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Abstract: Pulsed gas metal arc weld (GMAW) was widely used for the advantages of controllable
heat input, all-position welding, and no spatter. In order to obtain an ideal welding process, the
stability of the arc length was studied in many researches, but the influence of arc length on the
properties of weld metal was ignored. In this paper, the effect of arc length on oxygen content
and mechanical properties of weld metal during pulsed GMAW was studied. Q690 high strength
steel was selected as the base metal, and ER69-G solid wire, with a diameter of 1.2 mm, was used
as the electrode wire. Additionally, the shielding gas and the wire feed rate were 82% Ar + 18%
CO2 and 4 m/min, respectively. The results showed that as the arc length raised from 2.9 mm to
9.2 mm, the oxidation reacted more completely in the droplet transfer zone, and the oxygen content
of the weld metal increased significantly. The tensile strength of the weld metal reduced but the
−40 ◦C impact energy heightened. Due to the longer arc, the proportion of acicular ferrite (AF) in the
microstructure decreased, but the proportion of lath bainite (LB) and granular bainite (GB) decreased.
The higher oxygen content of weld metal was useful for the formation of inclusions, which promoted
the nucleation of acicular ferrite and dimples, contributing to the growth of plasticity and toughness
of weld metal.

Keywords: arc length; oxygen content; mechanical properties; microstructure; weld metal

1. Introduction

With the development of industrial automation and robot welding, pulsed gas metal
arc weld (GMAW) was widely used for the advantages of controllable heat input, all-
position welding, and no spatter [1–3]. During the droplet transfer process in pulsed
GMAW, “one droplet per pulse” (ODPP) was regarded as the most ideal mode [4–6], which
was mainly affected by the pulse peak current (Ip) and pulse peak current time (tp) [7–9].
In order to obtain a stable ODPP process, the pulse base current time (tb) was generally
adjusted to change the arc length.

The shape of the arc, the heat transfer, and the heat dissipation mode of the droplets
were greatly influenced by the arc length [10,11]. If the arc length were too short to provide
sufficient space, the droplet would contact the molten pool but was still on the wire,
contributing to a short circuit [12]. In addition, if the arc length were too long, the stability
of the arc would decline and the oxidation reaction of liquid metal during the metal transfer
process would be affected. However, the stability of the arc length was studied in many
researches, while the effect of arc length on oxygen content and mechanical properties of
weld metal was ignored [13,14].

In this paper, a high-speed camera was applied to investigate how the arc length
affects the droplet transfer process. Additionally, by the analysis of the oxygen content and
mechanical properties of weld metal, the relevant mechanism was discussed.
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2. Experimental Method

In this paper, a synchronous acquisition system of high-speed photography, current,
and voltage signal was used (shown in Figure 1). The welding torch was placed stationary
over the workpiece on the platform and the high-speed camera system was worked at
10,000 fps. In order to enhance the background brightness and magnify the contrast of
images, a laser light with a wavelength of 850 nm was used as a backlight. Additionally,
20 mm thick Q690 high strength steel was selected as the base metal, and the butt joint was
used. Thus, an ER69-G solid wire with a diameter of 1.2 mm was used as the electrode wire.
Figure 2 shows the schematic diagram of welded joints and the selection of test specimens.
The method of multi-layer multi-road welding was applied and the number of passes was
19, with a 6 mm thick backing plate under the weld. The preheating temperature before
welding was controlled between 100 ◦C and 120 ◦C and the interpass temperature was
controlled between 150 ◦C and 160 ◦C.
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Figure 1. Schematic diagram of high-speed photography, current, and voltage signal synchronous
acquisition system.
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Table 1 shows the welding conditions. In order to obtain the ODPP droplet transfer
mode, the pulse base current time was selected as the adjustable parameter to change the
arc length.

Table 1. Welding conditions.

Welding Parameters Test 1 Test 2 Test 3 Test 4

Contact tube-to-work distance, mm 20
Pulse peak current, A 525

Pulse peak current time, ms 1.6
Pulse base current, A 28

Pulse base current time, ms 9 8.2 7.4 6.6
Arc shielding gas 82% Ar + 18% CO2

Flow rate of arc shielding gas, L·min−1 18
Speed of wire feed, m·min−1 4

Welding speed, mm·s−1 4
Arc length, mm 2.9 4.5 6.5 9.2

Average current, A 122 130 139 149
Average voltage, V 22.4 25.9 28.1 31.3

The pulse base current time was 9, 8.2, 7.4, 6.6 ms from Test 1 to Test 4, respectively.
The corresponding arc length was 2.9, 4.5, 6.5, 9.2 mm, respectively. The arc lengths were
measured at the time of the maximum pulse peak current because the arc brightness was
the largest and the boundary was clear at the moment.

According to the AWS B4.0-2016 standard [15], the impact specimens, the tensile spec-
imen, and the chemical composition analysis specimen were cut out from the weld metal, as
shown in Figure 2. The size of the standard impact specimen was 10 mm × 10 mm× 50 mm,
with a 45◦ V-notch. The impact experiment was carried out at −40 ◦C. Figure 3 shows
the detailed size of the tensile specimen. The tensile experiment was carried out at room
temperature, during which the load speed was set as 1 mm·min−1. The metallographic
samples of weld metal were cut from the center position perpendicular to the weld.
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3. Results and Discussion
3.1. Effect of Arc Length on Oxygen Content of Weld Metal

Figure 4 shows the oxygen content of weld metal under different arc lengths. As the
arc length rises from 2.9 mm to 9.2 mm, the oxygen content increased by 71.4%, significantly
from 217 ppm to 372 ppm. When the arc length was 4.5 mm and 9.2 mm, the oxygen content
of weld metal was 235 ppm and 284 ppm, respectively.

The high-speed photographic images of droplets under different arc lengths are given
in Figure 5. It can be seen that the mode of droplet transfer was ODPP, although the arc
length was different. When the arc length was 2.9, 4.5, 6.5, 9.2 mm, the measured frequency
of droplets was 94, 102, 111, and 122, respectively. Since the speed of wire feed remained
unchanged in the experiments, the size of a single droplet would become smaller under the
ODPP droplet transfer mode with the frequency of droplets rising, contributing that the
specific surface area of liquid droplets increased and the metallurgical reaction between
droplets and arc was strengthened. Moreover, the speed of the droplet slowed down with
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the rise of arc length and the time of the droplet passing through the high-temperature arc
increased from Figure 5. Therefore, the intensity and duration of an oxidation reaction in
the whole droplet reaction zone increased, as well as the oxygen content of droplets. Finally,
the oxygen element was transferred into the weld pool through the droplets, resulting in
the increase of the oxygen content of the weld metal.
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3.2. Effect of Arc Length on Mechanical Properties of Weld Metal

The mechanical properties of weld metal were given in Figures 6 and 7. It can be seen
that the tensile strength and yield strength of weld metal both gradually decreased with the
rise of arc length, but the −40 ◦C impact energy and the elongation rose. As the arc length
grew from 2.9 mm to 9.2 mm, the tensile strength decreased from 781 MPa to 729 MPa and
the −40 ◦C impact energy increased from 79 J to 116 J.
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The chemical composition of weld wire is shown in Table 2. With the increase of arc
length, the content of various alloy elements in the weld metal showed a decreasing trend,
as given in Table 3. It can be seen that the decrease of alloy elements’ content was related to
the increased oxygen content. With the increase in arc length, the oxidation reaction of the
droplets was enhanced, resulting in a more serious burning loss of metal alloy elements of
welding wire. Therefore, the tensile strength was the largest under the shortest arc length
(781 MPa) and the smallest (729 MPa) under the longest arc length.

Table 2. Chemical composition of weld wire (wt.%).

C Si Mn Cu Cr Ni Mo Al Ti

0.073 0.59 1.62 0.25 0.09 1.78 0.033 0.028 0.023
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Table 3. Chemical composition of weld metal under different arc lengths (wt.%).

Arc Length
La/mm C Si Mn Cu Cr Ni Mo Al Ti

2.9 0.063 0.47 1.51 0.19 0.07 1.71 0.029 0.017 0.017
4.5 0.062 0.46 1.49 0.18 0.06 1.71 0.029 0.016 0.016
6.5 0.053 0.41 1.42 0.16 0.04 1.66 0.026 0.009 0.009
9.2 0.047 0.38 1.37 0.13 0.02 1.61 0.022 0.006 0.007

From the metallographic microstructure (shown in Figure 8), it can be seen that the
weld metal consisted of acicular ferrite (AF), lath bainite (LB), and granular bainite (GB).
When the arc length was 2.9 mm, an obvious LB microstructure can be found, which was
the strengthening phase. Therefore, the highest tensile strength can be obtained. When
the arc length reached 9.2 mm, the microstructure of the weld metal was mainly AF, but
LB can hardly be found. At the same time, GB became finer and more dispersed. The
AFgrains were fine and cross-distributed at a large angle, which divided the original
austenite structure and can hinder the crack propagation, belonging to the toughening
phase. When the microcrack propagated, it had to overcome the obstacle of a large number
of AF, contributing to the greater −40 ◦C impact energy of weld metal.
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Figure 9 shows the impact of fracture morphology of weld metal under different arc
lengths. Obvious cleavage steps but few dimples can be found when the arc length is 2.9
mm. When the plastic deformation was blocked, the stress in the local strong deformation
area was relatively concentrated and the initiated crack expanded along the cleavage sur-
face to release the stress, resulting in the cleavage steps. Cleavage steps were generally
considered as being the characteristic morphology of brittle fracture. Therefore, the elonga-
tion and the −40 ◦C impact energy were the lowest when arc length was 2.9 mm. When
the arc length was 9.2 mm, most areas in the impact fracture were dimple morphology. The
torn edge of the dimple was obvious and a few scattered cleavage steps were surrounded
by a large number of dimples. As a result, better plasticity and toughness can be achieved.
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Figure 9. Impact fracture morphology of weld metal under different arc lengths. Arc length:
(a) 2.9 mm; (b) 9.2 mm.

Micromorphology using scanning electron microscope (SEM) and X-ray energy dis-
persion spectrometry (EDS) analysis result of inclusion in the dimple of impact fracture
of weld metal is shown in Figure 10. It can be seen that spherical inclusions were found
at the bottom of the dimples. According to the EDS analysis result, the inclusions were
made from O, Al, Si, Ti, Mn, Fe, Ni, Mo, and other elements. Considering O element is
not easy to combine with Ni and Mo, Ni, and Mo in the EDS analysis result may come
from the base of weld metal. The inclusions of weld metal are often the compounds or
composites formed by the combination of multiple elements. Therefore, it can be inferred
that the inclusions may contain O, Al, Si, Ti, Mn, Fe, and other elements, and the oxides of
the above elements (including TiO2, SiO2, MnO2, Al2O3, FeO, and their composites) were
the main components. In addition, with the rise of arc length, the oxygen content in weld
metal increased, which indicated that the number of inclusions in the impact fracture also
increased. Inclusions promoted the nucleation of acicular ferrite and dimples, contributing
to the growth of plasticity and toughness of weld metal. A similar effect of the oxygen
content on the microstructure and mechanical properties was also observed in Zhang’s
studies [16,17].
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4. Conclusions

The effect of arc length on oxygen content and mechanical properties of weld metal
during pulsed GMAW was studied in this paper. The main conclusions can be summa-
rized below:
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(1) As the arc length raised from 2.9 mm to 9.2 mm, the transfer time increased but the
droplet size diminished. Meanwhile, the oxidation reacted more completely in the
droplet transfer zone, and the oxygen content of the weld metal increased significantly
from 217 ppm to 372 ppm.

(2) When the arc length increased from 2.9 mm to 9.2 mm, the tensile strength of the weld
metal reduced from 781 MPa to 729 MPa but the −40 ◦C impact energy heightened
from 79 J to 116 J.

(3) Due to the longer arc, the proportion of AF in the microstructure decreased, but the
proportion of LB and GB decreased. With the rise of arc length, the cleavage step
morphology decreased in the impact fracture however, the dimples increased.

(4) The more oxygen content of weld metal was useful for the formation of inclusions in
impact fracture. Inclusions promoted the nucleation of acicular ferrite and dimples,
contributing to the growth of plasticity and toughness of weld metal.
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