<N=gR. Hence, from (19), the normal gain of an antenna of radius 2 is

Grorm= (BR)*+2(8R) (54)
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o GAIN OVER NORMAL GAIN

in the radiation zone. Systems having larger gain than this are called supergain antennas.
For large B the gain of a uniformly illuminated aperture of radius R is equal to the above
defined normal gain [5].  Therefore, one cannot obtain a gain higher than that of the uniformly
illuminated aperture without resorting to a supergain antenna.

It 18 evident from figure 3 that the maximum near-zone gain of an antenna using wave
functions n < N=8HR is essentially the same as the maximum far-zone gain. Hence (54) also
defines the normal near-zone gain for all practical purposes. A uniformly illuminated and
“focused” aperture (phase adjusted so that all elements contribute in-phase at some distance r)
has a near-zone gain approximately equal to the far-zone gain of the “unfocused” aperture
(uniform phase). Thus, a near-zone gain greater than that obtainable from a focused uni-
formly illuminated aperture cannot be obtained without resorting to a supergain antenna.

Having precisely defined the term “supergain,” one can now consider the question of how
much supergaining is possible. If a particular ) is chosen, the possible increase in gain over
normal gain can be readily calculated. For example, if @=10°is taken, the decibel increase in
gain over normal gain is as shown in figure 7. Note that for small 2, substantial increases in
gain can be achieved, but for large R the inerease becomes insignificant. The curve of figure 7
is relatively insensitive to the particular choice of @, so long as it is high. This is evident from
the rapid rise of the curves of figure 5. The choice (=10 represents sort of an upper limit to
practically significant (s, since the bandwidth becomes absurdly narrow for higher ¢’s.  Also,
()=10° represents the approximate upper limit for antennas constructed of metal, due to
dissipation.

obtainable by supergaining if a Q of 10° is allowed.

It is evident from figure 5 that the amount of supergaining possible in large antennas is
very small. Hence, for practical purposes, the uniformly illuminated aperture gives optimum
gain.  For small antennas, however, a significant increase over normal gain is possible. Per-
haps the most common example of a small supergain antenna is the short dipole. The prob-
lems of narrow bandwidth and high losses associated with this antenna have been thoroughly
treated, sinee it is one of the few antennas that can be used at very low frequencies,
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Fiogure 7. Marimum increase in gain over normal gain
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