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EFFECT OF ATMOSPHERE AND TEMPERATURE ON WEAR,

FRICTION, AND TRANSFER OF POLYIMIDE FILMS

by Robert L. Fusaro

ABSTRACT

Friction and wear experiments conducted on polyimide films bonded to

440C stainless steel disks indicated that a wear transition (from high wear
CD

cl-

to low wear) accompanied the friction transition (from high friction to low
W

friction), The transition was found to be atmospheric dependent as well as

temperature dependent. Wear rate calculations indicated that at tempera-

tures above the transition, wear could be up to 600 times less than at tem-

peratures below the transition. Transfer to metallic riders was also inves-

tigated and found to be considerably different at temperatures above and

below the transition.

INTRODUCTION

The use of polymers for lubrication applications is continually increas-

ing. Polymers are needed which have improved friction and wear properties

as well as thermal stability at higher temperatures. One class of stable

organic polymers, which has demonstrated increased capabilities in these

areas, is polyimide (1)-(17).

Polyimide refers to the general class of long chain polymers which have

recurring imide groups as an integral part of the main chain. By varying

the monomeric starting materials and by controlling cure procedure, the

polymer's mechanical properties can be altered °c hile still maintaining the
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were evaluated in atmospheres of dry argon (<20 ppm H 2O), dry air
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(<20 ppm H2O), and moist air (10 000 ppm H2O). To accomplish this, a

photomicrographic and surface profile study was made of the wear of polyi-

mide films. Photomicrographs of rider transfer films and polyimide film

wear tracks were taken after various sliding intervals and compared. Sur-

face proffles of the polyimide film wear tracks were also taken at these same

intervals and compared.
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basic polyimide structure (18)-(20). But, before polyimides can be synthe-

sized with improved lubrication properties, a more basic understanding of

the friction and wear processes of this polymer is necessary.

Previous studies by this investigator on pyralin polyimide films have

shown that the friction and wear lives (endurance lives) of these films were

temperature and atmosphere dependent (21). It was shown in Ref, 21 that a

transition from high friction to low friction and from short wear lives to long

wear lives occurred in dry argon or in dry air (<20 ppm H 2O) somewhere

between the temperature of 25 C and 100 C.

A more detailed study of the friction transition was reported in Ref. 22,

and the transition was found to occur in dry argon at 40:E 10 C. It was postu-

lated in Ref. 22 that the transition was due to a reordering of the surface into

a texture conducive to easy shear. Such a texture could be produced by an

extez	I chain molecular structure with the chains parallel to the sliding

direction. For texturing to occur, the molecules seemed to need a certain

degree of freedom, which was supplied by thermal energy.

The object of this investigation was to determine if any correlation exists

between the friction transition and the wear of pyralin polyimide films which
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APPARATUS DESCRIPTION

tr

A hemisphere-on-flat sliding friction apparatus was used to study the

pol.yimide fr-ietion and wear transition. The friction. specimens (Fig. I) con-

sisted of a flat (6.3 cm di.am) disk in sliding contact with a stationary (0.476 cm

radius) hemispherically tipped rider. The wear track diameter on the disk was

varied by changing the position of the rider. Thus, several tests could be per-

formed on each disk cn diameters that ranged from 3.8 to 5.8 centimeters,

The apparatus was equipped with a variable-speed motor and gear reduction

system so that rotational speed could be controlled. Induction heating was

used to heat the disk, and a strain. gage sensed the frictional force, which was

continuously recorded on a strip-chart recorder,

DISK SURFACE PREPARATION AND CLEANING PROCEDURE

The riders and disks were made of 440C stainless steel with a Rockwell

hardness of C-60. In order to ensure good adherence of the polyimide film

to the disks, the surfaces were roughened by sandblasting to an rms of

0.90XIO -6 meter.

After surface roughening, the disks were scrubbed with a brush under

running water to ensure that no abrasive particles remained. A water paste

of levigated alumina was next rubbed over the surface with a polishing cloth.

This was followed by a second scrubbing under running water. The disks

were than rinsed in distilled water and stored in a desiccator until they were

coated with the polyimide.

The riders were first scrubbed with alcohol. Then a water paste of

levigated alumina was applied with a polishing cloth. The riders were then

rinsed in distilled water and stored in a desiccator. Polyimide films were

not applied to the riders.

I
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A thinner consisting of N-methyl-pyrrolidone and xylene was added to

the polyimide precursor solution to obtain a sprayable mixture. The polyi-

mide solution was sprayed onto each disk by using an artist's airbrush. The

film did not dry rapidly. Thus, to keep the film from running, only a thin

film was applied at one time. The film was heated at 100 C for 1 hour and

then another thin film was applied, etc. When the desired thickness of

25±2 micrometers was obtained, the film was cured. The curing procedure

was to heat the film at 100 C for 1 hour and then heat it for 2 hours at 300 C.

EXPERIMIENTAL PROCEDURE

The procedure for conducting the wear tests was as follows: a rider and

a disk (with applied polyimide film) were inserted into the friction apparatus.

The test chamber was sealed, and dry argon (<20 ppm H 2O), dry air. (<20 ppm

H2O) was purged through the chamber for 15 minutes. The flow rate was

1500 cubic centimeters per minute and the volume of the chamber was 2000

cubic centimeters.

When the purge was completed, the temperature of the disk was slowly

raised to the desired temperature by induction heating. The temperature was

held for 10 minutes to allow it to stabilize, The disk was then rotated at

1000 rpm and a 1-kilogram load was applied.

x.,
Each test was stopped after 1 kilocycle (1 min. ) of sliding. The rider

and disk were removed from the friction apparatus and the contact areas were

photographed. A surface profile of the wear track on the polyimide film was

also taken. The rider and disk were then placed back into the apparatus and

'he previous test procedure was repeated. The rider was not removed from

the holder when it was photographed, and locating pins in the apparatus insured
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that it was returned to its original position. The same was true for the disk,

Each test was stoppeu and the previous procedure repeated at intervals of	Fti

i t 5, 15, 30, and 60 minutes, respectively. For those tests which were run
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longer than 60 minutes, random times were chosen to stop the tests and exam-

ine the specimens.

RESULTS AND DISCUSSION

Friction Coefficient

In a previous study (21), a transition from high friction to low friction

and from short endurance lives to long endurance lives was found to occur in

either dry argon (<20 ppm H 2O) or dry air (<20 ppm H 2O) somewhere between

25 C and 100 C. The same study revealed that when water vapor was present

in the air (10 000 ppm H 2O) the transition was shifted upward to somewhere

between 100 C and 200 C.

To ascertain if a wear transition accompanied the friction transition, an

experimental program was conducted in each of the previously mentioned

atmospheres at test temperatures of 25 C, 100 C, and 200 C. Figures 2 to 4

present the friction results of that study. The figures depict , z o,;.eesentative

friction traces (for the first 60 kilocycles of sliding) which occurred at each

test temperature and in each test atmosphere. The gaps in the traces repre-

sent the intervals when the tests were stopped so that wear measurements

could be made.

Figure 2 illustrates the effect of atmosphere on the friction coefficient

at 25 C. The highest value for the friction coefficient was obtained in dry air,

while the lowest was obtained in moist air. The most likely reason for the

reduction in friction in moist air is that absorbed H 2O reduced the adhesion

ti	 occurring between the sliding surfaces. Further evidence of this is seen in

5
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the dry air and dry argon tests. On startup, the friction coefficient always

started out at a lower value than its resultant average value. Possibly this

reduction was due to H 2O which was absorbed during the interval when wear

measurements were made. This will be discussed in a later section in terms

of wear.

Figure 3 gives: representative friction traces for the tests tmducted at

100 C. Comparing the	̀̂̂Mlts to those at 25 C shows that the effect caused

by the atmosphere has t' : ged. Instead of moist air giving the lowest value

of friction coefficient, it now gives the highest, and the friction trace is very

erratic. Also, at 100 C, the films seemed to exhibit some sort of "run-in"

phenomena, whereas at 25 C they did not. "Run-in" is a process whereby

the friction coefficient starts out high and then drops to some low value; this

was postulated in Ref. 22 to be due to orientation taking place at the sliding

interface. An exception to this was in moist air at 100 C. On subsequent

start-ups, after stopping the tests to measure wear, no "run-on 19 was ob-

served.

	

At 200 C, the friction tests were not stopped until 60 kilocycles of sliding	
r

were completed. Figure 4 gives those results. The average values for the

friction coefficients obtained in dry argon and dry air were very similar to
	i

their respective values obtained at 100 C. In moist air however, the average

value obtained at 200 C was much lower than that obtained at 100 C. This in-

dicates that between 100 C and 200 C, a friction transition similar to that

which occurred in dry air (at a lower temperature) is taking place.

Even though the average friction coefficient was lower in moist air at

200 C than at 100 C, the friction trace was still somewhat erratic. After

various intervals of sliding, a sudden increase in the friction coefficient

6
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occurred, This only lasted a few -seconds and then the friction coefficient

usually would drop to a value lower than its previous steady-state value.

Apparently the sliding surfaces briefly lost their ordered configuration either

because of the wear of the film itself or because of the disruption of the trans-

fer film on the rider. The effect was that the friction suddenly increased

until reordering took place.

Table 1 summarizes the average friction coefficients which occurred

during various sliding intervals over the lives of the tests. Also shown in the

table is the variation from the average which occurred in each interval.

Wear

Polyimide film wear was studied by stopping the tests (after 1, 5 0 15, 30,

and 60 kilocycles of sliding) and taking surface profiles of the film wear track,

Figure 5 gives representative surface profiles for experiments conducted at

25 C in each of the three test atmospheres. The figure illustrates that atmos-

pliere does not seem to greatly affect the rate at which the film wears at 25 C.

The shape of the cross-sectional area varies slightly for each atmosphere,

but the difference is no more than one would expect from variations from test

to test or from variations around the circumference of the track. Wear to the

polyimide film at 25 C consisted of a gradual process of wearing the film away

until metallic contact occurred.

Similar wear tests were conducted at 100 C and 200 C. Figure 6 compares

the wear at each test temperature and in each test atmosphere after 60 kilo-

cycles of sliding. At 100 C and 200 C, the wear in dry air and dry argon were

reduced considerably compared to the wear at 25 C. In fact, in dry argon,

the wear was so small that it was undetectable in the first 60 kilocycles of

sliding. It is thus apparent that, in dry argon and in dry air a wear transition

7
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of some sort accompanied the friction transition which was found to occur at

40±10 C.	When moisture was Ares-it in the air it was found that the friction

transition was translated to a higher temperature, somewhere between 100 C
.I

and 200 C.	The surface profiles of Fig. 6 indicate that a similar effect has

occurred to the wear transition in moist air.

In order to quantify the wear process, film wear was calculated by meas-
t

uring the cross sectional area of the film wear track (from the surface profiles)

after each sliding interval.	These values for the 25 C tests are plotted in

Fig. 7 as a function of the number of sliding revolutions (expresses in kilo-

cycles).	The general trend of the polyimide film wear at 25 C is that it in-

creases in a linear manner (from zero) as a function of the number of sliding

' revolutions.	By fitting the best straight line to the points and taking its slope,

the wear rate was found, to be 4x10 -6 cm2/kilocycle.	Wear rate is expressed

,t in terms of cross-sectional-area and kilocycles of sliding rather than in terms

of wear volume and sliding distance because it is felt these parameters are a

more representative of the wear process involved in this test configuration.

In order to quantify the wear at 100 C and 200 C, sliding was continued

for an extended period of time.	At various intervals the tests were stopped

and surface profiles of the wear tracks were taken.	Figures 8 and 9 present

`

the test results of those tests.	The figures indicate that, in general, for any

particular set of experimental conditions the wear rate is constant.	The one

exception existed at 200 C in a dry argon atmosphere between 600 and 900

kilocycles of sliding; here the wear rate changed from 0.02x10-6 to 0. 2410-6

c .2/kilocycle.	Since this change was found to be very reproducible, the

wear process must have changed.

S" ( 8
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Figure 10 sums the results on the effect of temperature and atmosphere

on the wear rate and friction coefficient of polyimide films. The friction

properties and wear properties of Ithe films are shown to correlate very well.

The main difference is at 25 C, where the :near rate is relatively insensitive	
i

to atmosphere but the friction coefficient is very dependent on atmosphere.

The figure illustrates that, in dry air and dry argon, a transition from high

friction to low friction and from high wear to low wear takes place between

25 C and 100 C; while in moist air, this transition has been translated to

between 100 C and 200 C. The figure also exemplifies the large variations

in wear and friction coefficient that can occur just by varying the experimen-

tal atmosphere.
.a


Surface Appearance

During the intervals when the tests were stopped for wear measurements,

:z





 photomicrographs of the rider transfer films and polyimide film wear tracks

were taken. Figures 11 and 12 illustrate the difference in surface appearance

for tests conducted at temperatures above and below the transition in a dry

argon atmosphere. The photomicrographs shown were taken after 30 kilo-

cycles of sliding at the test temperatures of 25 C (Fig. 11) and 100 C (Fig. 12).

The difference in wear to the polyimide film wear track is very apparent.

At 25 C, severe wear has taken place and considerable powdered debris is

seen on Loth sides of the wear track. At 100 C, hardly any wear is apparent

and the only indication of a wear track are striations which run parallel to the

sliding direction.

Transfer to the rider is also very different above and below the transi-

tion. At 25 C the transfer film has a ridged appearance and looks in the photo-

micrograph of Fig, 11(a) to be more like metallic wear than a transfer film;

9
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however, on examinating the specimen at higher magnification, it appeared

to be transfer. The dark material at the leading edge of the ridges is powdered

material which builds up, and this material gets compressed into the ridges.

Tiros the transfer at 25 C seems to be characterized by large patches of pov
I

dery material which eventually gets compressed into thick layers or ridges.

At 100 C, the transfer is very different. The ridged appearance is absent

and the material is drawn out into thin plate-like sheets (although it is not

obvious in Fig. 12(a)). Thus, transfer is present both above and below the

transition, but the important factor seems to be the type of transfer that takes

place.

At 25 C, the transfer film on the rider and the wear track on the polyimide

film in dry air and dry argon look very similar. At 100 C, however, transfer

and wear are somewhat different; Fig. 13 illustrates the difference. In dry

a

	

	 air at 100 C, the wear track on the polyimide film is considerably more promi-

nent and rougher looking than in dry argon at 100 C, but not nearly ae: severely
5

	

	 worn as at 25 C. The transfer to the rider appears to be in some intermediate

stage between the type of trahsfer obtained at 25 C and that obtained in dry

argon at 100 C.	 i

A variation in transfer was found to occur in moist air at 25 C. Figure 14

Illustrates that effect. After 30 kilocycles of sliding the wear track on the

polyimide film looked much like that obtained in dry argon at 25 C, but the

transfer to the rider was minimal. The polyimide wear debris seemed to have

flowed through the contact zone and deposited itself in the exit area. This

possibly could be the reason for the lower friction coefficient obtained in moist

air as compared to ether dry air or dry argon at 25 C. This will be com -

mented on later in the paper.

10
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Another interesting phenomenon which occurred in moist air at 25 C was

that, after the original polyimide film had worn away, a thin film of polynmi.de^

formed on the metallic disk surface and provided lubrication. Most likely this

film formed from polyimide wear debris. When this occurred, a transfer

film formed on the rider which corresponded to the newly formed film on the

metallic disk surface. Lubrication by this mechanism could continue for an

extended period of time. In the case of Fig„ 14, the test was stopped after

400 kilocycles of sliding and failure did not appear imminent. Generally, when

lubrication occurred by this mechanism, friction increased gradually with

time (table 1).

CONCLUDING REMARKS

In a previous study (Ref. 22),' it was found that a transition from high	 =

friction to low friction. (0. 23 to 0.02) took place in a dry argon atmosphere

(<20 ppm H20) at 40±10 C. Since that time, it has been determined that a

friction transition (0,35 to 0.11) also took place in a dry air atmosphere

(<20 ppm H20) at the same temperature. The results of Ref. 21 and this

study indicate that a friction. transition also takes place in moist air (10 000

ppm Ii20)9 however for this to occur., a higher temperature must be obtained	i

(somewhere between 100 C and 200 C),

In this study, it was apparent that in all atmospheres a wear transition.

(from high wear to low wear) accompanied the friction transition„ The magni-

tude of the reduction. of wear was very dependent upon the type of atmosphere

in which the tests were conducted. By far the largest reduction occurred in

dry argon (>600 times), In dry air the reduction was only about 40 times,

The results in the moist air test atmosphere were quite different from

those obtained in either dry argon or dry air. It is well known that many

11
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polymers including polyimide tend to absorb H2O. It was found by torsional

braid analysis (22) that, when even a very small quantity of H 2O was pren,Irit

in the testing atmosphere, a new mechanical relaxation peak occurred.

Bernier and Kline (23) believe that a peak such as this is caused by water

molecules which become hydrogen bonded to the carbonyl oxygen present in

the polyimide structure.

In Ref. 22 it was postulated that the transition occurred because the

molecules on the surface were reordered into a structure conducive to low

friction by the mechanical stresses that occurred during the sliding process.

At temperatures below the transition, this reordering cannot occur since the

molecules do not possess the degree of freedom necessary for reordering.

It is po atalaLed that the presence of H 2O molecules, which are hydrogen

bonded to the polyimide chains, put a further constraint on the molecules

ability to reorder. Thus, only when a sufficiently high temperature is reached,

so as to remove the H2O molecules (or at least make their presence negligible),

can the friction and also the weal: be reduced.

The photomicrographs of the riders indicate that transfer takes place,

both above and below the transition; however these preliminary studies indt-

cate that the type of transfer is very different. Below the transition, the

transfer is heavy and looks much like compressed polyimide powder. At

temperatures above the transition (especially in dry argon), the transfer is

very thin and appears to be polyimide material drawn out into a thin lamellar-

like type of structure. It is possible that the transition may be due to an

ordered transfer film forming on the rider and may have nothing to do with

the properties of the polyimide film itself. Preliminary work however, in-

dicates that this is not the case and that order is also taking place on the

12



polyimide .film. As seen in Figs. 11(b) and 12(b), a considerable change in

appearance has taken place in the polyimide film wear tracks at temperatures

above and below the transition.

The friction coefficient and wear, which occurred to the polyimide film

in a moist air atmosphere at 25 C, do not seem to be in strictest agreement.
!i

When compared to tests in dry air or in dry argon at 25 C, H 2O was found to

reduce the friction coefficient but not to affect wear.	From observations of	 i

transfer film formation during the first 60 cycles of sliding, it is apparent	 1

that a strongly bonded transfer film did not form.	A dynamic situation seemed	j

'	 to occur where the polyimide debris flowed through the contact area and de-

posited itself in the exit area.	After certain intervals of sliding, this material.

would break off and new material would form.	While wear to the polyimide

film at 25 C was relatively unaffected by transfer to the rider, it appears that
a

friction was not.	The formation of a coarse, heavy transfer film appears to	 j

be an undesirable quality as far as friction is concerned.

SUMMARY OF RESULTS

Friction and wear experiments conducted on pyralin polyimide films in

dry argon, dry air, and moist al.r indicate the following:

f

1. A wear transition (from high wear to low wear) was found to c:,ccompany

the friction transition (from high friction to low friction) in all three test atmos-

pheres

'
2. The transition in dry argon or dry air was previously found to occur

at 40t 10 C.	In this study, it was found that when H 2O was present in air

(10 000 ppm H 20), the transition was shifted to a temperature somewhere
i

between 100 C and 200 C.

13
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3, It is postulated that, in moist air, the H 2O molecules hydrogen bond

to the polyimide molecular chains and constrain their mobility so that orienta-

ti-in does not take place until a sufficiently high temperature is obtained.

a 4. Transfer to the riders was quite different above and below the transi-

tion.	Below the transition, transfer was coarse and heavy; but, above the

transition, transfer was thin, drawn out, and lamellar. 1

' 5. At temperatures below the transition, the wear rate did not markedly

depend upon the type of atmosphere in which the experiments were conducted;

however at temperatures above the transition, wear rate was strongly depen-

dent upon the atmosphere.

6. In general, for any particular set of experimental conditions, the wear

_ rates were found to be relatively constant for the duration of the tests.

REFERENCES
!i

1. Todd, N. W. and Wolff, F. A., "Polyimide Plastics Withstand High Tem-

peratures," Materials in Design. Engineering, 60, pp. 86-91 (1964).

t 2. Buckley, D. H. and Johnson, R. L., "Degradation of Polymeric Compo- i
sitlons in Vacuum to 10-9 mm Hg in Evaporation and Sliding Friction

Experiments," SPE Transitions, 4, pp. 306-314 (1964).
t	_mil

3. Buckley, D. H., "Friction and Wear Characteristics of Polyimide and

Filled Polyimide Compositions in Vacuum (10 -10 mm Hg), " NASA TN

D-3261 1 1966.

4. Jones, W. R., Jr., Hady, W. F., and Johnson, R. L., "Friction and

` Wear of Poly (Amide-Imide), Polyimide, and Pyrrone Polymers at

2600 C (5000 F) in Dry Air, " NASA TN D-6353, 1971.

1	f„) 14

4

?rt



1

5. Loomis, W. R. , Johnson, R. L. , and Lee, J., "High-Temperature

Polyimide Hydraulic Actuator Rod Seals for Advanced Aircraft, " SAE

Paper No, 700790, 1970.

6. Waterman, A. W = , et al., / tApplication of Polyimide Actuator Rod Seals,"

D6-54351, Boeing Co., Seattle, Wash., Jan. 1972; also NASA CR-120878.

7. Robinson, E. D. , Waterman, A. w., and Nelson, W. G. ,	'Development

and Testing of Improved Polyimide Actuator Rod Seals at Higher Tem-

peratures for Use in Advanced Aircraft Hydraulic Systsms, " D6-411149

Boeing Commercial Airplane Co., Seattle, Wash., Feb. 1972; also

NASA CR-121124.

8. Sellereite, B. K. , Waterman, A. W.,, and Nelson, W. G., "Testing of

Improved Polyimide Actuator Rod Seals at High Temperatures and under

Vacuum Conditions for Use in Advanced Aircraft Hydraulic Systems,

,y D641119, Boeing Commercial Airplane Co., Seattle, Wash. , May 1974;
a

also NASA CR-134601.

9. Campbell, M and Hopkins, V. , "Development of Polyimide Bonded Solid

r
Lubricants " Lubrication Engineering, 23, pp. 288-294 (1967).

10. Fusaro, R. L. and Sliney, H. E,, "Graphite Fluoride as a Lubricant in

a Polyimide Binder, " NASA TN D-6714, 1972.
b

11. Fusaro, R. L. and Sliney, H. E 1 , "Lubricating Characteristics of
t^

Polyimide Bonded Graphite Fluroide and Polyimide Thin Films,

ASLE Transactions, 16, pp, 189-196 (1973).

12. Sliney, H. E. and Johnson, R. L.	'Graphite-Fiber - Polyimide Compo-

sites for Spherical Bearings to 340 0 C (6500 F), " NASA TN D-7078,

1972.

15



i

- i

Jj

13. Sliney, H. E,, Jacobson, T. P., and Munson, H. E., "Dynamic Load

Capacities of Graphite-Fiber-Polyimide Composites in Oscillating

}	 Plain Bearings, " NASA TN D-7880 1 1975.

14, Giltrow, J P. and Lancaster, J. D., "Friction and Wear of Polymers

Reinforced with Carbon Fibers, 41 Nature, 214, p. 1106 (1967).

15. Lancaster, J. K. , "The Effect of Carbon Fibre Reinforcement on the

Friction and Wear of Polymers, " British Journal of Applied Physics,

1, pl). 549-559 (1968).

16. Adrova, N. A. , et al. , "Polyimides: A New Class of Thermally Stable

Polymers, " Progress in Materials Science Series, vol. 7, Technomic

Publ. , Inc. , Stp niford, Conn. , 1970,

17. George, D. E. and Grover, E. B.; "Precision Parts from Polyimide

Resins," Materials Performance, 11, pp. 29-32 (1972).

h	 18. Gillham, J. K. and Gillham. H. C., "Polyimides: Effect of Molecular
:L

Structure and Cure on Thermo mechanical Behavior, " Polymer Engi-

neering Scionce, 13, pp. 447,454 (1973).

19. Gillham, J. K,, Hallock, K. D., and Stadnicki, S. J., "Thermomechan-

ical and Thermogravimetric Analyses of Systematic Series of Poly-

imides," Journal of Applied Polymer Science, 16, pp. 2595-2610 (1972).

20. Gillham, J. K. and Roller, M. B. , "Advances in Instrumentation and

Technique of Torsional Pendulum and Torsional Braid Analyses,

Polymer Engineering Science, 11, pp. 295-304 (1971),

21, Fusaro, R. L,, "Friction and Wear Life Properties of Polyimide Thin

Films, " NASA TN D-6914 1 1972.

16

T



^J

V,.

fl

II

22. Fusaro, R. L,, "Friction Transition in Polyimide Films as Related
j

to Molecular .Relaxations and Structure, 	NASA TN D-7954, 1975.

2a. Bernier, G. A. , "Dynamic Mechanical Behavior of a Polyimide,

Journal of Applied Polymer Science, 12, pp, 593-604 (1968).

r

,i

x

1

f;
y
r

e:

is a

l

y

1 17 {



1
O

x

I
a

I

N

1 V >
IIII
̂
^
o


01 ^ W
N

1

I
N
1
•'1
y

HR N

'O
'u

I
̂ y
j ^ u

x

n'w

, oo

o

1 v

a.l

1 ^

1

G
E

G

E
r

G

4
C

h

C
F

C
G

F
E

C

G

G

c

f
C

C

G

4

C

C

[

C

E

r

I

i

y

.y

D
f'-

14 I

9 M

II rw


^.i

II

t{
k

.-1 rl rl .-1 .-1 N

oO
p 0O

p ^O4 pO
p

Oop OO
O

Y^p
Q
{^

v ^I V v V
ttl M W d^ •M W f0

O O O O O O
O O O O O O

N N N C0U o
pp p

Op op

O N w p Y Y Y
O

Q N
V j v

Nrl rl rl rl

a a a a

Nti ON Nf0
rl O r-I O O O

c c
O O

.^ H 00}
I
co}
I

oO
M'
1

as
T
I. Y Y Y

^ N N N M
0 0 o r^

0 o a o

In ui In In In ui

O
OO

p p
Oo °0

00 p
O

p p
Op 0

OO p
O

v v v i v v N4^
q

N N N N N N M0 0 0 0 0 0 0
0 0 0 0 0 0 0

U o 0 0
p p

Op 0 0
O A F ^ ^ ^ ^ Y

ro-I
Q^

vl M
.+ 0 0 0 0 0

O O O O O O

w
0

Y

i^Oa.	
^

^ Y Y Y Y Y Y

N
0

0

G op
('̂ j v Y Y Y Y Y Y

Q

^

N

0

0

O ^ ,.N.^
N R

v. Y M Y Y Y M
Q N

O

M N
C;;

M
0 O oO

..Fj
p
o

Y Y Y
'.0+ N

v V. V. v
Fr ..i N rl •y

H N N
O O O O

OO

;^ M V O O O N tiv xv oO 0N 0
W.

or0 N I
.0 O

O
0 0 IN o CO 1p .••I N LY r0 rl

i

f,

1

j

x

7

3

1

1


s

7r

A

^

i

N
C tiF

3

ti
FI

L7

v
v
0

C 1O
u
N {{

7
Fd
t

m
W a

F
Y.

{

r



M

WEAR TRACK-
RIDER SLANTED AT
450 TO DISK

DISK, , /  
APPLIED LOAD

DIRECTION OF
ROTATION

Figure 1. - Schematic diagram of friction apparatus.
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