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Effect of bio-optical parameter variability on the
remote estimation of chlorophyll-a concentration
in turbid productive waters: experimental results

Giorgio Dall’Olmo and Anatoly A. Gitelson

The analytical development and underlying hypothesis of a three-band algorithm for estimating
chlorophyll-a concentration ([Chla]) in turbid productive waters are presented. The sensitivity of the
algorithm to the spectral location of the bands used is analyzed. A large set of experimental observations
([Chla] varied between 4 and 217 mg m�3 and turbidity between 2 and 78 nephelometric turbidity units)
was used to calibrate and validate the algorithm. It was found that the variability of the chlorophyll-a
fluorescence quantum yield and of the chlorophyll-a specific absorption coefficient can reduce consider-
ably the accuracy of remote predictions of [Chla]. Instead of parameterizing these interferences, their
effects were minimized by tuning the spectral regions used in the algorithm. This allowed us to predict
[Chla] with a relative root-mean-square error of less than 30%. © 2005 Optical Society of America

OCIS codes: 010.4450, 280.0280.

1. Introduction

Satellite and airborne optical sensors can provide the
high spatial and temporal resolution data that are
needed for monitoring inland and coastal water eco-
systems. The radiance signals recorded remotely in
specific regions of the electromagnetic spectrum are
usually transformed into reflectance and combined
into models for the remote estimation of chlorophyll-a
concentration, [Chla], a parameter that is relatable to
the biomass and productivity of phytoplankton.

In turbid productive waters, two main categories of
models are used: (a) combinations of reflectance
bands (usually band ratios) that exploit the absorp-
tion band of chlorophyll-a (Chla) in the red spectral
region1–7; and (b) algorithms that use the Chla fluo-
rescence emission at 685 nm (Refs. 8–11). These mod-
els are based on different assumptions, among which
are the constancy of optical parameters such as the
Chla specific absorption coefficient, aChla*, and the
Chla fluorescence quantum yield, �. These parame-

ters, in practice, are variable and depend on the phys-
iological and ecological dynamics of the
phytoplankton community. For example, for [Chla]
values between 0.02 and 25 mg m�3, Bricaud et al.12

have shown that aChla*�675� can vary up to fourfold.
Furthermore, � depends on several factors such as
phytoplankton taxonomic composition, illumination
conditions, nutritional status, and temperature, and
can vary by up to a factor of 8.13,14 Therefore the
assumptions of constant aChla* and � can be a signif-
icant source of uncertainty in models for the remote
estimation of [Chla].

Recently, Dall’Olmo et al.15 provided empirical ev-
idence demonstrating that a three-band reflectance
model, originally developed for estimating Chla
amounts in terrestrial vegetation,16 could be also
used for assessing [Chla] in turbid productive waters.
The objectives of this paper are as follow: (1) to
present the analytical development and the underly-
ing hypothesis behind the above algorithm; (2) to
analyze the sensitivity of the proposed model to the
spectral locations of the bands used; (3) to assess the
performances of the proposed and existing algo-
rithms.

We show that, in specific spectral regions, the ac-
curacy of the algorithm is maximally affected by in-
terferences owing to the variability of the Chla
fluorescence quantum yield and of the Chla specific
absorption coefficient. We also show how to deter-
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mine the spectral regions that minimize the uncer-
tainty in [Chla] estimation. The data set that was
used in this analysis encompasses a large part of the
natural seasonal and interannual variability of
[Chla], aChla*, and � of inland turbid productive wa-
ters and finally allows us to establish statistically
robust relationships between remote sensing models
and [Chla] measured analytically.

2. Algorithm Development

Spectral remote-sensing reflectance, Rrs��, �, ��, is
defined as the ratio of water leaving radiance,
Lu�0�, �, �, ��, to downward irradiance, Ed�0�, ��,
both measured above the water surface and as a func-
tion of wavelength, �; � and � are the viewing zenith
and azimuth angles, respectively. In an homogeneous
water body, Rrs��, �, �� can be expressed in terms of
the inherent optical properties, total absorption (a)
and backscattering �bb� coefficients, as follows17–19:

Rrs(�, �, �) �
f(�, �w, �w)
Q(�, �w, �w)

bb(�)
a(�) � bb(�) , (1)

where f��, �w, �w� is a coefficient dependent on the
Sun zenith angle and on the volume scattering func-
tion of the medium20; Q��, �w, �w� � Eu�0�, ���
Lu�0�, �, �w, �w�, Eu�0�, ��, and Lu�0�, �, �w, �w�
are the below-surface upwelling irradiance and radi-
ance, respectively; �w and �w are in-water zenith and
azimuth viewing angles, respectively.21 Hereinafter,
we consider all the radiometric quantities dependent
on viewing angle as measured at nadir; thus we drop
the arguments referring to the angular dependency.

The f����Q��� ratio describes the dependence of
Rrs��� on the geometry of the light field emerging from
the water body. Its spectral variations with Sun and
viewing geometry are related to the average number
of scattering events experienced by photons of wave-
length � before emerging from the water, n� ��� � 1
� b����a���, where b is the total scattering coeffi-
cient.20 In turbid productive waters ([Chla] in the
range 10–100 mg m�3), typical values of n� between
650 and 750 nm, range approximately from 3 to 9. For
this range of n� and for the Sun at zenith and a sensor
viewing in the nadir direction, the f����Q��� ratio
changes at maximum by approximately 20% (Fig. 9 of
Ref. 22). For other viewing angles in the remote-
sensing domain (�w � 35°, Ref. 22) and a solar zenith
angle of 60°, similar results can be expected.22 Thus
as a first approximation, we assumed that the
f����Q��� ratio is spectrally invariant in the range
650–750 nm. We also assumed that the total back-
scattering coefficient, bb���, is invariant in the same
spectral range.5,23,24 Therefore from this point on, we
omit the argument � from these quantities. Finally,
we considered the absorption coefficient of water, aw,
independent of temperature.

Because of the overlapping absorption by chro-
mophoric dissolved organic matter (CDOM), tripton,
and phytoplankton pigments in the blue-green spec-
tral region, to extract information on [Chla], we ex-

ploited the Chla red-absorption maximum around
675 nm. In order to obtain a function directly related
to Chla absorption, we used the reciprocal of Rrs:

Rrs
�1(�1) �

Q
f

aChla(�1) � aTD(�1) � aw(�1 ) � bb

bb
,

(2)

where aChla is the Chla absorption coefficient, aTD
� aCDOM � atripton, and aCDOM and atripton are the ab-
sorption coefficients of CDOM and tripton (non-algal
particles), respectively. �1 is the first spectral region
selected to have Rrs��1� maximally sensitive to aChla,
i.e., 660 	 �1 	 690 nm.

We aimed at isolating aChla��1� from relation (2) by
minimizing the effects of bb and aTD��1�, using Rrs at
two wavelengths different from �1. To remove bb and
aTD��1� from the numerator of relation (2), we selected
a second spectral region �2 such that aTD��1�
� aTD��2�, and aChla��1� �� aChla��2�. Considering the
exponential decrease of the absorption coefficients of
CDOM and detritus toward longer wavelengths,25,26

and the likely effect of the absorption by accessory
pigments (e.g., chlorophyll-b) on Rrs at � � 660 nm,
we expected to find �2 beyond 700 nm. By subtracting
Rrs

�1��2� from Rrs
�1��1�, we therefore removed bb and

aTD��1� from the numerator of Eq. (2), obtaining

Rrs
�1(�1) � Rrs

�1(�2) �
Q
f

aChla(�1) � aw(�1) � aw(�2)
bb

.

(3)

Note that, by assuming an average exponential slope
of aTD of � 0.01, one obtains aTD�675��aTD�700�
� 1.3. However, this uncertainty can be considered
negligible since aTD values in this spectral region are
relatively low (e.g., Ref. 27).

To remove bb and Q�f from relation (3), we selected
a third spectral region �3, where aChla��3� � aTD��3�
� 0, and thus a��3� � aw��3� � constant (under our
assumptions). Such a spectral region can be found in
the near-infrared (NIR) range (i.e., �3 
 730 nm).5,28

In the NIR, a �� bb; thus reflectance in this region
can be approximated as

Rrs(�3) �
f
Q bb . (4)

Multiplying relation (3) and relation (4), we obtain

[Rrs
�1(�1) � Rrs

�1(�2)]Rrs(�3) � aChla(�1). (5)

Thus by selecting three appropriate spectral re-
gions �1, �2, and �3, it appears possible to isolate the
Chla absorption coefficient at �1 from Rrs. We can
then use Beer’s law to relate [Chla] with the function
�Rrs

�1��1� � Rrs
�1��2��Rrs��3�.

If aTD��1� �� aChla��1� and bb �� a��1�, then, by mul-
tiplying relations (2) and (4), we obtain a special case
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of relation (5):

Rrs
�1(�1)Rrs(�3) � aChla(�1). (6)

Equation (6) relates aChla to the NIR-to-red reflec-
tance ratios that are widely used for the remote es-
timation of [Chla] in turbid productive waters.1–8 For
the sake of brevity, we indicate hereinafter the left-
hand sides of relations (5) and (6) as Y and Z, respec-
tively.

3. Methodology

We sampled two complementary types of Eastern Ne-
braska water bodies, typical of this agriculturally
dominated region: sand pit lakes (Fremont State
Lakes and Ginger Cove), in which the suspended ma-
terial is mainly of organic origin, and reservoirs (Glen
Cunningham and Branched Oak), with a gradient of
inorganic suspended material from the inlet to the
dam. Data were collected during 19 campaigns, from
June 2001 to October 2001 and from May 2002 to
October 2002. We also included in the data set 16
stations collected at Lake Okoboji, Iowa, on 30 Sep-
tember 2002. This is a lake of glacial origin that is
divided into two subbasins: the East Okoboji, which is
shallow, turbid, and eutrophic, and the West Okoboji,
which is deeper and mesotrophic.

A. Field Measurements

Hyperspectral reflectance measurements were taken
from a boat using two intercalibrated Ocean Optics
USB2000 radiometers. Data were collected in the
range 400–900 nm with a sampling interval of 0.3 nm
and a spectral resolution of �1.5 nm. Radiometer 1,
equipped with a 25° field-of-view optical fiber, was
pointed downward to measure the below-surface na-
dir upward radiance, Lu�0�, ��. The tip of the optical
fiber was kept just below the water surface, on the
sunny side of the boat, by means of a 2-m handheld
black beam. Interferences in the light field were con-
sidered negligible owing to the small diameter (�0.5
cm) of the tip of the optical fiber and of the high
turbidity of these waters. Most of the lakes sampled
had rather short fetches (of the order of tens of
meters) and were protected by trees; thus, even under
windy conditions, waves were almost absent. Only in
the larger Lake Okoboji (with a fetch of the order of
hundreds of meters), owing to waves, the tip of the
optical fiber was kept at a deeper depth (approxi-
mately 15–30 cm). Radiometer 2 was equipped with
an optical fiber and a cosine collector that was
pointed upward, by means of another beam fixed to
the boat, to measure the above-surface downward
irradiance, Eu�0�, ��. The integration time of radiom-
eter 2 was usually approximately 10 times shorter
than that of radiometer 1. However, provided the
variations in illumination conditions can be consid-
ered negligible during the short time taken to collect
one measurement (�30 seconds), the data recorded by
radiometer 2 were considered representative of the
overall downward irradiance. Solar zenith angle

ranged from approximately 55° to a maximum of 20°.
All measurements were taken over optically deep wa-
ter.

The digital numbers (DNs) produced by the radi-
ometers can be expressed as follows (the � notation
has been omitted for simplicity):

DNL � Lu(0
�)kL, (7a)

DNE � Ed(0
�)kE, (7b)

where k is a transformation coefficient, specific to
each radiometer, and the subscripts L and E stand for
upward nadir radiance and downward irradiance, re-
spectively.

The first 25 elements of the USB2000 detector ar-
ray are screened from light energy and therefore
record a signal owing to the dark current of the in-
strument. For each scan, they were used to estimate
an average value of dark current that was then sub-
tracted from the raw digital numbers. Hereinafter,
this correction is considered applied and is not indi-
cated.

The ratio of Eqs. (7a) and (7b) yields the quantity
DNL�DNE � Lu�0���Ed�0���kL�kE�, which depends on
the radiance reflectance of the target, but also on the
ratio of the transformation coefficients of the two in-
struments, kL�kE. To evaluate kL�kE and to assess its
stability with time, we used a white Spectralon panel
of known irradiance reflectance, Rref. By collecting
measurements on the reference panel, we computed
kL�kE � �DNL, ref�DNE, ref���Rref���, where DNL, ref and
DNE, ref are the digital numbers recorded by the down-
ward and upward looking radiometers, respectively,
while scanning the Spectralon panel; the factor � is
introduced to transform the irradiance reflectance
Rref into a radiance reflectance (assuming that the
reference Spectralon panel is a Lambertian reflector).
The above-water remote-sensing reflectance of the
target was finally computed as

Rrs �
DNL

DNE

DNref,E

DNref,L

Rref

�

t

n2 Fi, (8)

where t is the radiance transmittance from water to
air (�0.98, Ref. 29), n is the refractive index of water
� �1.33�, and Fi is the spectral immersion factor.

We carried out laboratory experiments to assess
the variability of kL�kE with time. The coefficient of
variation of kL�kE did not exceed 2% over a period of
four hours (Dall’Olmo 2001, unpublished data),
therefore supporting the stability of our measure-
ment system. Because kL�kE may change among field
campaigns owing to unscrewing or rearranging of
fiber optics and/or cosine collector, kL�kE was mea-
sured at least twice during each field campaign. Re-
lation (8) was then evaluated using the median value
of DNref,E�DNref,L.
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Traditionally, reflectance measurements are col-
lected either by means of two absolutely calibrated
radiometers (one measuring the upward radiation
from the target and the other measuring the down-
ward irradiance), or by using a single radiometer and
subsequently collecting measurements over a panel
of known reflectance and over the target. The meth-
odology that was adopted in this study was advanta-
geous because it allowed us to collect data under
variable illumination conditions (usually prohibitive
for the single-instrument technique) without requir-
ing absolute calibration of the radiometers.

At each station, six reflectance spectra were mea-
sured, each averaging 15 consecutive scans. These six
spectra were then smoothed using a moving average
(window size of 5 nm), interpolated every nanometer,
and the median spectrum was computed for further
analysis.

At each station, Secchi disk depth and turbidity
(using a portable Hach 2100 turbidimeter) were mea-
sured, and surface water (0.5 m) was collected and
stored in the dark in a cooler with ice. Samples were
filtered on Pall Gellman type A�E glass fiber filters
and frozen for successive laboratory analyses.

B. Laboratory Measurements

Chlorophyll-a was extracted in hot ethanol, and its
concentration was quantified fluorometrically.30 The
concentrations of total (TSS), organic (OSS), and in-
organic suspended solids (ISS) were determined
gravimetrically.31 Spectral absorption measurements
of constituents on filters were carried out in 2002
immediately after every field campaign with a Cary
100 Varian spectrophotometer. The optical densities
of total suspended particles and tripton (after oxida-
tion of pigments by means of diluted chlorine water32)
were measured on filters (Whatman GF�F)33 and cor-
rected for scattering by subtracting the optical density
at 750 nm from the entire spectrum. Conversion of
optical densities into absorption coefficients was ac-
complished by using published coefficients.34 Pigment
absorption coefficients were computed as the differ-
ence between total particle and tripton absorption co-
efficients. By adjusting the sample volume filtered, we
kept the optical density of filters at 440 nm between 0.2
and 0.5. The CDOM absorption coefficients were mea-
sured as in Bricaud et al.26

4. Results and Discussion

A. Data Set Description

The data set encompasses variable optical conditions
and includes a wide range of phytoplankton taxo-
nomic groups (Chrysophyta, Chlorophyta, Cyano-
phyta, Cryptophyta, Pyrrophyta). [Chla], Secchi disk
depth, turbidity, and the absorption coefficients of
CDOM and tripton at 440 nm spanned over two or-
ders of magnitude, while TSS, OSS and ISS spanned
over three orders of magnitude (Table 1). Absorption
by Chla at 678 nm, aChla�678�, ranged from 0.1 m�1 to
6.0 m�1 with an average value of 1.0 m�1. The sum of
the absorption coefficients by CDOM and tripton at

678 nm, aTD�678�, ranged from 0.04 to 0.48 m�1 with
an average value of 0.18 m�1, thus being one order
of magnitude lower than aChla�678�. aCDOM�440�,
atripton�440�, TSS, and ISS correlated weakly with
[Chla] (see Fig. 1), confirming that the water bodies
sampled belong to case 2 waters.35

Remote-sensing reflectance spectra varied largely
over the visible and NIR spectral regions (Fig. 2).
These spectra are comparable both in shape and mag-
nitude to others collected in turbid productive wa-

Table 1. Descriptive Statistics of the Optical Water Quality Parameters
Measureda

Mean St. Dev. Median Min Max N

[Chla], mg m�3 46.5 41.4 36.1 4.4 217.3 144
Secchi disk depth, cm 80.9 57.0 63.0 18.0 299.0 138
Turbidity, NTU 20.1 15.7 16.9 1.7 78.0 135
TSS, mg L�1 18.9 19.6 14.0 0.2 166.4 130
ISS, mg L�1 8.0 15.6 2.6 �0.1 139.8 130
OSS, mg L�1 10.9 7.9 10.0 0.2 48.2 130
aCDOM�440�, m�1 1.2 0.7 1.0 0.5 4.4 101
atripton�440�, m�1 2.2 1.3 2.0 0.4 6.7 102
aChla�678�, m�1 1.0 0.8 1.0 0.1 6.0 102
aTD�678�, m�1 0.18 0.09 0.15 0.04 0.48 101

aTSS, total suspended solids; ISS, inorganic suspended solids;
OSS, organic suspended solids; aCDOM�440�, absorption coefficient
of CDOM at 440 nm; atripton�440�, absorption coefficient of tripton at
440 nm; aChla�678�, absorption coefficient of Chla at 678 nm;
aTD�678�, sum of the absorption coefficients of tripton and CDOM at
678 nm; N, number of samples.

Fig. 1. Relationships between [Chla] and other “optically active”
constituents indicating that the lakes studied belong to case 2
waters. Determination coefficients for linear relationships are pre-
sented in each plot.
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ters.17 They were characterized by (1) minimal values
in the blue region (400–500 nm) owing to the com-
bined absorption by phytoplankton pigments,
CDOM, and tripton; (2) a peak in the green region
(�550 nm) owing to minimal values of total absorp-
tion; (3) a minimum in the red region (� 675 nm)
owing to Chla absorption; (4) a local maximum in the
range 690–715 nm owing to a minimum in total ab-
sorption;36,37 (5) lower values in the NIR region
(
750 nm) owing to high absorption by pure water.
Specifically, Rrs�750� varied from 0.0002 to 0.0076
sr�1, indicating a wide range of scattering regimes
sampled. As an example, we highlighted in Fig. 2
three spectra, typical of low Chla concentrations
(�Chla� � 11 mg m�3, TSS � 5 mg L�1, curve “low”),
high Chla concentrations (�Chla� � 89 mg m�3,
TSS � 21 mg L�1, curve “high”), and moderate Chla
concentrations and high TSS (�Chla� � 24 mg m�3,
TSS � 55 mg L�1, curve “moderate”). Importantly,
despite Sun-induced Chla, fluorescence manifests it-
self in reflectance spectra through a local maximum
around 685 nm;38,39 the position of the reflectance
maximum was always found at longer wavelengths,
between 690 and 715 nm (Fig. 3).

The Chla specific absorption coefficient at 678 nm,
aChla*�678�, showed a weak inverse relationship with

[Chla], similar to those already reported in literature
for this range of [Chla] values12,40 (Fig. 4); it ranged
between 0.005 and 0.050 m2 mg�1 with a median of
0.023 m2 mg�1. These values are comparable with
published data (e.g., Refs. 12 and 40–42), but appear
to be larger than those presented in other studied
(e.g., Refs. 43 and 44). Even though one cannot ignore
uncertainties introduced by the filter pad method and
by the Chla extraction technique, the variability of
the presented aChla*�678� values can be related to
changes in the packaging effect owing to the wide
range of phytoplankton groups and environmental
conditions sampled.

We calculated the average number of photon colli-
sion n� using the 1-to-1 relationship between nephe-
lometric turbidity units (NTUs) and b (see Kirk27 and
references therein). At 570 nm (the spectral region
where the sensitivity of the portable Hach 2100 tur-
bidimeter is maximal), n� spanned from 5.5 to 54.4
with a median value of 20.7. Assuming that b�570�
� b�678�, we also computed n� �678�, which spanned
from 2.3 to 44.5 with a median value of 12.1. There-
fore multiple scattering prevailed in the water bodies
sampled; furthermore, the range of n� found is consis-
tent with that used for our hypothesis concerning the
spectral independency of f�Q.

B. Algorithm Calibration

The calibration of relations (5) and (6) for the quan-
tification of [Chla] requires two steps: (a) the identi-
fication of the optimal �1, �2, and �3; and (b) the
parameterization of the relationships between Y and
Z, and [Chla]. To calibrate and validate the models,
the data set was divided into two independent sub-
sets as follows. The calibration data set �N � 86� was
assembled by using data collected in the Fremont
State Lakes, Lake Okoboji, and Ginger Cove during
2002. Moreover, to balance the number of stations
collected in sand pit lakes and reservoirs, we added
the stations collected in Branched Oak Reservoir dur-
ing June and July 2002. The validation data set �N
� 58� was composed of the remaining data: the sta-
tions collected in Fremont State Lakes and Glen Cun-

Fig. 2. Remote-sensing reflectance spectra of the water bodies
studied. Some examples are highlighted: curve “Low,” �Chla�
� 11 mg m�3, TSS � 5 mg L�1; curve “High,” �Chla�
� 89 mg m�3, TSS � 21 mg L�1; curve “Moderate,” �Chla�
� 24 mg m�3, TSS � 55 mg L�1.

Fig. 3. Frequency distribution of the position of the reflectance
maximum around 700 nm.

Fig. 4. Chla specific absorption coefficient at 678 nm as a function
of [Chla].
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ningham during 2001 and those collected in
Branched Oak Reservoir during August, September,
and October 2002.

1. Tuning of the Spectral Regions
To determine the optimal spectral regions �1, �2,

and �3 to be used in Y and Z for estimating [Chla], we
adopted a stepwise technique based on linear regres-
sions of different model versions versus [Chla] mea-
sured analytically. Based on the rationale behind the
model development, we adopted the following initial
spectral regions: �1

0 � 675 nm, �2
0 � 710 nm, and

�3
0 � 750 nm.
To estimate the optimal �1, using the initial �2

0 and
�3

0, we linearly regressed the model �Rrs
�1��1�

� Rrs
�1�715��Rrs�750� versus [Chla], for each value of

�1 between 400 and 800 nm. We computed the regres-
sion standard error (STE) of estimate and obtained a
narrow minimum of STE centered at �1 � 671 nm
[Fig. 5(a)]. Thus we selected �1 � 671 nm.

To determine the optimal �2, using the optimal �1

and initial �3
0, we then regressed the model

�Rrs
�1�671� � Rrs

�1��2��Rrs�750� versus [Chla]. The
STE was characterized by a broad minimum span-
ning from 700 to 750 nm [Fig. 5(b)]. To keep the
sensitivity of Y with respect to [Chla] high, we se-
lected as optimal �2 � 710 nm.

Finally, to identify the optimal �3, using the opti-
mal �1 and �2, we regressed the model �Rrs

�1�671�
� Rrs

�1�710��Rrs��3� versus [Chla]. The minimum of
STE was located between 730 and 750 nm [Fig. 5(c)].
We selected the optimal �3 in the middle of that
range, i.e., �3 � 740 nm.

To verify that the above procedure does not depend
on the initial values of �1, �2, and �3, we reassessed
the optimal �1 after setting �2 � 710 nm and �3

� 740 nm. The result of this computation is the
dashed curve in Fig. 5(a). The almost complete over-
lapping with the initial solid curve in the minim re-
gion supports the robustness of the adopted tuning
methodology.

Interestingly, the range of the optimal spectral re-
gions for �2 and �3 overlapped, i.e., �2 � �3, between
730 and 750 nm. Since Rrs

�1��2� is used to account for
variations in the absorption by tripton and CDOM as
well as in backscattering, and Rrs��3� is used to ac-
count for variations in backscattering only, it became
clear that, for this data set, the effect of the variabil-
ity of the total backscattering coefficient on reflec-
tance was greater than that owing to the variability
of aTD. Our data confirm this reasoning: While
aTD�678� varied twelvefold, Rrs�750� varied 45-fold.
The variability in Rrs�750� can be considered mostly
due to variations in bb. At this wavelength, changes in
Rrs from other factors are smaller: Variations in Rrs

owing to variations in f�Q (for n� changing from 3 to
61) or in aw (for a 20 °C change in water temperature)
can be approximately as high as a factor of 1% and
10%, respectively.22,45

2. Algorithm Sensitivity to Band Positions
To analyze the sensitivity of Y and Z to the posi-

tions of both �1 and �3, we computed STE of estimate
of the linear regressions for both Y (with �2 fixed at
710 nm) and Z, for 650 	 �1 	 700 nm, and 700
	 �3 	 750 nm. For both models, the STE had a
minimum at �1 between 660 and 673 nm and a max-
imum around 685 nm [Figs. 6(a) and (b)]. When �3
decreased from 750 to 700 nm, the local maximum
around 685 nm gradually became more pronounced,
and the minimum STE shifted from �1 � 673 nm
toward shorter wavelengths [Figs. 6(a) and (b)]. In
addition, as �3 shifted toward 750 nm, while the STE
of Y decreased to a minimum value that was reached
at �3 � 730 nm, the STE of Z decreased to a minimum

Fig. 5. STE of estimate resulting from regressing different model
versions versus [Chla] measured analytically: (a) �Rrs

�1��1�
� Rrs

�1�715��Rrs�750� letting vary �1, (b) �Rrs
�1�671� � Rrs

�1��2��
� Rrs�750� letting vary �2, and (c) �Rrs

�1�671� � Rrs
�1�710��

� Rrs��3� letting vary �3. Boxes indicate the spectral regions where
the STE was minimal. The dashed curve in plot (a) represents the
STE for the model �Rrs

�1��1� � Rrs
�1�710��Rrs�740� that was used to

verify the tuning procedure.
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for �3 � 725 nm and then begun to increase, indicat-
ing that, by using the three band model, one can
exploit the NIR spectral region �730 nm.

The �1 region of maximal sensitivity of Z with re-
spect to [Chla] is expected to be at �1 � 675 nm (Refs.
1–3, 8). Yet, when �3 was located between 700 and
730 nm, the optimal positions of �1 for our experimen-
tal data were located at shorter wavelengths
�657 � �1 � 673 nm�. Chla fluorescence emission
peaks at 685 nm; thus the maximum of STE of esti-
mate [Figs. 6(a) and (b)] can be explained by the
variability of the Chla fluorescence quantum yield
among samples that is not accounted for by the mod-
els Y and Z. For �3 around 700 nm, the interference
was maximal and the minimum STE of estimate was
found at �1 around 660 nm. As �3 shifted toward
longer wavelengths, the interference became less im-
portant, and the optimal �1 was found around 673
nm.

To reveal the effect of Sun-induced Chla fluores-
cence on the refectance spectra, we compared the
position of the minimum around 675 nm in the re-
flectance spectra collected in the field to the corre-
sponding position of the red maximum of the pigment
absorption spectra measured in the lab. Note that
absorption spectra were measured using monochro-
matic light, thus minimizing the contribution of Chla
fluorescence. On the contrary, reflectance spectra

were collected under sunlight that provided the exci-
tation energy for Chla fluorescence. The distribution
of the positions of the absorption maximum was cen-
tered around 678 nm and symmetrically distributed
in a narrow range from 675 to 680 nm (Fig. 7). On the
other hand, the distribution of the position of the
reflectance minimum was negatively skewed with
minimum and maximum values at 666 and 679 nm,
respectively. Thus in some samples, the reflectance
minimum shifted up to 11 nm toward shorter wave-
lengths with respect to the corresponding absorption
maximum. We attribute this shift to the superimpo-
sition of the Sun-induced Chla fluorescence signal
that fills in the reflectance trough around 675 nm
therefore shifting the reflectance minimum toward
shorter wavelengths.46,47

To gain some insight on the importance of the in-
terferences owing to variations in the specific absorp-
tion coefficient, we attempted to isolate the effect of
this factor from the effect of fluorescence. On the
basis of Fig. 7, we removed from the development
data set all reflectance spectra that displayed a min-
imum at a wavelength shorter than 675 nm (26 sta-
tions were eliminated from the initial 86) and again
computed the linear-regression STE of estimate for
both Y and Z for 650 	 �1 	 700 nm and 700 	 �3
	 750 nm. Beside the maximum of STE around 685
nm, another STE peak appeared around 675 nm
[compare Figs. 6(a) with 6(c), and 6(b) with 6(d)]. The
different spectral shapes of the STE can be inter-
preted as an increase in the relative importance of the
interferences owing to the packaging effect. However,
some residual interferences by Chla fluorescence re-
mained. Since, using all the reflectance spectra, we
obtained a distinct peak of STE centered at 685 nm
[Figs. 6(a) and 6(b)], we concluded that, for this data
set, the most important of the two interfering factors
considered was the variability of the Chla fluores-
cence quantum yield. We may anticipate that differ-
ent results might be obtained analyzing data sets
with �Chla� � 10 mg m�3, where the variability of
aChla* appears to increase (Fig. 4 and Refs. 12 and 48).

Fig. 6. STE of estimate for models Y (left column) and Z (right
column) as a function of �1 and �3: (a), (b) all data shown; (c), (d)
spectra with red reflectance minimum at � � 675 nm were ex-
cluded. Numbers in legend refer to the values of �3. For model Y,
we used �2 � 710 nm; thus only �3  710 nm were considered. Note
the change of scale on the ordinate axis between plots on first and
second rows.

Fig. 7. Frequency distribution of the positions of the pigment
red-absorption maximum measured in laboratory (using mono-
chromatic light) and of the corresponding minimum of reflectance
measured in the field.
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3. Parameterization
After having identified the optimal spectral bands

for our models, we calculated the calibration coeffi-
cients of the best-fit linear function between several
versions of the models and [Chla] (Table 2, Fig. 8). We
also calculated the widely used reflectance ratio
Rrs

�1�675�Rrs�705� (Refs. 1–3 and the reflectance
height above the baseline between 670 and 740 nm
(Ref. 8).

The models Y and Z were strongly correlated to
[Chla] �r2 � 0.94�, when we used reflectance bands
located in the spectral regions where the interfer-
ences owing to variations in aChla* and � were mini-
mal. On the other hand, Z with �1 � 675 nm and �3
� 705 nm explained a smaller part of the [Chla] vari-
ance �r2 � 0.77� because a spectral region of higher
sensitivity to the interfering factors was encountered.

The reflectance height above the baseline showed
the minimum coefficient of determination (0.34). It

was considerably affected by the variability in back-
scattering among samples.

C. Precision

To assess the precision of the technique, we exploited
the six replicate reflectance spectra measured at each
station. For each spectrum, we estimated [Chla], us-
ing the coefficients a0 and a1 presented in Table 2.
The precision was quantified as the coefficient of vari-
ation of the estimated [Chla] at each station. We also
compared the precision of our model and band ratios
with Gons’s algorithm (hereinafter abbreviated as
G99).5 To do so, we converted our Rrs measurements
into just-below surface-irradiance reflectance spectra
as R�0�� � Rrs�n2�t�Q�1 � ��, where Q � 3.38 and �
� 0.02 (where � is the Fresnel reflectance, Ref. 5).
G99 uses three spectral channel located at 672, 704,
and 776 nm. Part of the reflectance spectra were
noisy at 776 owing to a decrease in the sensitivity of
our radiometers in this spectral region; therefore we
removed noisy stations by using the following crite-
rion. Since the absorption coefficient of water is
higher at 840 nm than at 750 nm, then R�750� must
be higher than R�840�. Thus we discarded all stations
for which R�840� 
 R�750� (of the initial 144 stations,
100 met this criterion). Then, to compute [Chla], we
set aChla*�672� � 0.0176 m2 mg�1 and p � 1.065
(where p is a calibration factor, see Ref. 5).

Descriptive statistics of the [Chla] coefficient of
variation for the whole data set, after application of
the above filtering, are presented in Table 3. The
median values of the coefficients of variation were
found between 1.9% and 5.3%, indicating that the
measurement technique was characterized by sat-
isfactory precision. The smallest median (1.9%) and
maximal coefficients of variation (32.6%) were
found for the three-band model �Rrs

�1�671�
� Rrs

�1�710��Rrs�740�. The major source of this vari-
ability was the depth under the surface at which the
optical fiber was kept to measure the upward radi-
ance. Under windy conditions, it was difficult to keep
it as a constant depth, and its oscillations determined
the precision interval; in the worst conditions, the
coefficients of variation reached values as high as
87%.

Table 2. Intercepts �a0� and slopes �a1� with Corresponding Standard
Errors (STE), Standard Errors of Estimate, and Coefficients of

Determination �r2� for Linear Regressions of Different Versions of the
Model Obtained Using the Development Data Seta

Band Combination a0�STE� a1�STE�
STE of Estimate

�mg m�3� r2

Rrs
�1�673�Rrs�735� 	15 (2) 94 (2.5) 8.6 0.95

Rrs
�1�665�Rrs�725� 	23 (2) 70 (2) 8.4 0.95

�Rrs
�1�671�

� Rrs
�1�710��Rrs�740�

16 (1) 125 (3) 8.7 0.94

Rrs
�1�675�Rrs�705� 	47 (5) 53 (3) 17.8 0.77

Reflectance height – 28 (2) 29.9 0.34

aOnly significant �p � 0.001� parameters were reported. All re-
lationships were significant at the level p � 0.0001. The number of
samples was 86.

Fig. 8. Scatter plots of different versions of the model versus
[Chla] measured analytically. The solid lines are the linear-
regression fits. Coefficients of determination are also reported for
each plot.

Table 3. Descriptive Statistics of the Coefficient of Variation (%)
Obtained Estimating [Chla] Using the Six Replicate Reflectance Spectra

Collected at Each Station, and Different Models Versions with the a0

and a1 Coefficients Presented in Table 2 �N � 100�

Band Combination Average St. Dev. Median Min Max

Rrs
�1�673�Rrs�735� 8.6 9.0 5.1 0.5 40.0

Rrs
�1�665�Rrs�725� 7.2 11.9 3.1 0.4 87.2

�Rrs
�1�671�

� Rrs
�1�710��Rrs�740�

4.3 5.6 1.9 0.3 32.6

Rrs
�1�675�Rrs�705� 7.5 8.4 5.0 0.5 54.9

Reflectance height 7.3 6.6 5.3 0.6 36.4
Gons, 1999 4.7 6.0 2.4 0.3 41.5

20 January 2005 � Vol. 44, No. 3 � APPLIED OPTICS 419

Dall'Olmo & Gitelson in Applied Optics (January 20, 2005) 44(3): 412-422. 
      Copyright 2005, Optical Society of America. Used by permission.



D. Algorithm Validation

The result of the validation procedure, which was
carried out using the independent-validation data
set, are summarized in Table 4 and Fig. 9. The most
accurate predictions of [Chla] were obtained when
the bands used in the models Z and Y were selected to
avoid interferences by variations in � and aChla*, i.e.,
for Rrs

�1�673�Rrs�735�, Rrs
�1�665�Rrs�725� �Rrs

�1�671�
� Rrs

�1�710��Rrs�740�. The slopes of the observed
[Chla] versus predicted [Chla] were not significantly
different from one �p 
 0.05�, the root-mean-square
error (RMSE) was approximately 15 mg m�3, and the
relative RMSE (RMS) was between 40% and 45%
(Table 4).

The predictive performance of the
Rrs

�1�675�Rrs�705� ratio was lower: The slope (1.33)
and intercept ��13 mg m�3� of the observed [Chla]
versus predicted [Chla] were significantly different

�p 
 0.05� from one and zero, respectively; the RMSE
of [Chla] prediction was 28.3 mg m�3, the RMS
� 0.48. This loss of accuracy occurs because the bands
used in this model are strongly affected by uncertain-
ties that can be related to the variability of � and
aChla* [Figs. 6(b) and 6(d)].

The reflectance height above the baseline yielded
the poorest result because it was affected by the vari-
ability in backscattering between samples. Its weak
predictive potential is well described by the coeffi-
cient of determination (0.57) and RMS (0.48), as well
as by the slope (0.55) and intercept (13) of the ob-
served [Chla] versus predicted [Chla] line that were
significantly different from one and zero �p � 0.05�,
respectively. This limitation is likely to apply for most
models based on absolute values of reflectance.

G99 yielded the largest RMSE (77.1 mg m�3) and
consistently overestimated [Chla]: The slope of the
observed [Chla] versus predicted [Chla] was 2.31. Be-
cause we measured an average ��1 standard devia-
tion) aChla*�672� � 0.022 � 0.007 m2 mg�1, we
repeated the calculations using this value and ob-
tained a RMSE � 56.7 mg m�3 and a slope of 1.85.
This improved prediction of [Chla] obtained with
higher values of aChla* indicates that G99 is sensitive
to variations in aChla* and therefore requires in situ
calibration.

An analysis of the residuals of the regressions pre-
sented in Fig. 9 indicated that the largest relative
departures from the 1:1 line occurred for [Chla] lower
than 10 mg m�3, often yielding negative [Chla] pre-
dictions in the case of the band ratios. Exclusion of
the eight stations (three for G99) with
�Chla� � 10 mg m�3, improved the performance of
the models: In the case of the three-band model, the
RSM decreased to 0.25 (Table 4).

5. Conclusions

In this study, we presented the analytical development
and the underlying hypotheses of a three-band remote-
sensing algorithm for estimating [Chla] in turbid produc-
tive waters. NIR-to-red reflectance ratios can be seen as
a special case of this model. We demonstrated that the
variability of ecophysiological parameters, such as the

Table 4. Results of the Model Validationa

Band Combination a0�STE� a1�STE�

RMSE of [Chla]
Prediction
�mg m�3� RMS RMS�10 r2

Rrs
�1�673�Rrs�673�Rrs�735� 	8 (3) 0.99 (0.04) 13.7 0.40 0.30 0.91

Rrs
�1�665�Rrs�725� 	9 (3) 1.04 (0.04) 14.2 0.47 0.36 0.91

�Rrs
�1�675�Rrs�705�� – 0.93 (0.03) 15.1 0.45 0.25 0.88

Rrs
�1�675�Rrs�705� 	13 (5) 1.31 (0.08) 28.3 0.71 0.48 0.84

Reflectance height 13 (4) 0.55 (0.06) 28.5 0.48 0.43 0.57
Gons, 1999 	23 (10) 2.31 (0.16) 77.1 0.77 0.76 0.74

aa0 and a1 are the intercepts and slopes (with corresponding standard errors in brackets), respectively, of the best linear fits between
observed and predicted [Chla] values. RMSE is the root-mean-square error. RMS is the relative RMSE; RMS
10 is the RSM computed
excluding stations with �Chla� � 10 mg m�3. Slopes in bold were significantly different from one �p � 0.05�. Only intercepts significantly
different from zero �p � 0.05� were included. The number of samples was 58.

Fig. 9. Validation scatter plots for different versions of the model.
The solid lines represent the 1-to-1 lines. Root-mean-square errors
(RMSE), in mg m�3) and relative root-mean-square errors (RMS)
are also reported in each plot.
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Chla fluorescence quantum yield and the Chla specific
absorption coefficient, affects the remote estimation of
[Chla]. The parameterization of aChla* and � requires a
priori knowledge of many different variables such as
phytoplankton cell-size distribution, intracellular
pigment content, temperature, and nutrient concen-
trations. Instead of attempting to model these inter-
ferences, we proposed to tune the model band
positions in order to minimize these effects.

We analyzed a series of experimental observations
gathered during different seasons over a two-year
period, in turbid productive lakes of different origins.
We showed that both � and aChla* varied widely, thus
potentially influencing the accuracy of remote esti-
mates of [Chla]. Tuning the spectral regions used in
the three-band model and in band ratios allowed us to
accurately predict [Chla]. It was found that, to min-
imize these interferences, one should either set �1
� 673 nm and �3 
 730 nm, or �3 � 705 and �1
� 665 nm. This is consistent with the results of other
empirical studies.49–55 In terms of accuracy, the
three-band model was not considerably different from
appropriately tuned band ratios yielding RMS
around 0.30 (Table 4). However, it was characterized
by the highest precision (�2%, Table 3).

The largest relative errors of [Chla] prediction were
found for [Chla] values below 10 mg m�3, as it was also
reported in other studies.4,5 We believe that the main
reasons for these discrepancies may be the follow-
ing: (a) The models are optimized for moderate to
high Chla concentrations (mean [Chla] 
 46 mg m	3,
Table 1); (b) the Chla specific absorption coefficient
near the Chla red-absorption maximum showed its
maximal variability for [Chla] below 10 mg m�3; (c)
our initial hypothesis regarding f�Q may not hold for
the low [Chla] range; and (d) when
�Chla� � 10 mg m�3, Rrs values in the NIR may be
too low and thus affected by larger measurement
uncertainties.

We recognize that the results of the spectral tuning
of the model and the calibration coefficients that we
obtained depend on optical characteristics of water
bodies studied. They should be considered valid only
for the ranges of optically active constituents pre-
sented here. However, the large range of the optically
active constituents sampled supports the robustness
of the proposed model and of our analysis.
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