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Abstract—In an electricity market environment, energy 

storage plant owners are remunerated for the provision of 

services to multiple electricity sectors. Some of these services, 

however, may accelerate battery aging and degradation and 

hence this needs to be properly balanced against associated 

services remunerations. In this framework, we propose a 

combined economic-degradation model to quantify effects of 

operational policies (mainly focused on constraining State of 

Charge –SOC– to prescribed levels in order to reduce effects of 

aging) on gross revenue, multi-service portfolios, degradation 

and lifespan of distributed energy storage plants that can provide 

multiple services to energy and balancing market participants 

and Distribution Network Operators (DNO). Through various 

case studies based on the Great Britain (GB) system, we 

demonstrate that although operational policies focused on 

battery damage reduction will lead to a revenue loss in the short-

term, such loss can be more than compensated by long-term 

revenues due to a lengthier battery lifespan. We also demonstrate 

that operational policies to reduce battery degradation mainly 

affect services related to the energy (rather than balancing) 

market, which represents a smaller proportion of the overall 

revenue streams of a distributed storage plant. The model is also 

used to study effects of ambient temperature fluctuations.  

 
Index Terms—Distributed energy storage, multi-service 

portfolios, degradation, temperature control, power system 

economics. 

I.  NOMENCLATURE 

A.  Parameters  CS
  

Storage maximum charging capacity [MW] DS
  

Storage maximum discharging 

capacity 

[MW] E̅ Storage maximum energy capacity [MWh] PtD Active power demand from [MW] 

                                                           
The authors are grateful for the support obtained through the "Whole 

Systems Energy Modelling" and "Energy Storage for Low Carbon Grids” 
projects funded by the UK Research Council, and "Smarter Network Storage" 

project funded by the UK Power Networks. In addition, Dr. Moreno and 

Orchard gratefully acknowledge the financial support of Conicyt-Chile 

(through grants Fondecyt/Iniciacion/11130612, Fondecyt/1140774, 

Fondap/15110019, the Complex Engineering Systems Institute [ICM:P-05-

004-F, Conicyt:FBO16] and the Advanced Center for Electrical and 

Electronic Engineering [FB0008]). The work of Mr. Perez was supported by 

the University of Costa Rica (Grant for Doctoral Studies) and Conicyt-

Pcha/DoctoradoNacional/2015-21150121. 

A. Perez, R. Moreno, and M. Orchard are with the Department of 

Electrical Engineering (Energy Center) at University of Chile. R. Moreno is 

also with the Department of Electrical and Electronic Engineering at Imperial 

College London (corresponding author: rmorenovieyra@ing.uchile.cl). 

R Moreira and G. Strbac are with the Department of Electrical and 

Electronic Engineering at Imperial College London. 

distribution network at period t QtD Reactive power demand from 

distribution network at period t 

[MVAr] M  Auxiliary large number used for 

endogenous constraints relaxation 

(Big M) 

 

S̅N  Secured apparent power capacity of 

primary substation (N-1 limit) 

[MVA] S̅S  Storage maximum apparent power 

capacity 

[MVA] α, β Robustness parameters to ensure 

deliverability of balancing services 

[p.u.] η Storage roundtrip efficiency [p.u.] πtE  Energy price at period t [£/MWh] πtDw.Rese  Availability price for downwards 

reserve at period t 

[£/MW/h] πtDw.Resp
  Availability price for downwards 

frequency response at period t 

[£/MW/h] πtUp.Rese
  Availability price for upwards reserve 

at period t 

[£/MW/h] πtUp.Resp
  Availability price for upwards 

frequency response at period t 

[£/MW/h] τRese  Reserve maximum utilization time [h] τResp  Frequency response maximum 

utilization time 

[h] 

 

B.  Variables  𝐶𝑡𝑆  Storage charging output at period t [MW] 𝐷𝑡𝑆  Storage discharging output at period t [MW] 𝐸𝑡  Storage energy at period t [MWh] 𝑃𝑡𝑁  Active power through primary 

substation at period t (positive refers 

to discharge and negative refers to 

charge) 

[MW] 

𝑃𝑡𝑆  Storage scheduled active power 

output at period t 

[MW] 𝑄𝑡𝑁  Reactive power through primary 

substation at period t 

[MVAr] 𝑄𝑡𝑆  Storage scheduled reactive power 

output at period t 

[MVAr] 𝑅𝑒𝑠𝑒𝑡𝐷𝑤  Downwards reserve commitment at 

period t 

[MW] 𝑅𝑒𝑠𝑒𝑡𝑈𝑝
  Upwards reserve commitment at 

period t 

[MW] 𝑅𝑒𝑠𝑝𝑡𝐷𝑤  Downwards frequency response 

commitment at period t 

[MW] 𝑅𝑒𝑠𝑝𝑡𝑈𝑝
  Upwards frequency response 

commitment at period t 

[MW] 𝑋𝑡𝐷𝑤.𝑅𝑒𝑠𝑒  Storage commitment status for 

downwards reserve at period t: 1 if 

committed, 0 otherwise 

 

𝑋𝑡𝑈𝑝.𝑅𝑒𝑠𝑒
  Storage commitment status for 

upwards reserve at period t: 1 if 

committed, 0 otherwise 
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C.  Sets 

A Set of credible utilization levels of 

balancing services   

 T  Set of operating periods  

II.  INTRODUCTION 

nergy storage has the potential to provide multiple 

services to several sectors in electricity industry and hence 

support activities related to generation, network and system 

operation. In an electricity market environment, a service 

provided by storage plant presents both (i) a short-term 

revenue or remuneration associated with its provision to a 

market participant (who pays for it) and (ii) a consequent 

long-term cost associated with its effects on capacity 

degradation. Capacity degradation is related to the progressive 

reduction in the amount of energy that can be delivered by the 

energy storage plant or the growth of its internal impedance, 

which is a function of the elapsed time since the manufacture 

date, as well as the usage over consecutive charge and 

discharge actions. Therefore, storage owners need to take a 

decision between constraining operation of energy storage 

plant to prescribed charge/discharge volumes in order to 

maintain battery lifespan at higher levels, or maximize short-

term revenues regardless of effects of degradation in the long-

term (which may drive higher cost of investment since 

replacement of battery equipment may become more 

frequent). Clearly, this decision will have important effects on 

the portfolio of services provided by energy storage plant.  

Various studies have investigated the ability of energy 

storage plants to support integration of low carbon generation 

[1,2], provide balancing services [3], support energy market 

operations [4,5], and alleviate network congestion [6]. Recent 

studies [7,8] have investigated the potential of energy storage 

plants to deliver multiple services to various market 

participants. In particular, our previous work in reference [8] 

focused on co-optimizing the provision of multiple services to 

simultaneously support activities in various sectors in 

electricity industry.  

In terms of battery degradation models, several works have 

identified the need to incorporate it in economic analysis of 

electricity systems [9-12]. In particular, references [9-11] 

focused on battery degradation cost functions that can be 

included in system optimization models. These approaches 

have been proposed to investigate effects of either energy 

arbitrage [10], peak shaving [11] and frequency control 

services [12] on battery degradation. Hence, although effects 

of energy storage plant operational decisions on degradation 

have been already recognized, these are manly based on 

smaller scale systems and/or a particular application. 

A.  Contributions 

The main contributions of this paper are: 

1. A combined economic-degradation model that quantifies 

effects of various operational policies (which constrain the 

State-of-Charge (SOC) to specified limits) on gross 

revenue, multiple services (namely energy arbitrage, 

balancing services and peak shaving or congestion 

management), degradation and lifespan of energy storage 

plants. The proposed economic model (a) presents a 

simplified (and convex) representation of reactive power 

that allows us to optimally coordinate active and reactive 

power for peak shaving purposes, and (b) ensures 

robustness and deliverability of the committed balancing 

services. 

2. An application on a real 6MW/10MWh Samsung SDI 

lithium-ion battery system installed in a UK Power 

Networks’ primary substation in London (UK Power 
Networks owns and operates the distribution network and 

the storage plant), used to quantify the benefits of various 

practical operational policies that aim to reduce battery 

damage. It is demonstrated that although operational 

policies that focused on battery damage reduction will lead 

to a revenue loss in the short-term (since these policies 

fundamentally constrain storage operation), such loss can 

be more than compensated by long-term revenues due to a 

lengthier battery lifespan.  

3. Demonstration of the effects of ambient temperature 

fluctuations on storage plant revenue due to degraded 

capacity 

B.  Structure 

This paper is organized as follows. Section III presents our 

combined economic-degradation model, whose results and 

discussions are presented in Section IV. Section V concludes. 

III.  COMBINED ECONOMIC-DEGRADATION MODEL 

A.  Overview 

Fig.1 shows a general overview of our proposed approach 

with (i) an economic-based, commercial strategy module that 

determines storage plant operation (scheduled and real-time) 

by optimizing multi-service portfolios of energy storage 

(network congestion management, energy price arbitrage and 

various reserve and frequency response services) to maximize 

gross revenue, and (ii) a degradation module that 

progressively reduces energy capacity of storage plant as a 

function of its utilization profile determined in (i). While 

solution provided by module (i) is sensitive to utilization 

levels of network infrastructure (i.e. congestion), as well as 

various prices of energy and balancing services, module (ii)’s 
solution mainly depends on battery usage (determine by 

module (i)) and type, besides ambient temperature. As shown 

in Fig. 1, modules (i) and (ii) are applied on sequential time 

periods (e.g. week-by-week) that covers a longer time horizon 

(e.g. several years) as follows:  

 Given the storage plant capacity for period p (e.g. a week), 

module (i) determines optimal economic use of storage 

capacity within that period (when capacity is considered 

constant) 

 Given the usage profile of storage capacity within period p 

(determine by module (i)), module (ii) calculates capacity 

degradation by the end of period p (present week), which 

is then used as the storage capacity for the optimization of 

plant operation during next period p + 1 (and this is 

undertaken in module (i)) 

Hence, after applications of modules (i) and (ii) over 
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various and consecutive time periods/weeks (that are part of a 

longer studied time horizon, e.g. several years), storage plant 

operation and its capacity degradation can be determined. We 

use this modeling framework to quantify effects of several 

operational policies (focused on constraining SOC) on gross 

revenue, portfolio of services, degradation and life of storage 

units. Sensitivity to market prices, network congestion levels 

and temperature are also studied. Note that the degradation 

module is not embedded in the optimization module and this 

allows us to carry out a more accurate calculation of 

degradation. 

 

 
Fig. 1. Overview of proposed economic-degradation model.  

B.  Economic multi-service operation of storage plant 

Storage operation is first scheduled and optimized ahead of 

real-time and such scheduled operation may change in actual, 

real-time operation. In this paper, the term storage scheduled 

output refers to the planned output which is determined ahead 

of real-time and is sufficiently robust to cope with the delivery 

of contracted services, if exercised or called for in real-time. 

Scheduled output presents a plan of how storage should be 

operated under the most expected condition (i.e. no utilization 

of frequency or reserve services) to be able to deliver the 

contracted levels of services in case exercise is needed. This 

scheduled or planned output will be different from the real-

time output since the latter will depend on the actual 

realizations of the delivery of services that storage is 

committed to provide. Submodules that determine scheduled 

and real-time storage operation are presented next. 

    1)  Scheduled operation 

This section presents a price-taker profit maximization 

model to determine uses of distributed storage capacity to 

provide multiple services to energy and balancing markets and 

DNO as follows (see Fig. 2): 

 Energy price arbitrage, associated with charging/buying at 

low energy prices and discharging/selling at higher energy 

prices.  

 System balancing services 

o The frequency response services, associated with the 

fast, automatic response when a system frequency 

deviation occurs. The upwards and downwards terms 

refer to the increment (upwards) or decrement 

(downwards) action to maintain the system’s nominal 
frequency at the required value. 

o The reserve operating services, associated with the 

slower, centrally controlled demand–supply balance 

over a longer timescale. The upwards and downwards 

terms refer to the increment (upwards) or decrement 

(downwards) action to maintain the supply-demand 

balance of the whole system. 

 DNO peak demand shaving, associated with the congestion 

management at the primary substation level through active 

and reactive power control. 

 

 
Fig. 2. Diagram of modeled energy storage, demand (including distributed 

generation) and primary substation along with services buyers. 

 

The developed non-linear model maximizes, through Eq. 

(1), the overall revenue streams that energy storage could earn, 

given the set of prices associated with different services, by 

coordinating delivery of multiple applications while 

considering a number of constraints that represent inter-

dependences among different services, the energy storage 

constraints and constraints of the local network infrastructure.  

In our method, we do not consider a full AC power flow 

representation and instead we model a simplified version that 

considers reactive power for congestion management purposes 

only. Hence, voltage support and network losses are not 

included in our model and this is considered a reasonable 

assumption to operate this installation since the focus is on 

coordination of peak shaving services with grid-scale 

applications of storage such as energy arbitrage and frequency 

control and the associated degradation levels. 

The main equations of this model are shown in Eq. (1)-

(16). The objective function (Eq.(1)) maximizes the 

summation of several revenue streams as follows: energy 

arbitrage ∑ 𝑃𝑡𝑆πtE𝑡∈𝑇 , upwards reserve ∑ 𝑅𝑒𝑠𝑒𝑡𝑈𝑝πtUp.Rese𝑡∈𝑇 , 

downwards reserve ∑ 𝑅𝑒𝑠𝑒𝑡𝐷𝑤πtDw.Rese𝑡∈𝑇 , upwards response ∑ 𝑅𝑒𝑠𝑝𝑡𝑈𝑝πtUp.Resp𝑡∈𝑇 , and downwards response ∑ 𝑅𝑒𝑠𝑝𝑡𝐷𝑤πtDw.Resp𝑡∈𝑇 . Note that for frequency control 

services, revenue depends on the capacity held/reserved to 

provide the service (availability) regardless of its utilization. 

While Eq. (2)-(4) ensure that storage plant actions comply 

with network infrastructure capacities and eventually 

alleviates network congestion during peak demand periods, 

Eq. (5)-(11) ensure that all storage plant capacities in terms of 

both power and energy are respected, maintaining the needed 

power capacity margins to provide balancing services (Eq. 

(10)-(11)). Note that 𝐷𝑡𝑆and 𝐶𝑡𝑆 cannot take values greater than 

zero simultaneously since there is a roundtrip efficiency 
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parameter 𝜂 in Eq. (8) smaller than 1 that will penalize 

simultaneous charging and discharging outputs of storage. The 

model uses reactive power as a measure to reduce network 

congestion without the need to increase active power 

injections from storage plant and thus provide peak shaving 

services more efficiently. Note that Eq. (2) and (7), although 

non-linear, describe a convex region and thus can be 

linearized via tangent planes. This allows us to use 

commercial Mixed Integer Linear Programing (MILP) solvers 

on the proposed formulation. 

 

Objective function  𝑀𝑎𝑥 {∑ 𝑃𝑡𝑆 ∙ πtE + 𝑅𝑒𝑠𝑒𝑡𝑈𝑝 ∙ πtUp.Rese + 𝑅𝑒𝑠𝑒𝑡𝐷𝑤 ∙ πtDw.Rese𝑡∈𝑇 + 𝑅𝑒𝑠𝑝𝑡𝑈𝑝 ∙ πtUp.Resp + 𝑅𝑒𝑠𝑝𝑡𝐷𝑤∙ πtDw.Resp} 

s.t. 

(1) 

Active and reactive power capacities  (𝑃𝑡𝑁 + 𝑅𝑒𝑠𝑝𝑡𝐷𝑤 + 𝑅𝑒𝑠𝑒𝑡𝐷𝑤)2 + (𝑄𝑡𝑁)2 ≤ (S̅N)2  ∀ t ∈ T (2) 𝑃𝑡𝑁 = PtD − 𝑃𝑡𝑆     ∀  t ∈  T (3) 𝑄𝑡𝑁 = QtD − 𝑄𝑡𝑆     ∀  t ∈  T (4) 𝑃𝑡𝑆 = 𝐷𝑡𝑆 − 𝐶𝑡𝑆     ∀  t ∈  T (5) − CS ≤ 𝑃𝑡𝑆 ≤ DS    ∀  t ∈  T (6) (𝑃𝑡𝑆)2 + (𝑄𝑡𝑆)2 ≤ (S̅S)2     ∀  t ∈  T (7) 

Temporal balance constraints  𝐸𝑡 = 𝐸𝑡−1 − (𝐷𝑡𝑆 − 𝐶𝑡𝑆 ∙ η)     ∀  t ∈  T (8) 𝐸𝑡 ≤ E     ∀  t ∈  T (9) 

Capacity headroom associated with balancing services  𝑃𝑡𝑆 + 𝑅𝑒𝑠𝑒𝑡𝑈𝑝 + 𝑅𝑒𝑠𝑝𝑡𝑈𝑝 ≤ DS    ∀  t ∈  T (10) 𝑃𝑡𝑆 − 𝑅𝑒𝑠𝑝𝑡𝐷𝑤 − 𝑅𝑒𝑠𝑒𝑡𝐷𝑤 ≥ −CS   ∀  t ∈  T (11) 

Robustness and deliverability constraints  −M ∙ (1 − 𝑋𝑡𝑈𝑝.𝑅𝑒𝑠𝑒) ≤ 𝐸𝑡−1 − (𝑃𝑡𝑆 + α ∙ 𝑅𝑒𝑠𝑒𝑡𝑈𝑝) ∙ β ∙ τRese≤ E̅ + M ∙ (1 − 𝑋𝑡𝑈𝑝.𝑅𝑒𝑠𝑒)   ∀  t ∈ T, α ∈ Α 
(12) −M ∙ (1 − 𝑋𝑡𝐷𝑤.𝑅𝑒𝑠𝑒) ≤ 𝐸𝑡−1 − (𝑃𝑡𝑆 − α ∙ 𝑅𝑒𝑠𝑒𝑡𝐷𝑤) ∙ β ∙ τRese≤ E̅ + M ∙ (1 − 𝑋𝑡𝐷𝑤.𝑅𝑒𝑠𝑒)   ∀  t ∈ T, α ∈ Α 
(13) 𝑅𝑒𝑠𝑒𝑡𝑈𝑝 ≤ M ∙ 𝑋𝑡𝑈𝑝.𝑅𝑒𝑠𝑒     ∀  t ∈  T (14) 𝑅𝑒𝑠𝑒𝑡𝐷𝑤 ≤ M ∙ 𝑋𝑡𝐷𝑤.𝑅𝑒𝑠𝑒     ∀  t ∈  T (15) 

Signs and binary variables  {𝐶𝑡𝑆, 𝐷𝑡𝑆, 𝐸𝑡, PtD, QtD, 𝑅𝑒𝑠𝑒𝑡𝑈𝑝, 𝑅𝑒𝑠𝑝𝑡𝑈𝑝, 𝑅𝑒𝑠𝑒𝑡𝐷𝑤, 𝑅𝑒𝑠𝑝𝑡𝐷𝑤}≥ 0       ∀  t ∈ T  {𝑋𝑡𝑈𝑝.𝑅𝑒𝑠𝑒 , 𝑋𝑡𝐷𝑤.𝑅𝑒𝑠𝑒} ∈  {0,1}  

(16) 

 

When selecting the portfolio of services, the proposed model 

will ensure the robustness of delivery against potentially 

different levels of utilization of stored energy associated with 

balancing services provided. In other words, the model will 

always ensure real-time deliverability of services that are 

scheduled ahead of real-time. For example, if storage is 

scheduled to provide 1 MW of operating upwards reserve for 

2 hours, the model reserves 1 MW of capacity headroom (Eq. 

(10)) and also sufficient amounts of energy stored (Eq. (12)) to 

maintain a fixed output (𝑃𝑡𝑆 + 𝑅𝑒𝑠𝑒𝑡𝑈𝑝
in the worst case, i.e. α = 1) while the reserve service is exercised (during 2 hours 

in the worst case, i.e. β = 1). To do so, we expanded on our 

previous disjunctive approach used in [8] to limit the levels of 

energy stored and thus be able to deliver a scheduled 

balancing service in real-time (which is ensured by Eq. (12)-

(15)), where M is a large number and A is a set of numbers 

from 0 to 1 that makes scheduled output robust (for the sake of 

simplicity, Eq. (12)-(15) are only shown for reserve services, 

but the same constraints applies to frequency response 

services). α and β are parameters that make the scheduled 

output more robust against the exercise of balancing services 

in real-time. For example, α = 1 and β = 1 maintains energy 

stored so as to deal with the worst cases (e.g. utilization of the 

maximum reserve capacity – α = 1– persistently for the 

maximum possible duration of the service – β = 1–). In 

contrast, α = 0 and β = 0 does not ensure sufficient levels of 

energy stored for the purpose of frequency control services. In 

this context, it is possible to set α and β differently for 

frequency response and reserve services.  

To provide frequency control services, we need to maintain 

both power capacity headroom and sufficient levels of stored 

energy. The latter needs binary variables to be properly 

modeled since energy requirements for frequency control 

services are not convex. Indeed, extremely small capacity 

requirements of a frequency control service can drive large 

requirements of energy stored if the initial position of storage 

output (before a frequency control service is exercised) is 

sufficiently high. For example, if the initial output position of 

storage is equal to +1 MW and then 2 MW of upwards reserve 

is exercised during 2 hours, the volume of energy stored prior 

to the utilization of the service has to be at least (1+2) x 2 = 6 

MWh (note that when a frequency control service is exercised, 

the output of storage is kept fixed until the end of the service). 

The needed volume of energy stored as a function of the 

booked reserve capacity is shown in Fig.3.  

 

 
Fig. 3. Energy requirements to deliver upwards reserve service as a function 

of the committed reserve capacity. 
 

The optimization module also contains further constraints to 

force volumes of balancing services to remain constant across 

prescribed time windows (especially defined by system 

operators to provide balancing services and that cannot be 

modified or optimized by storage owners) and this will be 

illustrated later in Section IV. 

It is important to emphasize that the optimization model is 

run over a longer time period (twice longer than the needed 

time, e.g. 2 weeks), and solution is considered valid only 

during the first half of the time period modeled (e.g. 1 week). 

This is done to avoid arbitrary definitions on levels of energy 

stored at the end of the modeled time period.  

    2)  Real-time operation of storage plant 

Once scheduled output is obtained through Eq. (1)-(16), 
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real-time storage plant operation will be determined by a 

simulation process that exercises the balancing services 

committed by the above scheduling submodule. The exercise 

of a balancing service occurs at a given rate per period, e.g. 7 

occurrences per week, and this is defined as a parameter for 

each balancing service. This case study aims to analyze the 

impact of changing the real-time output on a daily basis (e.g. 7 

times per week) due to a system operator’s instruction, and 
how the lifespan of the storage system is affected. The results 

associated with the periodic exercise of balancing services are 

detailed in Section IV.E. 

After a balancing service is exercised in real-time, storage 

plant will rapidly return to the scheduled energy stored levels 

by implementing a set of charge or discharge actions in real-

time that will minimize the time exposure to imbalance fees 

(paid when a plant presents an imbalance between scheduled 

and real-time power output). The algorithm that generates 

real-time outputs of storage plants (from a given scheduled 

output) is described next. In addition, the algorithm is 

illustrated in Fig. 4: 

 Loop over all t 

o If a balancing service is not exercised in t and battery is 

not in recovery status: define real-time power output Pt
RT 

equal to scheduled power output Pt. Similarly, define 

real-time energy stored Et
RT equal to scheduled energy 

stored Et.  

o Else if a balancing service is exercised in t: define Pt
RT 

equal to Ptr + ΔPtr where ΔPtr represents a positive (up) 

or negative (down) imbalance associated with the 

scheduled/committed balancing service (tr is the first 

hour when a balancing service is exercised; note that 

during the exercise time, power output of storage 

remains constant). Apply Eq.(8) to obtain real-time 

energy stored Et
RT. If this is the last hour t when a 

balancing service is exercised, set battery in recovery 

status from t+1. 

o Else if a balancing service is not exercised in t and 

battery is in recovery status and Et-1
RT ≠ Et-1: define Pt

RT 

equal to the difference between Et-1
RT and Et (note that if 

storage is charging, aforementioned difference should be 

divided by η). If this exceeds the power capacity of 

storage plant, define Pt
RT equal to the power capacity. 

o Else if a balancing service is not exercised in t and 

battery is in recovery status and Et
RT= Et: unset battery in 

recovery status and define real-time power output Pt
RT 

equal to scheduled power output Pt. Similarly, define 

real-time energy stored Et
RT equal to scheduled energy 

stored Et.  

o End-if 

 End-loop 

The above algorithm takes into account: (i) an initial 

normal state (when the storage plant is not providing/utilizing 

balancing services in real-time), (ii) an exercise state (when 

the storage plant provides balancing services), (iii) a recovery 

state (right after a balancing service has been utilized when the 

storage plant needs to recover SOC levels stated in the 

planned operation), (iv) and a normal state after the recovery 

state. 

Note that while there is a single scheduled output that is 

optimal ahead of real-time, an array of real-time outputs can 

be generated depending on how actual service utilization 

conditions evolve. The time when a scheduled balancing 

service is exercised, is a given parameter to the above 

algorithm and this is used to run a number of sensitivities to 

study how utilization of services impacts on energy capacity 

degradation. 

 
Fig. 4. Generation of real time outputs  

C.  Energy capacity degradation of storage plant 

The concept of battery aging is typically related to the 

progressive reduction in the amount of energy that can be 

delivered by the energy storage plant or the growth of its 

internal impedance. Battery aging is a function of the elapsed 

time since the manufacture date, as well as the usage over 

consecutive charge and discharge actions. This work primarily 

focuses on the latter aspect (which is closely entangled with 

the problem of economic multi-service operation of storage 

plants), characterizing usage cycles according to their swing 

ranges (defined by the minimum and maximum values 

reached, during a usage cycle, by the battery SOC [13-16]). 

The proposed algorithm for computing overall capacity 

degradation over a given period (e.g. 1 week) is divided into 3 

sections (or submodules) that are run sequentially as follows: 

(1) cycle length calculation, (2) cycle characterization and 

energy capacity degradation, and (3) temperature modulation 

(see Fig. 5). 

    1)  Cycle length calculation 

The purpose of this submodule is to determine the duration 

of each of the usage cycles that are present in a given 

operation profile. In this paper, a usage cycle is defined either 

by a charge action (or several successive charge actions) 

followed by a discharge action, or a discharge action (or 



 

 

6 

several successive discharge actions) followed by a charge 

action. To find these patterns, we use Pt to recognize when a 

cycle starts and finishes by using the algorithm described next 

(that fundamentally finds each cycle based on changes in the 

sign of Pt). The algorithm below is also illustrated in Fig. 6. 

 Loop over all t 

o If a usage cycle has not been defined in t: 

 If Pt = 0, goto End-if(1) 

 Else if Pt > 0: define usage cycle as discharge/charge.    

 Else if Pt < 0: define usage cycle as charge/discharge.    

 End-if 

o Else 

 If usage cycle is discharge/charge type and Pt-1 < 0 and 

Pt  ≥ 0: usage cycle is set as finished in t-1 and a new 

usage cycle is started in t and set as undefined. 

 Else if usage cycle is charge/discharge type and Pt-1 > 0 

and Pt  ≤  0: usage cycle is set as finished in t-1 and a 

new usage cycle is started in t and set as undefined. 

 End-if 

o End-if(1) 

 End-loop 

 
Fig. 5. Submodules of the proposed algorithm. Module (i) and (ii) are those 

illustrated in Fig.1. 

 

The above algorithm will determine complete and partial 

charge/discharge usage cycles, which will degrade storage 

capacity differently, in terms of their characterization. 

 

 
Fig. 6.  Cycle recognition.  

    2)  Cycle characterization and degradation 

The degradation model is based on the structure proposed in 

[17], which corresponds to an extension of the model used in 

[18]. Every cycle identified in the aforementioned submodule 

is characterized now in terms of the associated Coulombic 

efficiency (�̿�𝑘). The value of this parameter corresponds to a 

measure of the expected capacity loss per cycle (as a 

percentage of the capacity offered by the battery during the 

previous discharge cycle). The Coulombic efficiency is used 

to degrade storage capacity after a cycle k through Eq. (17).  

 �̿�𝑘+1 = �̿�𝑘�̿�𝑘  (17) 

 

To calculate �̿�𝑘, we use data provided by manufacturer that 

characterizes the battery lifespan (i.e. number of cycles) when 

storage plant is sequentially charged and discharged at rated 

current, and following strict protocols that ensure specific 

swing ranges (11 swing ranges were provided: 0-25%, 0-50%, 

0-75%, 0-100%, 25-100%, 50-100%, 75-100%, 25-50%, 25-

75%, 50-75%, and 37.5-62.5%). We also assume that battery 

can be used up to when degraded capacity reaches 75% of the 

initial, nominal capacity. This assumption is actually a 

standard practice, as explained in [17], which is justified by 

the growth of battery internal resistance (as battery cells 

degrade) and the subsequent increment in heat losses. 

Although dataset provided was comprehensive, this does not 

cover all possible swing ranges that may occur in practice and 

thus we use Similarity Based Modelling (SBM [19]) to 

interpolate and obtain the most appropriate value for the 

Coulombic efficiency �̿�𝑘 that can be used for an observed 

swing range. In this case, SBM is applied by choosing the 

three nearest neighbors of the actual operating condition 

(described by a SOC swing –the difference between the initial 

value of the SOC at the beginning of a cycle and the final 

value of the SOC once the cycle is over– and an average 

swing range –the average of (i) the initial value of the SOC at 

the beginning of a cycle and (ii) the final value of the SOC 

once the cycle is over–) of each cycle, to the given conditions 

by the manufacturer, and using the inverse of the distances 

between those neighbors to compute a weight. The weighted 

average of the values for �̿�𝑘 that better represent the three 

nearest neighbors is the value for the Coulombic efficiency 

that will be used on our model for that particular discharge 

cycle.  

It is critical to emphasize here a few important facts related 

to battery degradation and the operating conditions informed 

by the manufacturer. On the one hand, capacity fade is 

typically accelerated by operating profiles that offer a 

combination of high average SOC levels, deep discharges, 

extremely high or low temperatures, and overcharging [20]. 

On the other hand, operating a battery with low average SOC 

(e.g., SOC swing ranges between 0-25%) can be beneficial in 

terms of incrementing the lifespan [21]. Nevertheless, the 

latter statement is only valid when avoiding cell over-

discharge, or when the user does not store the battery 

discharged for an extended period of time (a procedure that 

leads towards permanent cell damage, because self-discharge 
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phenomena can cause cell over-discharge). In this regard, 

when forcing operation at low SOC values it is important to 

differentiate between deep discharges (accelerated 

degradation) and small SOC swing ranges. 

So far, temperature is assumed to be nominal and equal to 

25°C, a credible assumption if we accept incurring in expenses 

associated with temperature control systems. In the next 

section, we show how variations in temperature can be 

addressed in the analysis (this is used for sensitivity). 

    3)  Temperature modulation 

It is a well known fact [22] that the battery degradation 

trend will not be a function of temperature, as long as the 

ranges suggested by the manufacturer are observed. 

Nevertheless, the actual amount of energy delivered (or 

stored) by the battery during a specific usage cycle will 

definitively be a function of the operating temperature [23]. 

The relation between the actual amount of energy delivered by 

a lithium-ion battery during a cycle and the average 

temperature is characterized by Eq. (18) (Vogel-Tammann-

Fulcher –VTF–, suggested in [24]). This expression 

(empirically tested and validated) allows to incorporate the 

concept of “usable capacity” [24], which corresponds to the 

amount of energy that the battery can deliver (or store) during 

a cycle, assuming an average temperature T. 

Eq. (18) allows us to consider the effect of ambient 

temperature on energy storage capacity, empirically 

determining multiplying factors that can be applied on 

degraded capacity �̿�𝑘 (which is calculated at nominal 

temperature, i.e. 25°C, as explained in the previous section)  to 

further reduce or increase energy capacity of a storage plant 

that is not subject to temperature control.  

 �̂�𝑘 = �̿�𝑘𝑒−𝜇( 1𝑇−𝛾− 1𝑇𝑛𝑜𝑚−𝛾)
 

(18) 

 𝜇 and 𝛾 are determined through data provided by battery 

cell manufacturer, using maximum likelihood estimators.  

Note that we used the ambient temperature as the main 

indicator to modulate energy storage capacity. This choice is 

based on two main assumptions. The first one is that, the 

cooling system forces air into the battery pack in an effort to 

reduce temperature, avoiding to incur in costs associated with 

full temperature control (i.e., a system that would aim at 

keeping temperature constant). The second assumption is that 

the battery pack is most of the times in idle mode (neither 

charging nor discharging), allowing it to cool the cells using 

the aforementioned air flow. Indeed, even when the battery 

pack is used intensively (swing range of 0-100%), it rests in 

idle mode approximately 63.25% of the time. Other cases even 

imply being in idle mode for 83% of the time. 

IV.  RESULTS AND DISCUSSION  

A.  Input data 

Time series with hourly resolution of GB system energy 

prices and demand at one of the distribution network 

substation in London (Leighton Buzzard) are used in this 

paper to optimize the storage plant operation. We also assume 

a fixed price for frequency response and reserve services of 7 

and 6 £/MW/h, respectively, and a service prescribed time 

window between 4:00h and 8:00h for frequency response 

services, and between 16:00h and 21:00h for reserves. If a 

balancing service is exercised, its maximum duration cannot 

exceed 30min and 2h for frequency response services and 

reserves, respectively (i.e. τRese = 2h and τResp = 0.5h). 

Additionally, we assume that balancing services are cleared in 

a weekly auction, which leads to a constant committed volume 

of each balancing service for all prescribed windows in a 

week.  

The main data of storage plant used in the model is as 

follows: 

 Storage power and energy capacity: 6MW, 7.5 MVA, 

and 10 MWh 

 Round trip efficiency: 85% 

 Primary substation N-1 capacity: 36 MVA 

To obtain the hourly scheduled output of a storage plant for 

a given operational policy (e.g. SOC within 0-25%) during 20 

years, the optimization model is run 1,043 times since every 

week is optimized in separated and sequential simulations 

(there are 1,043 weeks in 20 years). Weeks are optimized 

sequentially (i.e. one after another) in order to determine the 

level of degradation after every week, which will affect the 

energy capacity of storage (E ) to be used in the optimization 

of the next week. In the optimization of storage operation 

within week k, the initial SOC used is equal to that obtained at 

the end of week k-1 (it is important to emphasize that the 

optimization model is run over a longer time period –twice 

longer than the needed time, e.g. 2 weeks–, and the solution is 

considered valid only during the first half of the time period 

modeled, e.g. 1 week, and this is done to avoid arbitrary 

definitions on stored energy levels at the end of the modeled 

time period). 

Next, we run several case studies under various future 

scenarios in the long-term (e.g. 20 years). Future scenarios are 

built by using 2-year historical data provided by UK Power 

Networks and time series analysis as follows: 

 We build a base case of demand and energy prices across 

20 years (used in Section IV.B-F) by repeating the 2-year 

historical data provided  

 We build a time series of the daily ambient temperature 

across 20 years (used only for sensitivity analysis in 

Section IV.F) by using the methodology proposed in [25] 

and the historical data published in [26]  

 We build 10 scenarios of demand requirements across 20 

years (used in Section IV.G) by fitting a time series model 

that then produced 10 synthetic, future scenarios  

 We build 10 scenarios of energy prices across 20 years 

(used in Section IV.G) using an economic dispatch model 

that simulates 10 different generation capacity expansion 

scenarios in GB  

Note that the time series models used are outside the scope 

of this paper and they can be replaced by another forecast 

technique that properly captures the statistical characteristics 

of the data historically observed. 
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B.  Storage economics and degradation in a week 

This section aims at illustrating and validating the method 

used in the paper to optimize operation, and calculate gross 

revenue and degradation of a storage plant within a week. In 

this context, Fig 7. shows power outputs and stored energy 

levels for both scheduled and real-time operation of storage 

plant.  

Scheduled output shown in Fig. 7 is optimized for the 

provision of multiple storage applications or services: energy 

arbitrage (162£/day by buying in the morning between 2:00h 

and 3:00h a total volume of 8MWh at an average price of 

35£/MWh and selling in the evening between 22:00h and 23h 

a total volume of 6.8MWh at an average price of 65£/MWh 

with a 85% efficiency), frequency response (420£/day by 

holding 6MW of each upwards and downwards service in the 

morning between 4:00h and 8:00h at a price of 7£/MW/h), and 

reserve (180£/day by holding 3.4MW of upwards service and 

1.6MW of downwards service in the afternoon between 

16:00h and 21:00h at a price of 6£/MW/h –note that services 

are constrained by SOC at that time, which is equal to 

6.8MWh–). This degrades capacity from 10MWh to 

9.996781MWh due to occurrence of 7 partial cycles within a 

swing range between 0% and 68%, each with a Coulombic 

efficiency of 0.999954. If a balancing service is exercised 

every day during that week (which can potentially occur in 

real-time operation as shown in Fig. 7), this would degrade 

capacity further from 10MWh to 9.993562MWh due to 

occurrence of 14 partial cycles within a swing range between 

0% and 68%. Note that utilization of balancing services may 

not necessarily increase the number of cycles (as in the case 

above), but rather expand the swing range of charge/discharge 

actions. 

This demonstrates that reserving capacity for balancing 

services may be detrimental in terms of degradation, 

depending on how frequent these services will be exercised by 

the system operator (and this will be analyzed in more detail in 

Section IV.E). Fig.7 also shows that scheduled operation 

determined by the proposed model (Eq. (1)-(16)) is robust 

against real-time utilization of balancing services (i.e. 

deliverable in real-time). 

C.  Effect of operational policies  

Data provided by manufacturer suggest that battery lifespan 

can be significantly increased if plant is operated within a 

smaller swing range (e.g. 0-25%) rather than within its full 

energy capacity (e.g. 0-100%). Hence, we calculate revenues 

and degradation associated with 11 operational policies that 

aim at constraining SOC. To do so, we added lower and upper 

limits to 𝐸𝑡 in the scheduling submodule in order to constrain 

SOC to a given range.  

In this context, Fig. 8 shows that constraining SOC when 

deciding optimal operation of storage plant presents clear 

benefits, since battery lifespan can be more than doubled. For 

example, battery lifespan lasts about 76,000h if SOC is 

unconstrained, which can be increased up to more than 

175,000h if SOC is constrained between 0 and 25%. Another 

interesting feature, shown in Fig. 8, is that it is more attractive 

to limit upper rather than lower bounds of the swing range. In 

fact, increasing lower bounds may decrease battery lifespan 

with respect to the unconstrained case (i.e. 0-100%) and this is 

consistent with manufacturer data. 

The above benefits are in opposition to short-term 

revenues. In fact, constraining SOC between 0 and 25%, for 

instance, can present about 18% lower gross revenue levels 

per year as shown in Fig. 9 (where results are sorted in 

decreasing order).  

 

 

 
Fig. 7. Schedule and one potential real-time power output (top) and SOC 

(bottom). 

 

 

 
Fig. 8. Energy capacity degradation for different operational policies. 

Horizontal red line indicates 75% of the nominal energy capacity. 
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Despite this, lower average gross revenues (in £/annum) 

can be compensated by revenue streams in the longer term that 

are associated with a lengthier lifespan of storage plant and 

this is shown in Fig. 10 (where results are sorted in decreasing 

order). Effectively in this GB case study, it is clearly more 

beneficial to constrain the SOC scheduled output since its 

benefits in terms of battery lifespan increase, more than 

compensate the revenue loss in the short-term incurred in 

energy and balancing markets. In fact, for the 0-25% policy, 

lifespan increase (i.e. >+100%) is clearly disproportionally 

higher than reduction in gross revenue (i.e. ~ –18 %). 
 

 
Fig. 9. Average annual gross revenue during battery lifespan (no discount 

rate). “No deg.” refers to no degradation (where operation is optimized during 

20 years without degradation and this case is used as a benchmark). 

 

D.  Effect on multi-service portfolios 

Fig. 11 (where results are sorted in decreasing order) 

suggests that all operational policies affect revenues in the 

short-term and that this is mainly driven by revenue changes 

in services that are more energy intensive such as energy and 

reserve, while revenue streams associated with frequency 

response services are more stable.  

 

 
Fig. 10. Total gross revenue during battery lifespan (5% discount rate).  

Furthermore, Fig. 11 also demonstrates that revenues 

associated with balancing services do not necessarily decrease 

when SOC is constrained to improve battery lifespan. In fact, 

as energy arbitrage is limited when SOC is constrained, there 

are capacity margins of storage plant that can be used for 

further services. Therefore, short-term revenue losses 

associated with operational policies that aim at increasing 

battery lifespan, will ultimately depend on energy and 

balancing markets conditions and can be limited if storage 

capacity is used for application in balancing rather than energy 

market.  

 

 
Fig. 11. Average annual gross revenue change with respect to 0-100% policy. 

 

E.  Effect of balancing services utilization in real-time on 

battery lifespan 

We model two cases without and with utilization of 

balancing services for all operational policies when 

considering an exercise rate of one service per day, and this 

demonstrates that battery lifespan can be reduced by 28% in 

the worst case. These results are shown in Table I. 

Table I also demonstrates that reserving capacity for 

balancing services may be detrimental, depending on how 

frequent these services will be exercised by the system 

operator and this affects large majority of operational policies. 

Interestingly, 0-25% policy (which is the most profitable 

policy and that with the lengthiest lifespan) is not affected.  

 
TABLE I 

Battery lifespan with and without balancing services utilization/exercise 

SOC 

Policy 

Balancing 

service 

utilization 

[h] 

No balancing 

service 

utilization     

[h] 

Reduction 

[h] 

Reduction 

[%] 

25-100% 52759 73738 -20979 -28% 

37-62% 55517 77388 -21871 -28% 

0-50% 96050 133479 -37429 -28% 

0-100% 54987 76164 -21177 -28% 

0-75% 71776 98531 -26755 -27% 

25-75% 65067 87014 -21947 -25% 

50-100% 52395 68200 -15805 -23% 

25-50% 110717 141685 -30968 -22% 

50-75% 64186 79887 -15701 -20% 

75-100% 93638 109981 -16343 -15% 

0-25%* 175200 175200 0 0% 

*Modeled lifespan in both cases exceed figure provided by manufacturer 
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F.  Effect of temperature control 

We model effect of energy capacity changes due to ambient 

temperature in the absence of controls that can maintain it 

constant at its nominal value (i.e. 25°C). We use daily 

temperatures based on historical data that is publicly available 

at the site of the storage plant (which can be found in [26]) to 

fit a time series model that can produce stochastic scenarios of 

temperatures up to 20 years. The time series was generated by 

using the method proposed in [25]. Fig. 12, that shows energy 

capacity excursion of 3 operational policies compared with 

those obtained in Section IV.C at nominal temperature, 

demonstrates that capacity can be significantly reduced during 

winter (below 75%), even during the firsts years of operation.  

 

 
Fig. 12. Energy capacity degradation for 3 operational policies with (solid 

lines) and without (dotted lines) temperature control. Horizontal red line 

indicates 75% of the nominal energy capacity. 

 

Despite this and in line with results in previous sections, we 

found that effect of temperature on gross revenues is limited to 

about -3% due to market conditions in GB. In effect, capacity 

reduction due to temperature mainly affects revenues 

associated with the energy market (about -9%), which is less 

attractive than further balancing markets whose revenues are 

less dependent on fluctuations in capacity due to temperature 

and this is demonstrated in Fig. 13. 

G.  Sensitivities to demand and prices 

We run various sensitivities to study robustness of the 

above results with respect to future changes in demand and 

prices. To do so, we use the 10 scenarios of demand and the 

10 scenarios of energy prices explained in Section IV.A.1. 

This analysis was performed only for the 0-100% SOC policy 

and at the nominal temperature of 25°C. In this context, results 

proved robust and changes in battery lifespan were below 5% 

as shown in Fig. 14. 

 

 
Fig. 13. Comparison of average annual gross revenue during battery lifespan 

with and without temperature control (no discount rate).  

 

 

 
Fig. 14. Sensitivity analysis for 10 scenarios of future demand and energy 

price time series (0-100% operational policy).  

 

V.  CONCLUSIONS  

We developed a combined economic-degradation model to 

quantify effects of various operational policies (mainly 

focused on constraining SOC to prescribed levels) on gross 

revenue, multi-service portfolios, degradation and lifespan of 

energy storage plants. We also used the model to demonstrate 

conflicts and synergies of different storage applications with 

battery degradation. In particular, we demonstrated that 

although operational policies focused on battery damage 

reduction will lead to a revenue loss in the short-term (since 

these policies fundamentally constrain storage operation), such 

loss can be more than compensated by long-term revenues due 

to a lengthier battery lifespan. In the case of GB, for instance, 

constraining SOC to a swing range between 0 and 25% has the 

potential to increase total gross revenues up to circa 44% 

(across the entire lifespan and considering a discount rate of 

5%). Additionally, we demonstrated that short-term revenue 

losses associated with the application of operational policies 

are mainly driven by revenue reduction in the energy rather 

than balancing market. Furthermore, this reduction in energy 

services can lead to both increase in balancing services (since 

there are more capacity margins available) and decrease in 

battery capacity degradation. Despite this, increased utilization 

rates of balancing services by system operators can be 
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detrimental for storage plants and reduce battery lifespan 

(which can apply to any operational policy). Finally, we 

demonstrated that variations of ambient temperature have the 

potential to decrease storage plants owners’ profits (especially 
in winter), albeit it is not significant in the case of GB 

(although we recognize that this is dependent on market 

conditions and on how attractive the energy market is against 

balancing services markets).  

This work can promote efficient integration of new 

distributed storage projects and provide insights associated 

with the development of efficient operational policies to 

ensure that storage plants are adequately operated by 

balancing both short and long-term costs and benefits, and 

thus that investors in storage plants are efficiently rewarded 

for the delivery of value to multiple electricity sectors. 
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