
 

 

 University of Groningen

Effect of bending and torsion rigidity on self-diffusion in polymer melts
Bulacu, M; van der Giessen, E

Published in:
Journal of Chemical Physics

DOI:
10.1063/1.2035086

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bulacu, M., & van der Giessen, E. (2005). Effect of bending and torsion rigidity on self-diffusion in polymer
melts: A molecular-dynamics study. Journal of Chemical Physics, 123(11), [114901].
https://doi.org/10.1063/1.2035086

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 24-08-2022

https://doi.org/10.1063/1.2035086
https://research.rug.nl/en/publications/03197c8b-2278-4b39-8805-fc312e4b32a7
https://doi.org/10.1063/1.2035086


THE JOURNAL OF CHEMICAL PHYSICS 123, 114901 �2005�
Effect of bending and torsion rigidity on self-diffusion in polymer melts:
A molecular-dynamics study

Monica Bulacua� and Erik van der Giessen
Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

�Received 1 April 2005; accepted 19 July 2005; published online 16 September 2005�

Extensive molecular-dynamics simulations have been performed to study the effect of chain
conformational rigidity, controlled by bending and torsion potentials, on self-diffusion in polymer
melts. The polymer model employs a novel torsion potential that avoids computational singularities
without the need to impose rigid constraints on the bending angles. Two power laws are traditionally
used to characterize the dependence of the self-diffusion coefficient on polymer length: D�N−� with
�=1 for N�Ne �Rouse regime� and with �=2 for N�Ne �reptation regime�, Ne being the
entanglement length. Our simulations, at constant temperature and density, up to N=250 reveal that,
as the chain rigidity increases, the exponent � gradually increases towards �=2.0 for N�Ne and
�=2.2 for N�Ne. The value of Ne is slightly increased from 70 for flexible chains, up to the point
where the crossover becomes undefined. This behavior is confirmed also by an analysis of the bead
mean-square displacement. Subsequent investigations of the Rouse modes, dynamical structure
factor, and chain trajectories indicate that the pre-reptation regime, for short stiff chains, is a
modified Rouse regime rather than reptation. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2035086�
I. INTRODUCTION

Examples of polymers can be found everywhere in our
life, from DNA and proteins to plastics. The rigidity of these
natural or synthetic polymers plays an important role in their
dynamics, with enormous consequences for biological func-
tions and for plastics processing or reliability.

The dynamics of polymer chains in a melt is a complex
multi-body problem that has to take into account the en-
tanglements of the chains and their time fluctuations, the
cooperative bead motion as well as the particular behavior of
the different chain parts during motion.

Two of the most widely used theories for polymer melt
dynamics reduce the problem to a single chain motion in an
effective medium: the Rouse model for the simple case of
unentangled chains1 and the reptation model for entangled
chains.2,3 In the Rouse model, a Gaussian chain of beads
connected by springs interacts with a stochastic medium that
mimics the presence of the other chains. As a consequence,
the chain center of mass is subject to particle-like diffusion
and the self-diffusion coefficient D scales with the chain
length N as D�N−1. In the reptation model, the polymer
chain is confined inside a “tube” formed by the constraints
imposed by the entanglements with other chains. One of the
main predictions of this theory is the N−2 scaling of the self-
diffusion coefficient for chains that are long enough to en-
tangle, i.e., N�Ne, the entanglement length.

Starting from this classical dichotomy, melt dynamics
theory has recently been developed into different directions:
improved versions of reptation theory,4–6 mode-coupling
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theory for one chain,7 and many-chain microscopic theory.8

All of the referenced theories usually find D�N−� with �
=2 or even stronger, �=2.25.6

Interestingly, also in recent experimental work and by
reinterpretation of older experimental data,9–13 it was found
that ��2 for the total range of polymer lengths investigated
without any crossover to �=1 scaling for short chains. How-
ever, the experimental results do not have a straightforward
interpretation due to possible glass-transition and polydisper-
sity effects.

Given the current situation, computer simulations can
bring more insight into chain dynamics through better con-
trol of parameters �e.g., monodispersity and isofriction� and
through the possibility of analyzing in detail the motion of
every bead or chain in the polymer melt. The only restriction
is that the required simulation time for extracting the trans-
port coefficients in melts with long chains is limited by the
available computer power. Within the current limits, several
numerical simulations have been performed recently to com-
pute the self-diffusion coefficient and to capture its scaling
law as a function of chain length.

One of the early Monte Carlo �MC� simulations of a
dense diamond lattice system of entangled polymer chains
determined D�N−2.1 over a wide density range, without any
crossover from Rouse to reptation regime.14 Soon after that,
using MC simulation of longer chains confined to a cubic
lattice, the same authors15 found a crossover from a rela-
tively weak N−1.56 dependence to a much stronger one
D�N−2.04 at Ne�125. Subsequent MC simulations,16,17 how-
ever, identified a crossover between the D�N−1 and the
D�N−2 regimes at Ne between 20 and 40.

In a seminal study, Kremer and Grest18 performed

coarse-grained molecular-dynamics �MD� simulations of

© 2005 American Institute of Physics01-1
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polymer melts and the results indicate an entanglement
length Ne�35 at which �=1.1 changes to almost �=2. Later,
in an improved reanalysis, Pütz et al.19 found Ne�30 from
bead mean-square displacement and Ne�70 from diffusion
coefficient dependence on chain length.

The Kremer-Grest model was also used recently to in-
vestigate the influence of chain stiffness on the melt dynami-
cal properties and the results were found to be strongly in-
fluenced by the inclusion of a bending potential.20,21 The
authors conclude that as the stiffness increases, Ne decreases
and reptation characterizes even the dynamics of short
chains. In the present work we study also the stiffness influ-
ence in the same model, but the stiffness along the chain is
implemented by other forms of the bending and torsion po-
tentials.

A different novel type of polymer model, with imposed
uncrossability constraints and coarse-grain parameters de-
rived from atomistic MD simulations �including bending
stiffness�, was used by Padding and Briels22 for linear poly-
ethylene �PE�. The onset of entanglement effects occurred at
a length of N=6 corresponding to a chain with 120 carbon
atoms. A clear D�N−2.2 was found for N between 20 and 50.
The intrinsic stiffness from bending as well as torsion was
also included in the atomistic MD simulation of PE per-
formed by Harmandaris et al.23 Their predicted dependence
of D on N has three regimes: ��1 for 0�N�90, then �
=1 for 90�N�156, and �=2.4 for 156�N�250. The de-
pendence over the first range is in agreement with Mondello
et al.24 who suspect a sub-Rouse behavior for short chains
that disobey Gaussian statistics.

Obviously, there is no consensus in the scientific litera-
ture on the scaling of the self-diffusion coefficient with chain
length, nor is it clear what the value is of the entanglement
length corresponding to the crossover between Rouse and
reptation regimes. It is noted that the disparity is partly the
result of a nonunanimous definition of Ne. Since it is a pe-
culiar theoretical concept that cannot be measured directly,
one can only see its effects on the different macroscopic
properties of the melt �self-diffusion, plateau modulus, vis-
cosity, or structure factor�. Inconsistent values of Ne are
found based on these different properties. Furthermore, Ne

depends on the level of coarse graining used, which makes
comparisons even more difficult.

The effect of chain stiffness on the N dependence of D
and on the value of Ne is even more complex. The available
models for entanglement onset as a function of chain stiff-
ness predict opposite behavior, as described in an extensive
review in Ref. 25. One line of thought predicts an increase of
Ne with increasing stiffness: the purely empirical equation
Ne�C�

a was proposed by Aharoni26 with a between 0.5 and
2. Here, C� is the characteristic ratio and provides a measure
of chain stiffness. Wu,27 using a topological model, intro-
duced a=2 and later Wool28 proposed a=1. The second
school of thought29,30 claims that Ne decreases with increas-
ing C�; this is typically expressed in terms of the packing
length pl, which is essentially C�

−1 and defined as the volume
occupied by a chain in the melt, divided by the mean-square

30 3
chain end-to-end distance. Fetters et al. proposed Ne� pl
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for Ne calculated from the plateau modulus, Nc� pl
2.35 for Nc

from viscosity measurements, and Nr� pl
−0.9 for Nr—the

crossover to reptation in viscosity behavior.
Against the background of the above findings, the

present paper investigates the influence of chain conforma-
tional rigidity on the melt dynamics, hoping to shed more
insight on this still open problem. Our results indicate that
the power exponents in both Rouse and reptation regimes are
strongly modified by chain stiffness. Also, we find that the
entanglement length increases with increasing chain rigidity.
For controlling the chain stiffness we use bending and tor-
sion potentials along the polymer chain. Our simulations em-
ploy a new torsion potential that depends on both dihedral
and bending angles. This potential does not require rigid con-
straints on the bending angles and gracefully eliminates the
computational singularities arising when two adjacent bonds
align.

The paper is organized as follows: in Sec. II we present
our computational model and the potentials used to control
the polymer chain rigidity. The preparation of the polymer
melt and the simulation methodology are described in Sec.
III. Section IV contains the results and the discussion of the
observed static and dynamic melt properties, followed by the
conclusions in Sec. V.

II. COMPUTATIONAL MODEL

The system we study is an ensemble of entangled poly-
mer chains placed in a cubic simulation box with periodic
boundary conditions. Each chain is modeled as a linear se-
quence of beads interconnected by springs, every bead rep-
resenting a group of a few atoms or monomer units along the
polymer backbone. The beads in the system interact via two-
body potentials acting between all consecutive connected
beads and between all pairs of beads in the melt. Such a
model already leads to an intrinsic stiffness of the polymer
chains due to the excluded volume interaction.18 The main
goal of the present paper is to investigate the influence of the
chain stiffness on the static and dynamic properties of the
polymer melt. Therefore we further enhance the chain stiff-
ness by adding bending and torsion potentials along the
chain. Depending on the actual potentials considered in the
simulation, different random-walk methods are used to gen-
erate the chains close to their equilibrium configuration in-
duced by these potentials. This will also significantly reduce
the computation time needed for melt relaxation.

In the presence of bending and torsion potentials the
polymer chain configuration becomes more rigid and, subse-
quently, more uncoiled. A classical measure used to charac-
terize the spatial arrangement of the polymer is the charac-
teristic ratio C�. It expresses the mean end-to-end distance
of a chain with a large number of beads N �approaching ��,
separated by the average bond length b, via

C�Nb2 = �R2�N�� = ��r1 − rN�2� , �1�

where ri is the position vector of bead number i in the chain.
The theoretical values of C� are known for chains generated
with specific random-walk configurations.31 In the present

paper this coefficient is used as a measure of chain stiffness.
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Three internal measures completely define the chain
configuration: the bond length b, the bending angle �, and
the dihedral angle �. Based on these, we generate each poly-
mer chain as a three-dimensional �3D� random walk of N
−1 steps.

Starting from bead i on the polymer chain, the next bead
i+1 is generated by making a random move in space. In the
local �XiYiZi� coordinate system attached to bead i, this move
is characterized by the radius bi, the polar angle �−�i, and
the azimuthal angle �i �see Fig. 1�. The local coordinates of
bead i+1 are transformed into global Cartesian coordinates
linked to the first bead by translation and rotation operations.
By connecting all N beads generated in this way, we obtain a
3D random coil with N−1 steps or bonds. The statistical
properties of such a chain �including C�� can be controlled
by imposing specific constraints on the internal measures.
We have used the following three chain generation methods:

�1� Freely jointed chain �FJC�: bond length b fixed, bend-
ing angle � free in �0°, 180°�, and dihedral angle � free
in �−180°, 180°�. This will lead to C�=1.0.

�2� Freely rotating chain �FRC�: bond length b fixed, bend-
ing angle � fixed to �0=109.5°, and dihedral angle �
free in �−180°, 180°�. This will lead to C�=2.0.

�3� Rotational isomeric state �RIS�: bond length b fixed,
bending angle � fixed to �0=109.5°, and dihedral angle
� constrained to three values �0=60° �gauche+�, 180°
�trans�, and 300° �gauche−� with probabilities 0.2, 0.6,
and 0.2, respectively. This will lead to C�=4.7.

In all cases we allow the parameters to vary slightly
around the equilibrium values �±5% for bond length and ±5°
for the angles�. We impose a supplementary self-avoiding
condition to prevent subsequent Lennard-Jones instabilities.
This will effectively force all bending angles to be larger
than approximately 60° and will consequently lead to C�

=1.7 instead of 1.0 for the freely jointed chains.
Let us consider further the potentials governing the in-

teractions in the polymer melt. All beads, either belonging to

FIG. 1. Schematic representation of a polymer chain. Bead indices are in-
dicated in the parentheses. bi is the bond length, �i is the bending angle, and
�i is the dihedral angle. The local �XiYiZi� coordinate system is such that Zi

is aligned with bond bi−1; Xi lies in the plane defined by bonds bi−1 and bi−2

and makes an acute angle with Xi−1; Yi completes a right-handed coordinate
system. P is the projection of bead i+1 on the �XiYi� plane and allows for
visualization of the dihedral angle �i.
the same chain or to different chains, interact via the 6-12
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Lennard-Jones �LJ� potential, cut off at its minimum �rcutoff

=	6 2	�, and shifted such that it vanishes at rcutoff,
32

VLJ�rij� = 4

� 	

rij
�12

− � 	

rij
�6

+
1

4
, rij � rcutoff, �2�

where rij = �ri−r j� is the distance between beads i and j. The
Lennard-Jones parameters 
 and 	 are the characteristic en-
ergy and length scales. The time unit becomes �
=	�m /
�1/2, where m is bead mass. We run our MD simula-
tions and report most of our results using reduced units, i.e.,
	=1, 
=1, m=1, and Boltzmann’s constant kB=1.

In addition to the Lennard-Jones interaction, adjacent
bonded beads interact by an attractive finite extensible non-
linear elastic �FENE� potential,

VFENE�rij� = �− 0.5kR0
2 ln�1 − �rij/R0�2�, rij � R0

�, rij � R0.
� �3�

The spring constant k is chosen as k=30
 /	2 while we take
R0=1.5	 for the maximum bond extension. Superposition of
the LJ and FENE potentials, with these specific parameter
values, yields an anharmonic spring interaction between con-
nected beads with equilibrium bond length b=0.96	. During
simulations at T=
 /kB, the bond length will always be less
than 1.2	. As a consequence, bond crossing is energetically
unfavorable and chain entanglement is naturally obtained.18

Supplementary to these two interactions, we consider
first bending and then combined bending and torsion poten-
tials to enhance the polymer rigidity.

The stiffness of FRC- and RIS-generated chains is con-
trolled by a bending potential, which acts on three consecu-
tive beads along the chain. The angle between adjacent pairs
of bonds is maintained close to the equilibrium value �0

=109.5° by the cosine harmonic bending potential

VB��i� = 1
2k��cos �i − cos �0�2, �4�

where �i is the bending angle between bonds bi−1 and bi. The
value of the bending constant k� is varied to obtain different
chain stiffnesses with the corresponding characteristic ratios.

For RIS-generated chains, in addition, a torsion potential
acting on four consecutive beads is employed. This potential
mainly constrains the dihedral angle �i, which is defined by
three successive bonds, bi−2, bi−1, and bi. We propose here a
novel form for the torsion potential,

VT��i−1,�i,�i� = k� sin3 �i−1 sin3 �i�
n=0

3

an cosn �i. �5�

This potential not only depends on the dihedral angle �i but
also on the bending angles �i−1 and �i formed by the three
successive bonds. The third-order polynomial in cos �i fol-
lows from ab initio calculations for n-butane33 and has coef-
ficients a0=3.00, a1=−5.90, a2=2.06, and a3=10.95. It has
three minima for �=180° �trans�, �=60° �gauche+�, and �
=300° �gauche−�. The two sin3 � prefactors, tentatively sug-
gested by Scott and Scheraga,34 cancel the torsion potential
and force when either of the two bending angles vanishes,
which would make the dihedral angle � undefined. This im-
portant property makes the potential well behaved for MD

simulations that have no rigid constraints on the bending
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angles; torsion potentials that are independent of the bending
angles suffer from the problem that the torsion forces tend to
infinity when two consecutive bonds are aligned. A strong
bending potential may prevent this tendency, but when bonds
align the simulation breaks down. The torsion potential pro-
posed here gracefully eliminates these singularities and leads
to stable MD runs. The value of the torsion constant k� was
varied for stiffness control.

It is important to note that the bending and torsion po-
tentials together form a combined potential VCBT=VB+VT

that determines the dynamics of the polymer chain. VCBT

induces a new equilibrium bending angle �eq that is slightly
larger than �0 resulting from VB only, while the equilibrium
torsion angles are identical with those induced by VT. The
average bond length is unaffected by including stiffness
along the chain.

III. SAMPLE PREPARATION

The polymer melt samples are prepared in three steps:

�1� First, we generate an ensemble of individual polymer
chains, using one of the three chain generation methods
discussed above.

�2� These chains are placed together inside the simulation
box using a packing procedure that minimizes the
variation of the local bead density.

�3� The bead overlaps are eliminated in a pre-equilibration
MD run that uses a thresholded LJ interaction.

The simulated system is a cubic box containing a total of
M chains with N beads per chain, at a bead number density
=0.85	−3 as in Ref. 18. The simulation box is filled by
placing the M chains with their centers of mass in randomly
distributed points inside the box. As a result, the local bead
density is not uniform throughout the simulation box. In or-
der to homogenize it, a MC-type algorithm is employed that
minimizes the variance of the local bead density. Our pack-
ing method is a simplification of the method discussed by
Auhl et al.35 The MC “moves” are small geometric transfor-
mations that act separately on a polymer chain: translation,
rotation, or reflection. During these transformations, the
chains are treated as rigid objects, their internal spatial con-
figuration remaining unaffected. One transformation ran-
domly chosen from the repertoire of three is applied to a
randomly chosen chain. All moves that increase the variance
of the local bead density are rejected and only those that
decrease it are accepted until a desired homogeneity is
reached.

After this packing process, there will be many bead
overlaps and switching on the LJ potential would inevitably
lead to numerical instabilities. In order to avoid this, a tem-
porary MD simulation is performed using a modified LJ po-
tential: the LJ force between two particles that are closer than
a threshold distance d=1.0	 is replaced with the LJ force at
this distance. The particles that are a “safe” distance apart are
subjected to the full LJ force. In order to allow the beads to
move apart easier, the bending and torsion potentials are
turned off during this pre-equilibration stage. The modified

MD simulation is performed with this thresholded LJ force

Downloaded 01 Sep 2006 to 129.125.25.39. Redistribution subject to
until all beads are pushed away from the overlap regions.
Then, the full LJ, and bending and torsion potentials are
turned on and the main MD simulation can start. This tech-
nique for eliminating the bead overlaps, a simplification of
the “slow push off” method of Auhl et al.,35 guarantees a
small perturbation of the chain configurations at the transi-
tion from modified to full LJ potential.

We perform a series of MD runs at constant temperature
T and volume V �NVT equilibrium simulations�. The equa-
tions of motion are integrated using the “velocity-Verlet”
algorithm36 with a time step �t=0.01�. The temperature is
kept constant by coupling the system to a heat bath: the
friction coefficient is �=0.5�−1 and the strength of the
Gaussian white-noise force is 6kBT�.37 Due to the random
force, the center of mass of the entire system will drift. We
remove this drift for the subsequent analysis of the chain
motion. Results will be present for systems with up to M
=1000 chains, for chain lengths between N=5 and N=250.
One of the longest simulated times was 2�105�.

Our code has an average speed of 1.9�105 particle up-
dates per second on a 2.8-GHz/1-GB Pentium 4 processor.
The reported results are based on a total computation time of
approximately four CPU years.

IV. RESULTS AND DISCUSSION

The objective of this study is to find out how an increas-
ing chain stiffness affects the properties of the entangled
polymer melt. In order to characterize in detail the melt be-
havior we investigate both its static and dynamic properties.

A. Static properties

A natural way to characterize polymer melts after equili-
bration is the N dependence of the mean-square end-to-end
distance �R2� and radius of gyration �Rg

2� averaged over all
chains in the melt. In order to increase the statistical en-
semble of R2 and Rg

2, we compute them not only for the
entire chains, but also for all their subchains. Flory’s theory31

predicts that the chains of the equilibrated melt obey Gauss-
ian statistics with 	�R2��N0.5, 	�Rg

2��N0.5, and �R2� / �Rg
2�

=6. Our numerical results, collected in Table I, are generally

TABLE I. Static properties of systems with M =100 chains and N=200
beads at a temperature T=1.0
 /kB, for different values of the bending �k��
and torsion �k�� constants. t is the total simulation time, � is the exponent in
	�R2��N�, � is the exponent in 	�Rg

2��N�, and C� is the characteristic
ratio defined in Eq. �1�.

k�

�
�
k�

�
�
t

���105�
� � �R2� / �Rg

2� C�

0 0 2 0.52 0.52 5.99 1.69
25 0 1 0.53 0.54 5.97 1.94
35 0 2 0.54 0.54 6.23 2.24
50 0 2 0.55 0.54 6.24 2.33

100 0 1.5 0.55 0.54 6.26 2.42
25 0.2 2 0.57 0.57 6.43 3.30
25 0.5 2 0.57 0.58 6.41 4.00
25 1 2 0.61 0.62 6.68 5.81
consistent with these theoretical predictions. However, some
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numerical deviations can be observed, especially for the ratio
�R2� / �Rg

2� which exceed the value 6.0 when the chain stiff-
ness is increased. The measured values for C� increase with
increasing stiffness, in general agreement with the theoretical
principles. Figure 2 shows the N dependence of �R2� and
�Rg

2� for selected cases from Table I.
Important information about static properties can be ex-

tracted from the distributions of bond lengths, and bending
and torsion angles after equilibration. Their profiles give di-
rect evidence for the action of considered potentials.

The histogram of bond lengths, presented in Fig. 3�a�,
reveals the slight asymmetry around the equilibrium bond,
induced by the LJ and FENE potentials considered between
consecutive beads. The angle potentials are reflected both in
the histograms of bending and torsion angles. As can be seen
in Fig. 3�b�, the increase of bending stiffness leads to higher
and narrower peaks about the equilibrium angle in the bend-
ing histogram. In Fig. 3�c� the effect of the torsion potential
on the dihedral angle distribution is illustrated: three maxima
appear for the gauche−, trans, and gauche+ states. When the
torsion constant k� is increased, only the trans-maximum is
significantly modified and, as a result, the ratio between the
trans/gauche states increases.

At this point, we recall that the bending �Eq. �4�� and
torsion �Eq. �5�� potentials have to be considered together in
a combined bending-torsion �CBT� form because their ef-
fects on the polymer dynamics cannot be separated. For a
case in which the bending constant is k�=25
, two effects
can be observed in the bending histogram when we add a
torsion potential with k�=3
: a broadening towards larger �
angles and a slight shift of the equilibrium angle �eq��0 �see
Fig. 3�b��. Complementary, if the torsion strength is kept
constant at k�=1
, an increase of the bending constant from
k�=25
 to k�=100
 leads to a sharper peak for the trans-
state �see Fig. 3�c��. This effect is attributed to the fact that as

FIG. 2. Mean-square internal end-to-end distance �R2�N�� �black symbols�
and radius of gyration �Rg

2�N�� �open symbols� vs N for melts with M
=100 chains of length N=200 beads for different chain flexibilities k� and
k�. The dashed line is a visual aid representing the theoretical scaling �N0.5.
the bending potential gets stronger, the bonds are not allowed

Downloaded 01 Sep 2006 to 129.125.25.39. Redistribution subject to
to straighten and, as a consequence, the torsion potential is
effectively stronger. The examples provided in Fig. 3 are
rather extreme cases that serve illustrative purposes; in most
subsequent simulations we use values for the bending and
torsion constants which induce only moderate deviations in
the angular distributions.

During melt relaxation, a local structure appears natu-
rally in the system, which can be illustrated by the pair dis-
tance correlation function g�r�, shown in Fig. 4, plotting the
correlation for the intra- and interchain beads separately. The
intra-g�r� has a sharp peak at r�	, corresponding to the
connected beads and the inter-g�r� has two expected peaks
due to the first two LJ spheres of influence. The stiffness
effects are evident in the intrachain pair distance correlation:
the bending potential introduces an intermediate peak at r
=2b sin��0 /2��1.6	, corresponding to all the bead pairs
�i , i+2� and some of the �i , i+3� pairs. The remaining �i , i
+3� pairs form a weak peak at �2.5	. The introduction of
torsion stiffness has the effect of uncoiling even more the
polymer chain with direct result in decreasing the first intra-
chain peak �an effect already observed in the bending histo-

FIG. 3. Histograms of bond lengths �a�, bending angles �b� and torsion
angles �c� after equilibration of M =100, N=40 systems for t=105 �. The
equilibrium bond is b=0.96 	 and the equilibrium bending angle is �0

=109.5°. The histograms are the average result over 10 distributions.
grams� and in increasing the second one.
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Another straightforward way to analyze the equilibrated
melt is to analyze the chain Rouse modes. For each time
these are given by

Xp�t� =
1

N
�
j=1

N

r j�t�cos
 p�

N
� j −

1

2
� , �6�

where p=0,1 , . . . ,N−1 is the mode number, describing a
wavelength corresponding to a subchain of N / �p+1� beads.
Even though we do not expect the Rouse modes to be exact
eigenmodes for entangled polymer chains with included
stiffness, we still investigate their static autocorrelation as a
function of p and compare it with the scaling relations pro-
posed in the Rouse model:

�Xp�0� · Xp�0�� =
l2

2N�p
, �p = 4 sin2� p�

2N
� . �7�

In addition, we compare the results with the analytical ex-
pression

�Xp�0� · Xp�0�� =
l2

2N

 1

�p
−

1

�2 + �p
�1 + O�N−1�� , �8�

with

�2 =
1 − ��cos ���2

4��cos ���
, �9�

for FRC chains with a specific bending angle �.38 In the limit
of large N, Eq. �7� gives the well-known dependence as p−2

of the modes autocorrelation, while Eq. �8� provides a p−3

dependence, already observed for large modes.39

Figure 5 presents the results for the first 20 modes for
systems with N=35 beads, with different stiffnesses. For the
fully flexible chains, the Gaussian p−2 dependence is recov-
ered �fit, p=2.1� but the deviations between the simulation
results and the exact Rouse prediction �Eq. �7�� gradually
develop with increasing the mode number.

This is to be expected since p /N is relatively large and
the intrinsic stiffness from excluded volume, present at the
local scale, cannot be ignored. If this stiffness is character-
ized by an average bending angle in Eq. �8� the best fit is

FIG. 4. Pair distance correlation function g�r� �for intrachain, interchai
obtained for ��68°.
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When the stiffness is increased the deviation from the
pure Rouse model becomes more evident. The overall p de-
pendence becomes p−2.3 and p−2.6 for bending �triangles� and
for bending plus torsion �circles�. The best fit with the FRC
model prediction indicates ��114° for bending and �
�116.5° for bending plus torsion. Thus, additional stiffness
modifies the dependence of the normal-mode amplitude on
p, while the torsion effects are clearly separated from the
bending effects.

B. Dynamic properties

The motion of polymer chains in the melt can be suitably
analyzed by monitoring how the beads and the chain centers
of mass diffuse in time. The self-diffusion coefficient, char-
acterizing the macroscopic transport of the chains inside the
polymer melt, is calculated from the mean-square displace-
ment using the Einstein relation.

d all beads� for different stiffnesses in melts with M =1000 and N=40.

FIG. 5. Normal-mode amplitudes �normalized by the first mode� vs mode
number p for melts with N=35 beads and different stiffnesses. The solid thin
line represents the Rouse prediction �Eq. �7�� and the other lines correspond

to the FRC model with different values of �cos �� �Eq. �8��.
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Specifically, in order to characterize the melt dynamics,
three mean-square displacements are computed during the
MD simulation:

• the absolute bead mean-square displacement g1�t�,

g1�t� =
1

MN
��ri�t� − ri�0��2�; �10�

• the bead mean-square displacement relative to the
chain’s center of mass g2�t�,

g2�t� =
1

MN
��ri�t� − ri�0� − rc.m.�t� + rc.m.�0��2�; �11�

where rc.m.�t� denotes the position of the chain center of
mass �c.m.� at time t; and

• the mean-square displacement of the chain center of
mass g3�t�,

g3�t� =
1

M
��rc.m.�t� − rc.m.�0��2� . �12�

The center of mass of the whole melt is held fixed at the
origin to eliminate its drift due to the stochastic force mod-
eling the thermostat. The mean values of g1�t�, g2�t�, and
g3�t� are computed by averaging over all chains in the melt.
An important aspect is that we only consider the central part
of the chains �the five most internal beads� for computing the
bead mean-square displacements g1�t� and g2�t�. This en-
sures that we only account for the central beads of a chain
which fully experience the effects of the chain entanglement
and not the chain ends which have a more freely exploring
motion.

The self-diffusion coefficient D of the chains inside the
polymer melt is computed from the slope of g3�t� using the

FIG. 6. D vs k� and vs k� for a melt with M =100 chains, N=40 beads per
chain.
Einstein relation
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D = lim
t→�

1

6t
g3�t� . �13�

According to the Rouse model, the diffusion coefficient is
expected to reach the asymptotic value

D =
kBT

�N
, �14�

for relatively short times, � being the effective bead friction
coefficient. For long entangled chains, reptation theory pre-
dicts a different coefficient, corresponding to the drastic slow
down of the chain motion,

D =
1

3

dT
2

l2

kBT

�N2 , �15�

where dT is the tube diameter and l�l2=C�b2� is the effective
bond length.

A proper value for D can only be obtained if the chains
diffuse more than their radius of gyration. We have ensured
that the computing times were long enough for this condition
to be met even for the longest stiff chains.

First, we investigate how diffusion is affected by the
chain rigidity for a melt with M =100 chains of length
N=40. The dependence of the self-diffusion coefficient D on
the bending and torsion strengths is displayed in Fig. 6. A
power-law fit of this data yields D�k�

−0.48 and D�k�
−0.54,

which indicate a high sensitivity of diffusion to the bending
�three-body� and torsion �four-body� interactions. The eigen-
frequencies of the bending and torsional vibrations in a chain
are proportional to the square root of the spring constants k�

and k�. Thus, we conclude that the self-diffusion coefficient
D is inversely proportional to the eigenfrequencies of the
angular vibrations about the polymer backbone.

Figure 7 reports the computed values of 6DN as a func-
tion of N �on log-log scales� for different chain rigidities
controlled by the bending potential, at the same temperature
T=1.0
 /kB. The product 6DN is chosen to emphasize the
different regimes in D�N� as will become clear further on.
For all cases presented in the figure, two distinct diffusion
regimes can be identified with the naked eye. A more objec-
tive separation between these was obtained by maximizing
the sum of regression coefficients of two consecutive lines
fitting the data, with slopes close to 1 and 2. The results—
slopes �1 and �2 for the two regimes and the crossover be-
tween them, Ne—are shown in Table II.

To test this “automatic crossover detector” we have ap-
plied it to the diffusion data from the established work of
Kremer and Grest,18 and the crossover between Rouse re-
gime and reptation regime was found at Ne�40 as expected.
For the case with chain stiffness resulting only from the ex-
cluded volume interactions, our data �with more simulated
points for the 6DN vs N dependence� indicate Ne�70, which
is in excellent agreement with that reported by Pütz et al.19

In Fig. 8 we present D�N� results for chain rigidities
induced by the torsion potential, keeping the bending
strength constant at k�=25
, a medium-high value used in

Fig. 7.
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The effect of torsion stiffness is similar in qualitative
terms to what we have found for bending. But, torsion ap-
pears to have a much stronger effect on chain dynamics. The
diffusion results with a low value of the torsion constant
�k�=25
 and k�=1
� nearly overlap with those for a very
strong bending potential acting alone �k�=100
� �data not
shown�. When both bending and torsion potentials are used,
all degrees of freedom of the polymer chain tend to be con-
strained during the dynamics, thus having a significant influ-
ence on the resulting macroscopic transport properties. This
observation is consistent with recent studies highlighting the
central importance of torsion dynamics in polymer relaxation
processes.40

From Figs. 7 and 8, four effects are observed when the
bending and torsion chain rigidity is increased:

�a� the self-diffusion coefficient decreases for all chain
lengths;

�b� in the regime of shorter chains the diffusion depen-
dence on N becomes steeper; nevertheless, we will
continue to name it “Rouse regime” because it is fol-
lowed by an even steeper dependence corresponding to
reptation;

�c� the crossover between the �modified� Rouse and repta-
tion regimes moves to longer chains, until it becomes

TABLE II. The influence of chain rigidity on the values of Ne, exponents �1

and �2 in the power-law D�N−�i and � the bead friction coefficient for the
two distinct diffusion regimes.

k�

�
�
k�

�
�
Ne �1 �2 �

��−1�

0 0 �70 1.1 1.7 25
25 0 �75 1.4 2.2 80
50 0 �80 1.6 2.1 92
25 0.5 �90 1.7 2.2 290
25 1 ¯ 1.9 ¯ 806

FIG. 7. The dependence of 6DN on N for different bending rigidities in the
absence of torsion stiffness, k�=0.
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undefined when the slopes of the two regimes can no
longer be distinguished;

�d� the slope �2 characteristic in the reptation regime in-
creases to the value �2=2.2 �see Table II�, in agreement
with recent theoretical, experimental, and computa-
tional work.6,9,10,22

The dramatic decrease of D is reflected in an increase of
the bead friction coefficient � with an increasing chain stiff-
ness �Table II includes also the computed values of � from
the bead mean-square displacement, analyzed subsequently�.

The modification of the Rouse regime ��1 becoming
larger than unity� has already been noticed in earlier numeri-
cal and experimental work. Some authors41 assume that the
Rouse prediction for the self-diffusion versus N is accurate
and correct the experimental data by allowing for a depen-
dence of the bead friction coefficient on the chain length.
However, care should be taken of the fact that the density in
experiments fluctuates with the chain lengths, while in our
simulation it is kept constant. Another important factor is the
influence of the glass transition on friction; future computer
simulations at the same T /Tg has to be performed.

The temperature effects are evident in pulsed-gradient
spin-echo NMR measurements of D for n-alkanes by von
Meerwall et al.12 in which an exponent �1�1 has been ob-
served below the onset of entanglement. The experimentally
obtained exponent changes monotonically from 1.85 to 2.72
as T decreases from 443 to 303 K, suggesting the existence
of free-volume effects on self-diffusion. By increasing the
chain stiffness and consequently limiting the freedom of
chain ends, we obtain the same trends for the power expo-
nent as in the experimental work on decreasing temperature.
Atomistic MD simulations, at constant pressure,23 have also
shown a modification of the Rouse regime that was ex-
plained by free-volume effects.

In a united-atom MD simulation of melts of short
n-alkanes, Mondello et al.24 found a “sub-Rouse regime”

FIG. 8. The dependence 6DN vs N for different torsion rigidities, at a
constant bending strength k�=25
.
with a power exponent �1 between 1 and 2. This behavior
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was explained by the deviation of short chains from exact
Gaussian statistics. To a certain extent, such a deviation is
also observed in our results as we increase the chain stiff-
ness, see Table I. The Rouse and reptation theories assume
Gaussian chains and this disparity can be one of the origins
for the deviation between computational and theoretical pre-
dictions.

In summary, the unknown dependence of friction coeffi-
cient on N, the deviation from Gaussian statistics as well as
the free-volume effects seem possible explanations for the
modification of the Rouse regime when stiffness is added to
the system.

The Ne values presented in Table II are obtained from
the 6DN vs N dependence and correspond to the approximate
chain length at which the crossover between Rouse and rep-
tation regimes appears. Even though these values, as well as
C� cannot be established with great accuracy, one does note
the tendency that Ne slightly increases as the chain rigidity
increases. A clear dependence law is almost impossible to be
obtained but, from all the empirical and theoretical predic-
tions, Aharoni’s equation26 �Ne�C�

a � with a�1 is the most
likely for our data.

This outcome seems to be in contrast with similar MD
studies investigating the bending influence on melt
dynamics,20,21 which conclude that Ne decreases with chain
stiffness. The reason for this apparent contradiction resides in
subtle implementation differences, pertaining to the exact
form of the bending potential and the value of the equilib-
rium angle used. Their chains are generated through nonre-
versal random walk, and during the MD simulation the equi-
librium bending angle is kept to 180° with a relatively small
energy cost. In contrast, we generate the chain as FRC �RIS�
and the equilibrium bending angle is strongly kept at this
value. As a result, the persistence lengths in the two simula-
tions are almost the same but they characterize very different
chain rigidities and bead friction coefficients. Thus, it not
impossible that the final predictions for Ne in such dissimilar
systems to differ.

A key intriguing question arises from the dependence of
D on N for increasing chain rigidity: what is the exact nature
of the modified Rouse regime? What kind of motion does the
polymer chain undertake inside the melt for this regime? In
an attempt to clarify this, we further study the time depen-
dence of mean-square displacement of a single bead from the
chain, g1.

The theoretically expected behavior of g1�t� in the Rouse
and reptation models is different.

• In the Rouse model, g1�t� has two visible regimes:42

g1�t� � �2l2	W

�
t1/2 for �0 � t � �R

6D0t for t � �R,
� �16�

where l is the effective bond length, W=3kBT / ��l2� the
characteristic Rouse frequency, and D0 the bead diffu-
sion coefficient. The crossover between these two re-

gimes occurs at the Rouse time
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�R =
�N2l2

3�2kBT
, �17�

i.e., the time needed for a chain with N beads to diffuse
a distance equal to its mean radius of gyration, g1��R�
��Rg

2�N��.

• In the reptation model g1�t� has an extra, weaker time
dependence g1�t�� t1/4 embedded inside the t1/2 regime,

g1�t� ��
2l2	W

�
t1/2 for �0 � t � �e

	2

3
ldT	4 W

�
t1/4 for �e � t � �R

	 2

N
ldT	W

�
t1/2 for �R � t � �d

2

N2dT
2 W

�
t for t � �d,

� �18�

where dT is the effective tube diameter. The prefactors
used in the g1�t� dependence are the same as used by
Pütz et al.19 to enable a clear comparison. The t1/4 re-
gime in Eq. �18� is usually considered as the reptation
“fingerprint.” Between the entanglement time �e

��R�Ne� and the Rouse time �R, the chain moves like a
Rouse chain “trapped” inside a tube that materializes
the constraints induced by the entanglements. The tube
diameter is related to the radius of gyration of a chain
with Ne beads through the relation dT

2 ��Rg
2�Ne��. After

�R the chain acts like a free Rouse chain with the usual
t1/2 and t1 regimes and the crossover at the disentangle-
ment time �d.

We are interested in finding out which of the two models
fits best with our MD simulation results for g1�t� computed
for inner beads. To analyze the character of the modified
Rouse regime found in the D�N� dependence, we have com-
puted g1�t� for melts with short chains of length N=35, see
Fig. 9. As expected, when the chain stiffness increases, the
diffusion of the central beads decreases. We observe that, for
all cases of chain stiffness considered, g1�t� has only two
power-law regimes, which are qualitatively consistent with
the predictions of the Rouse model. Small deviations from
the theoretical values of the exponents are observed but this
is consistent with the other results from MC studies of poly-
mer melts.43 The value of g1��R�, at the crossover between
the two regimes, slightly increases with increasing chain
stiffness. This is consistent with the small increase in the
scaling behavior of �Rg

2� with increasing chain stiffness ac-
cording to Table I.

To study the effects of chain rigidity on the entanglement
length Ne, we have also computed g1�t� for melts with long
chains �N=200�, see Fig. 10. When the bending and torsion
potentials are not included �circles in the figure�, g1�t� exhib-
its four regimes consistent with the reptation theory, even
though the exponents deviate somewhat from those in Eq.
�18�. So, the FJC results confirm the known reptation motion
of long polymers in melts.18,19 By increasing the chain rigid-

ity, the reptation character of the chain motion remains
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essentially unchanged, albeit with some subtle differences.
For instance, the power exponent corresponding to the fin-
gerprint reptation regime, while larger than expected, de-
creases towards the 1/4 value with increasing stiffness. The
same tendency was observed for increasing chain length in
other coarse-grained MD simulations.19 Also we notice that

FIG. 9. Mean-square displacement of the innermost beads, g1 vs time, for a
melt with M =1000 chains, N=35 beads per chain. The numbers are the
approximate power-law exponents in g1� t� inferred from the data points.
For clarity, the symbol colors also reflect the exponents: open symbols for
��1/2 and black symbols for ��1.

FIG. 11. Normalized autocorrelation functions of Rouse modes, Cp�t� for p=

characteristic for all pictures, are indicated in �f�.
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the crossover points between all regimes are shifted to longer
times and diffusion distances as the stiffness is increased.

Nevertheless, the most significant for this study is the
first crossover between the t1/2 and t1/4 regimes. From this,
we approximate the �e for the cases presented in Fig. 10:
1000�, 6000�, and 60 000� with increasing stiffness. The

FIG. 10. Mean-square displacement of the innermost beads g1 vs time for a
melt with M =100 chains, N=200 beads per chain. The numbers are the
approximate power-law exponents in g1� t� inferred from the data points.
For clarity, the symbol colors also reflect the exponents: open symbols for
��1/2, gray symbols for ��1/4, and black symbols for ��1.

3 ,5 ,9 ,17 ��a�–�f�� vs time in melts with N=35 beads. The chain stiffnesses,
1,2 ,
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corresponding friction coefficient � has also been computed
from the slope of g1 vs t1/2 for the first regime: ��25�−1,
�85�−1, and �290�−1, respectively. Combining these results
in Eq. �17� that, for N=Ne, gives the value of �e, we can
evaluate the Ne to be 27, 32, and 42, respectively. These are
about half of the predicted values from the diffusion analysis
�fact already known in the literature�18,19 and show the same
increasing tendency with increasing stiffness.

Next, in order to characterize the motion of the chain
subunits, with different lengths, we investigate the time de-
pendence of the normalized Rouse mode autocorrelation
functions. Within the Rouse model each of the modes relaxes
independently and exponentially with a relaxation time �p,

Cp�t� =
�Xp�t� · Xp�0��
�Xp�0� · Xp�0��

= exp�−
t

�p
� . �19�

For p=1,2 ,3 ,5 ,9 ,17 the values of Cp�t� for systems
with different stiffnesses �N=35� are shown in Fig. 11. The
general trend, in qualitative agreement with the semiflexible
chain model of Harnau et al.,44 is the increase of the mode
relaxation time when the stiffness is enhanced, indicating a
change in effective bead friction as emphasized before. At
the smaller scale we notice how the torsion influence van-
ishes because the scattered wavelength is smaller than the
distance between any bead i and i+3.

Consistent with the approximation of the relaxation time
�p: �p

−1=W�p� p2 /N2, we found that, for flexible chains, the
plots of ln Cp vs tp2 /N2, for all mode numbers p, approxi-
mately collapse onto a master curve. This scaling behavior is
not much affected by the bending stiffness �for all modes�
and torsion stiffness �small modes numbers� but it vanishes
for large mode numbers when torsion potential is considered.

Instead of the exponential law predicted by the Rouse
model we fitted the curves in Fig. 11 with a stretched expo-
nential form22,45,46

Cp�t� = exp
− � t

�p
*��p , �20�

where the relaxation time �p
* and stretching parameter �p

depend on the mode number p and on the chain length. Our
findings indicate deviations from the exponential Rouse pre-
diction ��p=1� as follows: �1=0.9 to �17=0.7 for flexible

FIG. 12. Single-chain intermediate coherent structure factor for melts with
�c�. The symbols defined in �c� apply also to �a� and �b�.
chains and �1=0.8 to �17=0.5 for the bending-torsion stiff-
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ness. So, stiffness effects are evident at the local scale of
subsections of the chain that are directly affected by the
angle potentials.

The stiffness effects can be revealed also in experiments
on neutron quasielastic scattering by polymers, in which
short wavelength scattered radiation corresponds to vibra-
tions and viscous motion of very small sections of the chain.
In MD studies, the quantity of interest is the single-chain
intermediate coherent structure factor

S�q,t� =
1

N
�
k,l

N

�e−iq·rk�t� · eiq·rl�0�� . �21�

From this, by applying a suitable time-Fourier transform, the
directly measured single-chain dynamic structure factor
S�q ,�� is obtained. The average in Eq. �21� is done over all
the chains in the melt and over 100 starting states and 20
orientations for a specific modulus q of the scattering vector
q. We restrict the investigation to large values of q �the cor-
responding wavelengths are smaller than the end-to-end dis-
tance and larger than the bond length� in such a way that the
inelastic scattering probes the motion of the internal chain
modes.

Figures 12�a�–12�c� shows the decay in time of the nor-
malized structure factor,

S��q,t� =
S�q,t�
S�q,0�

. �22�

In the Rouse model, S� can be calculated rigorously3,42,47 and
for the regime of interest

ln S� � − q2t1/2. �23�

An improved dependence

TABLE III. The exponent B from Eq. �25� for all cases presented in Fig. 12.

q	=1 q	=1.4 q	=2.5

k�=0, k�=0 0.72 0.62 0.56
k�=25
, k�=0 0.62 0.57 0.61
k�=50
, k�=0 0.70 0.52 0.60

k�=25
, k�=1
 0.54 0.49 0.49

, M =100 with different stiffness. The q	 values are 1 �a�, 1.4 �b�, and 2.5
N=35
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ln S� � − q2t3/4 �24�

was proposed independently, first by Allegra and Ganazzoli48

and then by Harnau et al.44 as a result of two different rea-
sons: modification of the intrachain friction and stiffness
along the chain as a result of a bending potential. An analyti-
cal structure factor expression including bending and torsion
is not available at the moment. In order to decide which
model matches better with our data we fit the curves from
Fig. 12 to

ln S� � − tB. �25�

The values of B, given in Table III, are in between 1/2 and
3/4, thus suggesting that the simulations are in between the
standard Rouse model described by Eq. �23� and the updated
one corresponding to Eq. �24�. Quite interestingly, the time
scaling for the chains with bending and torsion are closest to
the Rouse model at all considered scales.

Another practical way to elucidate the nature of the
chain motion inside the melt is direct visualization of the
chain trajectories. If the chain has a Rouse-type motion, its
trajectories are isotropically spread inside the melt, but when
the motion changes to reptation these trajectories should be-
come confined inside a tube. For one randomly chosen chain
from the melt, Fig. 13 shows the stiffness effects on the
localization of the chain trajectories. The ten snapshots dis-
played are taken after equilibration, at equal time intervals.
To eliminate the distortions induced by the time scaling, the
time interval for each case is equivalent with 10% of the
characteristic Rouse time �R estimated from Fig. 9.

As can be seen in Figs. 13�a�–13�c� the motion of short
chains, observed during a specific time, is not significantly
affected by increasing the chain stiffness. In terms of chain
trajectory localization, no “reptation tube” is formed to con-
fine the chain as in reptation theory and the motion of stiff
short chains is still Rouse-type.

V. CONCLUSIONS

In the present paper we have reported results from ex-
tensive MD simulations, at constant temperature and density,
that investigate the effects of chain stiffness on the depen-

FIG. 13. Visualization of the motion of short chains with variable stiffness �a
thicker lines represent the first and the last snapshots for each case.
dence of self-diffusion coefficient D on polymer length N.
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From the D vs N analysis we conclude that as the chain
stiffness increases the conventional Rouse and reptation re-
gimes are significantly modified: the reciprocal slope of the
Rouse regime increases gradually from 1 to 2 and the slope
for the reptation regime reaches the value of 2.2. At the same
time, the crossover between these two regimes, related with
the entanglement length Ne, is shifted to longer chains until it
becomes ill defined. Moreover, the entanglement length Ne

extracted from bead mean-square displacement analysis for
long chains exhibits the same increasing trend with chain
stiffness. We argue that this behavior origins from the spe-
cific bending and torsion potentials used.

To investigate more carefully the nature of short chain
motion, we have analyzed the bead mean-square displace-
ment, the normal-mode autocorrelation functions and the dy-
namic structure factor for chains with different rigidities and
visualized the chain trajectories. The bead mean-square dis-
placement, g1�t�, for short chains as well as the chain visu-
alized trajectories show moderate deviations from Rouse be-
havior but major differences with reptation. Also from the
normal-mode and structure factor analyses mentioned, we
can conclude that the motion behavior of short stiff chains
does not clearly obey any of the currently available theories.

The chain rigidity has been modeled by means of ge-
neric bending and torsion potentials acting along the polymer
backbone. For the torsion potential we have proposed a
novel form, depending on dihedral and comprised bending
angles, which eliminates the computational instabilities when
two consecutive bonds align. More particular expressions for
these potentials adapted to chemically detailed chain archi-
tectures, as well as specific interactions �e.g., hydrogen
bonds and polar forces� are expected to further modify the
chain stiffness, and therefore to affect the dynamics even
more.
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