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Abstract: This paper studies the role of B2O3 in the radiation shielding properties of (100-x)(60TeO2-
40PbO)-xB2O3 glass systems where x = 0, 1, 2, 3, 4 and 5 mol%. Through the scanning electron
microscope (SEM) and X-ray diffraction (XRD) tests of the glass, the structure of the glass was studied.
Physical radiation sources (57Co, 60Co, 137Cs, 133Ba, and 241Am) and WinXCOM software were used
to experimentally and theoretically calculate the radiation properties of the glass, respectively. The
gamma shielding ability of the glass was evaluated using its mass decay coefficient (µm), half-value
layer (HVL), mean free path (MFP) and effective atomic number (Zeff). The neutron shielding ability
of the glass was evaluated by calculating the fast neutron removal cross-section (RCS) value. The
glass’s gamma and neutron shielding properties were compared to various ordinary concrete and
other tellurite glasses. The measured mass decay coefficients agree well with the theoretical values
obtained using WinXCOM software. Low HVL, MFP, and high µm, Zeff, and RCS values indicate
that this series of glass materials have good shielding properties. According to the obtained results,
among the glass samples doped with B2O3, the TPB-1 glass sample showed the best radiation
shielding performance.

Keywords: radiation-shielding; telluride glass; high-energy rays

1. Introduction

Human application of radiation involves all aspects of production and life, such as
radiographic research, radiotherapy, academia, the food industry, and gas detectors and
safety devices. However, in addition to the benefits of nuclear energy, the harm caused by
radiation to the human body and the environment cannot be ignored [1–3].

Radiation has a strong ability to penetrate the human body, which can directly cause
damage to the human body or indirectly cause damage to future generations through
deformation and inheritance. Therefore, people have made extensive efforts to reduce the
harm of ionizing radiation. One of them is to explore shielding materials, which attracts
researchers to manufacture new shielding materials [4–6].

At present, the most commonly used radiation shielding materials are lead and con-
crete, but these materials have their disadvantages. For example, pure lead bricks are
opaque and toxic, and concrete density will decrease over time [7,8]. Therefore, researchers
will pay attention to tellurite glasses and study some tellurite glasses containing differ-
ent heavy metal oxides, such as PbO, MgO, Ag2O, Nb2O5, ZnO and BaO [9–11] Tellurite
glass has excellent properties such as transparency in a wide wavelength range, good
thermal stability, non-hygroscopicity, low melting temperature, chemical durability, and
high refractive index. Among the studied tellurite glasses, the PbO-doped glasses show
the lowest MFP values (best shielding properties) [12]. However, the structural stability
of pure TeO2-PbO glass is poor, which is not conducive to further processing. Therefore,
adding a strong glass former B2O3 to the glass composition has become an excellent choice
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to optimize the glass structure. However, at the same time, a large amount of B2O3 cannot
be doped to the glass. Otherwise, the glass’s density and radiation shielding ability will be
significantly reduced [13–15].

This work studied the influence of B2O3 content on the structure and radiation shield-
ing performance of (100-x)(60TeO2-40PbO)-xB2O3 (where x = 0, 1, 2, 3, 4 and 5 mol%) glass
systems. Through scanning electron microscopy (SEM) and X-ray diffraction (XRD) studied
the structure of the glass. Using 57Co (0.122 MeV), 60Co (1.173 and 1.332 MeV), 137Cs
(0.662 MeV), 133Ba (0.081 and 0.356 MeV), and 241Am (0.059 MeV) as radioactive sources to
evaluate the linear attenuation coefficient (µ) of these glasses, and using WinXCOM soft-
ware to verify the accuracy of the test results, the µm value, the half-value layer (HVL) and
mean free path (MFP) are evaluated. The electronic radiation shielding characteristics are
tested by measuring the effective atomic number (Zeff) of the glass involved. The neutron
radiation shielding properties are discussed by theoretical calculation of the studied glass’s
fast neutron removal cross-section (RCS).

2. Materials and Methods
2.1. Sample Preparation

The (100-x)(60TeO2-40PbO)-xB2O3 (where x = 0, 1, 2, 3, 4 and 5 mol%) glass were
synthesized by conventional melt quenching technology and named TPB-0, -1, -2, -3, -4,
and -5 using TeO2, PbO, and H3BO3 (99.99%). We mix them evenly after weighing. The raw
materials of each glass were placed in a pure alumina ceramic crucible, melted at 850 ◦C and
reacted for 2 h, and then the molten glass was cast on a plate-shaped brass mold preheated
to 250 ◦C. The obtained solid glass was slowly cooled from 250 ◦C to room temperature
at a cooling rate of 1 ◦C/min. Finally, the cooled glass is cut into glass blocks with a
thickness of about 1.5 mm, and the cross-sectional size of each glass is about 20 × 10 mm.
The two large glass surfaces are optically polished, and the thickness is measured.

2.2. Structure Stability Experiment

The structure of TPB series glass was characterized as follows: in the vacuum mode,
the sample with gold spray treatment on the surface was tested with a high-resolution
environmental scanning electron microscope (FEI Quanta 650, EI Company, Hillsboro, OR,
USA) at an acceleration of 500 kV. With 2θ = 10◦–80◦ diffraction angle and 0.02◦/min rate,
at room temperature, testing the X-ray diffraction (Ultima IV, Rigaku, Chiba, Japan) pattern
of the sample. The density was measured with pure water (ρ = 0.99980 g/cm3, 16 ◦C) as
the regular temperature immersion liquid.

2.3. Radiation Shielding Experiment

The radiation shielding measurement device is shown in Figure 1. The radiation
source is placed 300 mm away from the sample. We placed a collimator with an aperture of
5 mm between the radiation source and the sample. We surrounded the detector with a
20 mm thick lead brick to resist the radiation scattered by the radiation source and reduce
the pollution of the surrounding environment.
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In this study, five radiation sources, 57Co (0.122 MeV), 60Co (1.173 and 1.332 MeV),
137Cs (0.662 MeV), 133Ba (0.081 and 0.356 MeV) and, 241Am (0.059 MeV), were used to
obtain collimated narrow gamma ray bundles with seven energies.

To reduce background radiation’s influence on the experimental results, we let the
detector work for 30 min without a radiation source to obtain the background radiation
Ibg in the environment. For reducing the influence of random errors on the experimental
results, each piece of glass was tested ten times under each radiation source. The counting
time of each test is 5 min Finally, the counting rates I0 with no glass placed and the count
rate I after placing the glass obtained.

3. Calculation

The count rate obtained by detection before and after the glass is placed obeys the
Lambert-Beer law [16]:

µ = 1/t × ln [(I0 − Ibg)/(I − Ibg)] (1)

where t is the thickness of the glass sample tested.
The mass attenuation coefficient µm of the glass can be obtained by the following

Formula (2):
µm = µ/ρ (2)

where ρ is the density of the material.
The thickness of the shielding material that can reduce the beam intensity to 1/2 of

the initial state is called the half-value layer HVL. It is a key shielding parameter related to
material thickness and can be calculated by the following Formula (3) [17]:

HVL = ln(2)/µ (3)

The mean free path MFP is an important parameter, which is a parameter for calculat-
ing the average distance between two subsequent collisions. MFP can be calculated with
the following Formula (4) [18]:

MFP = 1/µ (4)

The effective atomic number Zeff value of the material can be determined by direct
calculation method [19]. We use the data of the famous XCOM database to theoretically
calculate the Zeff value. We have selected 26 photon energies commonly used in radiation
shielding studies in the energy range of 0.01–15 MeV, and calculated the corresponding
Zeff value.

Zeff = (∑i fiAiµmi)/(∑i fiAiµmi/Zi) (5)

where fi is the molar fraction, Ai is the atomic weight, and the Zi is the atomic number.
To evaluate the neutron radiation shielding ability of TPB series glass, we calculated

the RCS value of the fast neutron removal cross section of each component glass and
compared it with the commonly used neutron shielding materials. The RCS value reflects
the material’s ability to block neutron beams. The higher the RCS value, the better the
ability of the material to prevent neutron radiation. The formula for calculating the RCS
value is as follows [20,21]:

RCS = ∑i ρi(∑ R/ρ)i (6)

where ρi is the partial density of the i constituent and the ∑ R/ρ the mass removal cross section.

4. Results and Discussion
4.1. Structural Properties

The XRD diffraction pattern of the TPB glass is shown in Figure 2. It can be seen from
Figure 2 that when x = 1 and 5, the X-ray images of the glass frit are the same. They have
broad diffraction peaks around 2θ = 30◦ and 2θ = 50◦ in the diffraction patterns, respec-
tively, without very sharp diffraction peaks, which are very typical diffraction patterns
of amorphous substances. This XRD pattern shows that when the molar percentage of
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B2O3 is between 1% and 5%, the product obtained after melting the TPB glass system is
an amorphous glass body. When x = 0, it can be seen from the XRD pattern that there are
crystallization peaks in the glass sample, which is the precipitation of a small amount of
TePb crystals. This phenomenon shows that the addition of B2O3 can effectively reduce the
crystallization tendency of glass.
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Figure 2. X-ray diffraction (XRD) pattern of TPB series glass.

For pure glass materials, the generation of crystal phase means that at the crystalliza-
tion point, the structure and mechanical strength of the glass will change abruptly, making
the glass easy to break at the crystallization point, which reduces the overall mechanical
strength of the glass and increases the difficulty of processing, and not conducive to the
preparation of glass products.

The unpolished samples of TPB-0, TPB-1 and TPB-5 after casting are shown in Figure 3.
The TPB glass is a series of transparent, light yellow-green glass. The glass surfaces of
TPB-1–TPB-5 are all light-transmitting and well-structured. The glass surface of TPB-0 is
also light-transmitting, but there are apparent crystallization points as shown in Figure 3b.
As can be seen from the figure, the TPB-0 sample was broken into more than a dozen small
pieces, while the TPB-1 and TPB-5 samples were a complete large piece. This phenomenon
is because TPB-1–TPB-5 are doped with B2O3. As a strong glass former, B2O3 helps to
optimize the glass’s mechanical properties and helps obtain a larger volume of glass for
subsequent processing.
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The structure of the glass can also be discussed in terms of the thickness of the glass
produced. The thickness of the polished glass is shown in Table 1. Grinding the glass
to a thickness of about 1.5 mm is because the thickness of TPB-1–TPB-5 after pouring is
between 1.6 mm and 1.8 mm, and the thickness of TPB-0 glass after casting is about 0.8 mm.
As mentioned above, the glass in this study is prepared by conventional melt quenching
technology. In this preparation method, the molten glass is poured on a brass mold, and the
molten glass is waited for without artificial interference under the condition of air cooling,
the flow spreads and solidifies into a block glass. Under the same total mass and cooling
conditions, the higher the viscosity of the glass, the lower the rate of flow and extension of
the glass liquid, and the greater the thickness of the final glass. Since TPB-0 is not doped
with B2O3, a strong glass former, it has low viscosity and a large extension area during
casting, so its thickness is much smaller than other B2O3-doped glasses.

Table 1. Compositions, density, and thickness of glass sample.

Sample Code
Mole Fraction/% Density Thickness Wt. Fraction of Elements in Each Sample

TeO2 PbO B2O3 d/(g·cm−3) t(mm) B O Te Pb

TPB-0 60.0 40.0 0.0 6.5917 0.756 0 0.138348 0.413748 0.447903
TPB-1 59.4 39.6 1.0 6.5498 1.506 0.001176 0.140435 0.412182 0.446207
TPB-2 58.8 39.2 2.0 6.4605 1.522 0.002366 0.142548 0.410596 0.444490
TPB-3 58.2 38.8 3.0 6.3277 1.510 0.003572 0.144688 0.408989 0.442751
TPB-4 57.6 38.4 4.0 6.2640 1.535 0.004793 0.146855 0.407362 0.440990
TPB-5 57.0 38.0 5.0 6.1984 1.516 0.006030 0.149050 0.405714 0.439206

4.2. Density

The composition, density and thickness of TPB series glass are shown in Table 1.
From TPB-0 to TPB-5, the density of the glass gradually decreased from 6.5917 g/cm3

to 6.1984 g/cm3. This is because the addition of B2O3 can make the glass structure more
compact. The molar mass of B2O3 (69.62 g/mol) is significantly lower than that of TeO2
(159.6 g/mol) and PbO (223.2 g/mol). Therefore, the density of glass decreases with
the increase of B2O3 content. For radiation shielding materials, density is an important
parameter closely related to the values of µm, HVL and MFP. Generally speaking, the
denser the glass, the stronger its radiation shielding properties, which means more atoms
and electrons per unit volume of the material can interact with gamma rays. The higher
the probability of interaction, the stronger the shielding ability of the material to gamma
rays. The density of TPB series glass is above 6.1 g/cm3, which is a typical high-density
glass, so this series of glass is suitable for use as a gamma radiation shielding material.

4.3. Mass Attenuation Coefficient

To verify the accuracy of the µm value obtained from the test, we use WinXCOM
software to simulate the µm value of TPB series glass within the range of 0.05–1.5 MeV
photon energy and compare the experimental data (µm) Exp compared with the data
simulated by WinXCOM software (µm) XCOM. Calculate the relative difference (Dev)
between the two methods according to the following formula:

Dev =
∣∣∣[(µm)Exp − (µm)XCOM]/(µm)XCOM

∣∣∣× 100% (7)

The values and errors of the two are shown in Table 2. From the data in the table, it
can be known that the Dev values of the six glass types are all less than 5%, which verifies
the accuracy of the experimental results.
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Table 2. Compare the mass attenuation coefficient values µm (cm2/g) obtained by the TPB series
glass experiment and WinXCOM simulation.

Energy (MeV) TPB-0 TPB-1 TPB-2 TPB-3 TPB-4 TPB-5

XCOM 5.4235 5.3583 5.2959 5.2330 5.1700 5.1080
0.059 Exp 5.6363 5.4266 5.3587 5.3262 5.2015 5.1822

Dev 3.78% 1.26% 1.17% 1.75% 0.61% 1.43%
XCOM 2.3770 2.3501 2.3236 2.2970 2.2700 2.2440

0.081 Exp 2.4871 2.3890 2.3565 2.3075 2.2780 2.2832
Dev 4.43% 1.63% 1.40% 0.45% 0.35% 1.72%

XCOM 1.9716 1.9525 1.9302 1.9080 1.8860 1.8650
0.122 Exp 2.0041 1.9871 1.9394 1.9318 1.9029 1.8966

Dev 1.62% 1.74% 0.47% 1.23% 0.89% 1.66%
XCOM 0.1975 0.1965 0.1953 0.1941 0.1929 0.1917

0.356 Exp 0.2044 0.1991 0.1968 0.1979 0.1956 0.1939
Dev 3.40% 1.32% 0.77% 1.94% 1.39% 1.13%

XCOM 0.0908 0.0907 0.0905 0.0903 0.0901 0.0899
0.662 Exp 0.0947 0.0924 0.0915 0.0921 0.0912 0.0906

Dev 4.16% 1.89% 1.07% 1.94% 1.19% 0.74%
XCOM 0.0571 0.0571 0.0571 0.0571 0.0571 0.0571

1.173 Exp 0.0580 0.0581 0.0578 0.0581 0.0578 0.0578
Dev 1.50% 1.76% 1.12% 1.65% 1.20% 1.24%

XCOM 0.0527 0.0527 0.0527 0.0527 0.0527 0.0526
1.332 Exp 0.0538 0.0533 0.0529 0.0529 0.0537 0.0535

Dev 2.17% 1.21% 0.52% 0.36% 1.79% 1.51%

The µm profile of the TPB is shown in Figure 4. It can be seen that the two quantities
that determine the value of µm are the value of incident photon energy Ep and the content
of B2O3 in the range of 0.059 MeV < Ep < 1.332 MeV.

In the whole range, the value of µm of TPB glass decreases with the increase of Ep, and
the decreasing trend is an exponential decrease. When the B2O3 content increases, the µm
value decreases. However, the B2O3 content has different effects on the µm value under
different Ep conditions. The influence of B2O3 content on the µm value is more evident
in the range of Ep < 0.662 MeV. For example, the µm value of TPB-1 is 5.3583 cm2/g, and
the µm value of TPB-5 is 5.1080 cm2/g, at Ep = 0.059 MeV, which is quite different. The
influence of B2O3 content on µm value is greatly reduced in the range of Ep ≥ 0.662 MeV. For
example, the µm value of TPB-1 is 0.0527 cm2/g, and the µm value of TPB-5 is 0.0516 cm2/g
at Ep = 1.332 MeV, which is almost the same.

This phenomenon is because gamma photons interact with matter in different forms
under different incident photon energies. When gamma rays pass through the material, the
gamma photons will interact with the atoms in the material and lose most of their energy.
Therefore, the difference in interaction will affect the radiation attenuation results. The
interaction between gamma photons and matter mainly includes the photoelectric effect,
Compton, and electron pair effect. For TPB series glass, the main interaction mode is the
photoelectric effect when Ep is lower than 0.662 MeV, and the Compton effect dominates
when Ep is higher than 0.662 MeV. Compared with the photoelectric effect, the Compton
effect is less dependent on the material’s atomic number. Therefore, the µm value will
decrease with the increased B2O3 content in the area dominated by the photoelectric effect.
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4.4. Half-Value Layer and Mean Free Path

In nuclear physics, HVL and MFP are essential variables used to describe the gamma
shielding ability of material and the level of gamma radiation penetrating the environment.
Materials withing lower HVL and MFP values can provide a better radiation shielding
effect under the same thickness. Figure 5 shows the HVL value under different photon
energy and chemical composition. TPB-5 with the highest B2O3 concentration has the
highest HVL value compared with other samples. The HVL was enhanced with a photon
energy between 0.059–1.332 MeV and attained their maximum values at about 1.332 MeV.
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In addition, we also investigated the mean free path MFP of the TPB series of glasses.
The theoretically calculated MFP values of TPB-5 glass are compared with those of other
radiation shielding glass materials, as shown in Figure 6. Similar to HVL, the smaller
the MFP value, the better. As the value of MFP decreases, the distance between two
successive interactions is smaller, which means that the attenuation ability of materials
of equal thickness is more significant. Therefore, the MFP value can directly represent
the performance of any gamma-ray shielding medium. It can be seen from Figure 6, the
MFP value of TPB-5 with the largest MFP value in the TPB series is still lower than that of
other tellurite glasses, which shows that TPB series glass has better radiation attenuation
ability than other tellurite glasses for radiation shielding. It is more suitable to be used as a
radiation shielding material.
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shielding glass.

4.5. Effective Atomic Number

The theoretically calculated effective atomic number Zeff of the TPB glass is shown in
Figure 7. The Zeff value is an indispensable parameter in the study of gamma shielding,
and it is another key factor in radiation physics. The magnitude of the Zeff value reflects
the gamma attenuation ability of the absorbent material. Objects with large Zeff values are
the preferred targets for more collisions of photons, so photons are highly attenuated in
these materials. In actual shielding applications, anti-radiation glass with a high Zeff value
is more reliable for shielding gamma radiation.
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The Zeff value of TPB glass increases with the increase of B2O3 content. In the TPB
glasses, the highest Zeff values occurred between 0.02 MeV and 0.03 MeV during the energy
range of 0.01 MeV < Ep < 15 MeV. The reason is that the photoelectric equation governed
the gamma interaction with Z4 in its numerator. The high-Z elements (Te and Pb) have
extremely high µm values at low Ep. Moreover, two abrupt changes in the Zeff curve
are derived from the photoelectric effect near the absorption K-edge of the Te element at
0.0318 MeV and that of the Pb element at 0.088 MeV. As Ep increases, the Zeff of the glass
gradually decreases because of the Compton scattering. Finally, the Zeff value has a slight
increase in the range of 3 MeV < Ep < 15 MeV because of the generation and annihilation
process of the pair production.

It can also be observed that the glass Zeff curves of the different glass compositions
can be distinguished in the range of Ep > 0.1 MeV. However, the curves almost overlap
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in the range of Ep < 0.1 MeV. This phenomenon is mainly affected by the change of µm
value of each element. According to Formula (5), the Zeff value depends on each element’s
atomic number and the product of the mass fraction and the µm value. As shown in Table 3,
the values of (µm)Te and (µm)Pb are tens or even hundreds of times the value of (µm)B in
the range of Ep < 0.1 MeV. So, the increase of B2O3 has little effect on the Zeff value in this
range. Then with the increase of Ep, the ratio of the value of (µm)Te and (µm)Pb to the value
of (µm)B rapidly decreases to single digits, the decrease of Zeff value by B2O3 content also
becomes evident.

Table 3. Mass attenuation coefficient µm (cm2/g) of B element, Ba element and Pb element.

Ep (MeV) 0.01 0.05 0.1 0.5 1 5 15

B 1.2550 0.1665 0.1391 0.0806 0.0589 0.0247 0.0149
Te 146.4 11.38 1.7920 0.0931 0.0566 0.0349 0.0429
Pb 130.6 8.041 5.5500 0.1613 0.0710 0.0427 0.0565

4.6. Removal Cross Section

The theoretically calculated RCS values of the TPB series glasses are shown in Figure 8.
For comparison, the RCS values of graphite and ordinary concrete are also shown in
Figure 8. Generally, the higher the RCS value, the better the neutron shielding performance
of glass. The RCS values of TPB-0–TPB-5 are 0.10413, 0.10415, 0.10342, 0.10198, 0.10164 and
0.10126 cm−1, respectively. With the increase of B2O3, the RCS value of glass decreases
gradually. This phenomenon is because the lower atomic number B element in the glass
component replaces the higher atomic number Te and Pb elements, which reduces the RCS
value. The RCS value of TPB-5 is the smallest of TPB series glass. Still, it is generally higher
than graphite and ordinary concrete, indicating that TPB series glass is more suitable as
neutron radiation shielding material than graphite and ordinary concrete.
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5. Conclusions

This study tested the γ-ray and fast neutron radiation shielding ability of the (100-x)
(60TeO2-40PbO)-xB2O3 glass system. The µ value is measured using a physical radiation
source. Then, the µm, HVL, MFP, Zeff, and RCS parameters of all selected glasses were
calculated compared with ordinary commercial glass and concrete. With the increase of the
proportion of B2O3 in the composition, the glass network structure is optimized, but its
density and radiation shielding ability will also decrease. TPB-1 glass has the highest µm,
Zeff and RCS values, and the lowest HVL, MFP values. It has the best radiation shielding
performance during TPB series glasses and is higher or equal to common radiation shielding
materials. Therefore, it can be concluded that TPB series glass can be used as a new and
high-quality radiation protection application shield.
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