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Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from 1 

an intensive subtropical pasture in northern New South Wales, Australia 2 

Abstract 3 

We assessed the effect of biochar incorporation into the soil on the soil-atmosphere exchange 4 

of the greenhouse gases (GHG) from an intensive subtropical pasture. For this, we measured 5 

N2O, CH4 and CO2 emissions with high temporal resolution from April to June 2009 in an 6 

existing factorial experiment where cattle feedlot biochar had been applied at 10 t ha-1 in 7 

November 2006. Over the whole measurement period, significant emissions of N2O and CO2 8 

were observed, whereas a net uptake of CH4 was measured. N2O emissions were found to be 9 

highly episodic with one major emission pulse (up to 502 µg N2O-N m-2 h-1) following heavy 10 

rainfall. There was no significant difference in the net flux of GHGs from the biochar 11 

amended vs. the control plots. Our results demonstrate that intensively managed subtropical 12 

pastures on ferrosols in northern New South Wales of Australia can be a significant source of 13 

GHG. Our hypothesis that the application of biochar would lead to a reduction in emissions 14 

of GHG from soils was not supported in this field assessment. Additional studies with longer 15 

observation periods are needed to clarify the long term effect of biochar amendment on soil 16 

microbial processes and the emission of GHGs under field conditions. 17 
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Introduction 32 

Land-use and agricultural practices affect the soil microbial carbon (C) and nitrogen (N) 33 

turnover and hence the biosphere-atmosphere exchange of greenhouse gases (GHG), namely 34 

N2O, CH4 and CO2. In Australia, the agricultural sector contributes 16% of the total 35 

emissions of GHGs, including 60% of all CH4 emissions (67.2 Mt CO2−eq.) and 85% of all 36 

N2O emissions (20.7 Mt CO2−eq.) (AGO 2007). When land-use changes involving biomass 37 

burning, soil degradation and deforestation are included in this estimate, the overall emissions 38 

account for one-third of the total national GHG release. At the same time agriculture is 39 

considered to have the highest GHG mitigation potential by reducing emissions from soil and 40 

sequestering carbon in soils via modified land-use and management.  41 

In Australia, grasslands for the cattle and sheep industry are the principal land use covering 42 

an area of approximately 450 million hectares (AGO 2010). In the humid, subtropical zones 43 

of New South Wales, improved pastures for beef and dairy cattle production account for 40-44 

50% of the total agricultural land use (Australian Bureau of Statistics 2009). These lands 45 

were extensively cleared of the native subtropical rainforests during the latter half of the 19th 46 

and early 20th centuries to make way for the establishment of the dairy industry (Adam 1994). 47 

The productivity of the livestock industry in this area is directly related to the use of either 48 

improved legume based pastures or N-fertilized grass pastures and the dairy industry is 49 

considered to be the largest user of N-fertilizer (Weier 1994). Annual ryegrass (Lolium 50 

multiflorum) is one of the main species for winter grazing in these systems, with high 51 

applications of N-fertilizer. Lowe et al., (2005) recommended that 50-85 kg N ha-1month-1 be 52 

applied to annual ryegrass during the winter months to maintain high productivity. Due to the 53 

combination of high fertilizer rates, high rainfall events and temperatures throughout the year, 54 

elevated emissions of N2O can be expected. 55 

Although high denitrification rates have been reported from subtropical pastures in Australia 56 

(Weier et al. 1993), only limited information on emissions of GHG is available for these 57 

systems. Previous studies in Australia have typically investigated GHG emissions in 58 

temperate pastoral systems (Eckard et al. 2003; Kelly et al. 2008; Livesley et al. 2008). The 59 

few studies from subtropical or tropical pastures have utilized comparatively coarse weekly 60 

or monthly gas sampling (Allen et al. 2009; Erickson et al. 2001; Keller and Reiners 1994; 61 

Veldkamp et al. 1998). To date no investigations of GHG emissions from humid subtropical 62 

pastures have been published based on high temporal resolution field studies.  63 
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A promising new approach to GHG mitigation is the application of biochar to soils. This 64 

offers the potential of sequestering carbon in the soil, since charcoal generally is resistant to 65 

rapid microbial degradation (Lehmann et al. 2006). Moreover, it has been shown that biochar 66 

amendment to soils can significantly impact soil quality and plant growth (Chan et al. 2007; 67 

2008) and initial research also indicated the potential to reduce the emissions of GHG from 68 

soils (Yanai et al. 2007). The mechanisms responsible for the effects of biochar on soil GHG 69 

emissions are still unclear (Van Zwieten et al. 2009). Most studies have investigated the 70 

effect of biochar on soil-borne GHGs emissions in laboratory incubation studies (Clough et 71 

al. 2010; Singh et al. 2010; Van Zwieten et al. 2010) while the few studies based on field 72 

measurements have used sporadic weekly to monthly measurements (Rondon et al. 2005; 73 

Zhang et al. 2010). To date, no investigations have been published based on detailed field 74 

measurements. By using a fully automated closed chamber monitoring system we wanted to 75 

test the hypothesis that biochar amendment will reduce the emission of GHG on a field level. 76 

The aims of this study were to (i) investigate the effect of soil biochar amendment on the 77 

emissions of soil-borne GHGs and (ii) quantify the net fluxes of N2O, CH4 and CO2 from a 78 

subtropical pasture during the winter month when high rates of fertiliser are commonly 79 

applied and consequently high fluxes of N2O can be expected.  80 

 81 

Material and methods 82 
 83 
Study site 84 
 85 

The field experiment was carried out at the Wollongbar Agricultural Institute (28°50′S, 86 

153°25′E) in north-eastern NSW between April and June 2009. The climate is humid 87 

subtropical with a predominantly summer rainfall and an average annual precipitation of 88 

1800 mm. The mean daily minimum and maximum temperatures are 19.1 and 26.9°C in the 89 

summer, and 10.5 and 19.2°C in winter, respectively. The soil is a red Ferrosol (Isbell 2002) 90 

derived from basalt with a clay loam soil surface, pH of 4.6 (1:5 in CaCl2) and organic C 91 

content in unamended sites (0-10 cm) of 4.5 % (Table 1). Our GHG study was superimposed 92 

on a subset of an existing factorial experiment on 5 m2 subplots using 3 replicates in an 93 

randomised block design (Sinclair et al. 2009). The GHG study compared biochar 94 

amendment with a control. The biochar was produced by Pacific Pyrolysis P/L from cattle 95 

feedlot waste using a 300 kg h-1 slow-pyrolysis unit located at Somersby, NSW. The highest 96 

temperature of treatment was 5500C, with a mean residence time of 45 minutes. The cattle 97 

feedlot biochar was applied at 10 t ha-1 in November 2006 and was incorporated to a depth of 98 



4 
 

10cm. This biochar is described in more detail in (Sinclair et al. 2009); in summary, the 99 

biochar had 44% total C (Total C was measured by Dumas combustion using an Elementar 100 

vario MAX CN analyser with combustion chamber set at 900 °C and oxygen flow rate of 125 101 

mL/min), pH (CaCl2 5:1) of 9.7 and an acid neutralising capacity (method 19A1 of Rayment 102 

and Higginson (1992)), of 13% that of agricultural lime, had 73mg/kg (Bray 1) P (method 103 

9E2 of Rayment and Higginson (1992)).  Nitrate and ammonium (method 7C2 of Rayment 104 

and Higginson (1992)) were below level of detection (0.3mg/kg). The biochar was also 105 

shown to have a molar H/C ratio of 0.51 (determined by Bureau Veritas International Trade 106 

Australia using Australian Standard Method AS 1038.6.1), which was similar to ratios for 107 

other slow pyrolysis biochars described in Van Zwieten et al., 2010.. Amarillo pinto peanut 108 

(Arachis pintoi L.) and annual ryegrass (Lolium rigidum L.)  were grown during the year, 109 

with the site receiving twice yearly applications of P (28 kg ha-1) and K 50 (kg ha-1) (K 110 

Sinclair, Wollongbar Primary Industries Institute, pers comm.). Over the winter ryegrass 111 

season, the plots received the equivalent of 6 applications in total (per year) of 46 kg N as 112 

urea ha-1. A significant response to both N and P uptake from the biochar amendment, as well 113 

as a significant increase in pasture biomass yield has been reported by Sinclair et al. (2009).  114 

Table 1: Soil properties of the different research sites 115 

 116 

 117 

 118 

 119 

 120 

 121 

 122 

 123 

Continuous trace gas flux measurement 124 

The soil–atmosphere exchange of N2O, CH4 and CO2 was measured with a mobile fully 125 

automated measuring system from April 19 to June 15 2009. Soil-atmosphere exchange 126 

measurements were taken from 3 subplots for each treatment within the split-plot design. Six 127 

Treatment Control Plot Biochar  

SOC (%) 4.4 ± 0.12 4.6 ± 0.08 

N (%) 0.45  ± 0.01 0.44 ± 0.01 

pH( CaCl2) 4.5 4.7 

Bulk density (g cm-3) 1.01 1.01 

Texture (USDA) Clay Clay 

Clay (%) 65 65 

Silt (%) 16 16 

Sand (%) 9 9 
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acrylic sampling chambers (50cm x 50cm x 15cm) were fixed on stainless steel frames. The 128 

lids of the chambers were opened and closed automatically with pneumatic pistons. A full 129 

measurement cycle for the GHG flux determination commenced with chamber lid closure and 130 

finished 96 min later when the lid opened. During the closure period four air samples from 131 

each chamber were taken sequentially (12 min apart) and injected towards the analytical 132 

devices. Afterwards the chambers stayed open for 96 min before a new measuring cycle was 133 

started. This enabled up to 8 single flux rates to be determined per chamber and day. Changes 134 

in N2O and CH4 concentration after chamber closure were measured with a gas 135 

chromatograph (SRI 8610C, Torrance/USA) equipped with a 63Ni electron capture detector 136 

(ECD) for N2O analysis and a flame ionisation detector (FID) for CH4 analysis. These utilized 137 

stainless steel analytical columns packed with Haysep N and Haysep Q respectively. In 138 

addition, an infrared gas analyser (LI-COR 820, LICOR, Lincoln/USA) was installed to 139 

allow measurements of CO2 concentrations in air samples. To minimize the interference of 140 

moisture vapour and CO2 on N2O measurement, an Ascarite (sodium-hydroxide-coated 141 

silica) pre-column filled was installed upstream of the ECD and changed at fortnightly 142 

intervals. Sample gas measurements were calibrated automatically by a single point 143 

calibration using certified gas standards (Air Liquide, Dellas,TX, USA) of  900 ppm CO2, 144 

1.95 ppm CH4 and 0.5 ppm N2O. The detection limit of the system was approximately 1.0 µg 145 

N2O-N m-2 h-1 for N2O, 1.0 µg CH4-C m-2 h-1 for CH4 and 0.6 mg CO2 -C m-2 h-1  for CO2 146 

.Sample dilution via leakage was considered negligible. Further details on the automated 147 

system and analytical conditions applied for gas analyses are found in (Breuer et al. 2000; 148 

Kiese and Butterbach-Bahl 2002). Hourly N2O, CH4 and CO2 fluxes were calculated from the 149 

slope of the linear increase or decrease in gas concentration during the chamber lid closure 150 

and corrected for air temperature, atmospheric pressure and the ratio of chamber volume to 151 

surface area as described in detail by Barton et al. (2008). The Pearson’s correlation 152 

coefficient (r2) for the linear regression was calculated and used as a quality check for the 153 

measurement. Flux rates were discarded if r2 was < 0.80. 154 

 155 
Auxiliary measurements 156 

Soil temperature (10 cm) and chamber temperature was measured every minute in 157 

conjunction with the automatic sampling system using a PT100 probe (IMKO Germany). Soil 158 

moisture was measured in each treatment with a portable TDR probe (HydroSense CD 620 159 

CSA). Water-filled pore space (WFPS) was calculated using the measured soil bulk density 160 

data (arithmetic means of four samples) using a particle density of 2.65 g cm-3. Additionally, 161 
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at the beginning and end of the growing season, bulk soil samples were taken from each site 162 

by combining 5–10 soil cores (0–10 cm depth) and analysed for soil texture, total carbon (C 163 

%), total nitrogen (N%) (Table 1). 164 

 165 

Statistical Analysis 166 

Statistical analysis was undertaken using SPSS 16.0 (SPSS Inc., USA). Non-normal 167 

distribution of N2O, CO2 and CH4 emissions was shown using the Kolmogorov-Smirnov test. 168 

The non-parametric pair-wise Wilcoxon test was used without any data transformation for the 169 

comparison of control and biochar treatments. The relationships between trace gas flux and 170 

soil moisture and soil temperature was investigated through linear regression. The adjusted 171 

Pearson’s regression coefficient (r2) indicated the amount of variation in trace gas flux that 172 

can be explained by changes in soil moisture or temperature. 173 

 174 

Results 175 
 176 

N2O emissions 177 

For each individual chamber, 248 separate N2O fluxes were measured over the entire field 178 

campaign. Mean N2O emissions of all 744 flux rates for the biochar and the control treatment 179 

were 35.3 µg N2O-N m-2 h-1 and 31.1 µg N2O-N m-2 h-1, respectively (Table 2). 180 

Table 2: Mean N2O, CH4 and CO2 fluxes emissions from the biochar amended vs. the control treatments for measuring 181 
periods from April 19 to June 13, 2009. Means denoted by a different letter indicate significant differences between the 182 
individual sites (Wilcoxon test; p < 0.05). 183 

 Biochar Control 

Mean CO2 Flux 
[mg CO2 -C m-2 h-1] 67.70 ± 0.82a 67.88 ± 0.99a 

Mean CH4  Flux 
[µg CH4 -C m-2 h-1] -6.76 ± 0.20b -7.30 ± 0.19b 

Mean  N2O  Flux  
[µg N2O-N m-2 h-1] 

35.33 ± 4.83c 31.08 ± 3.50c 

 184 

Overall mean daily N2O emissions ranged from 1.9 to 502.2 µg N2O-N m-2 h-1and a high 185 

temporal and spatial variation was observed for both treatments. There was no significant 186 

influence of the biochar amendment (when compared to the control) on net N2O flux over the 187 

entire sampling period. During individual short periods with generally low fluxes (< 50 µg 188 
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N2O-N m-2 h-1) N2O emissions were significantly (p<0.05) lower from the biochar amended 189 

plots (Table 3).  190 

Table 3: N2O emissions from the biochar amended vs. the control treatments for individual measuring periods. Means 191 
denoted by a different letter indicate significant differences between the individual sites (Wilcoxon test; p < 0.05). 192 

Time Period N2O emission biochar 
[µg N2O-N m-2 h-1] 

N2O emission control 
[µg N2O-N m-2 h-1] 

19 Apr -15 May 15.94 ± 0.59a 22.82 ± 0.79b 
20 -26 May 132.28 ± 19.52c 89.81 ±  15.71c 
1-13 June 7.05 ± 3.08d 10.16 ± 2.80e 

 193 

During the first week of the measurements significantly higher N2O emissions were observed 194 

from the control treatment as compared to the biochar plots (Figure 1). But after relocation of 195 

the measuring chambers within each plot to reduce the impact of the chambers themselves on 196 

pasture growth, this effect was not apparent and from May 1 to May 11 only low N2O fluxes 197 

(< 30 µg N2O-N m-2 h-1) were observed from both treatment and control with no significant 198 

treatment effect. The application of nitrogen fertilizer (50 kg N ha-1 urea) on May 5 resulted 199 

in a 2-fold increase in N2O emissions in both biochar treatment and control (Figure 2). A 200 

major N2O emission pulse was observed from 20-23 May due to heavy rainfall (Sum: 201 

360mm) with WFPS exceeding 80% during this period. The mean daily emissions were 370 202 

µg N2O-N m-2 h-1, and in individual chambers flux exceeded 700 µg N2O-N m-2 h-1. This 203 

single emission pulse accounted for 68% and 49% of the total emissions over the observation 204 

period in the biochar and the control treatment, respectively. After this emission pulse, only 205 

minor rainfall events occurred (20mm) and WFPS remained low at less than 70%. During 206 

this dryer period, N2O fluxes ranged from 2-18 µg N2O-N m-2h-1, with slightly higher N2O 207 

emissions from the control plots (Figure 1). 208 

A positive correlation between soil moisture and N2O emissions was observed for both the 209 

biochar (r2 = 0.23, n = 42, p<0.01) and the control treatment (r2 = 0.22, n = 42, p<0.01), 210 

confirming that soil moisture was one of the main environmental factors influencing N2O 211 

emissions. There was no correlation between soil temperature and N2O emissions during the 212 

measuring period (biochar: r2 = 0.005; control: r2 = 0.014; n = 248, p>0.05). However, when 213 

we excluded the extraordinarily high N2O fluxes from the emission pulse (> 50 µg N2O-N 214 

m-2 h-1) a positive relationship between soil temperature and N2O fluxes was found for both 215 

the biochar (r2 = 0.17, n = 216, p<0.01) and the control treatment (r2 = 0.38, n = 216, p<0.01). 216 

A significant diurnal effect of soil temperature (10cm) on N2O fluxes could be observed 217 



8 
 

during periods with near constant WFPS and a representative example (2-7 May) is shown in 218 

Figure 2.  219 

 220 
Figure 1: Daily rainfall, average daily soil temperature (10 cm), average daily water-filled pore space (WFPS) and daily 221 
CO2, CH4 and N2O fluxes from the biochar and control pasture plots, for the period 19 April to 15 June 2009. Error bars 222 
indicate the standard error of the means (n = 3). Connecting lines are inserted showing the data points more clearly. 223 
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Depending on the daily meteorological conditions, soil temperature variation during this 224 

period ranged from 13.6 °C to 23.1 °C with maximum soil temperatures occurring between 225 

13:00 and 15:00 and minimums between 3:00 and 6:00. The amplitude of the diurnal N2O 226 

variation ranged from 3.2 to 16.3µg N m-2 hr-1 with fluxes increasing during daytime and 227 

decreasing during the night. Daily emission maxima generally occurred between 14:00 and 228 

18:00 with minimums between 3:00 and 7:00. After the application of 50 kg N ha-1 urea on 5 229 

May which resulted in a 2-fold increase in N2O emissions, a similar diurnal temperature 230 

effect was still observed.   231 

 232 
Figure 2: Diurnal patterns of N2O and CH4 emissions and soil temperature (10 cm) for the period from 02 May to 08 May 233 
2009. Error bars indicate the standard error of the means (n = 3). Connecting lines are inserted showing the data points 234 
more clearly. 235 
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CH4 uptake 237 

The pasture soils acted as a sink for atmospheric CH4 in both treatments. Mean daily CH4 238 

uptake rates from the pasture was found to be -6.8 µg CH4-C m-2 h-1 for the biochar plots and 239 

-7.3 µg CH4-C m-2 h-1 for the control plots. The highest uptake rates measured in individual 240 

chambers were up to -18 µg CH4-C m-2 h-1 (negative flux rates indicate soil uptake of 241 

atmospheric CH4). Over the measuring period no significant influence of the biochar 242 

amendment on CH4 fluxes could be observed. 243 

A positive correlation between soil moisture and CH4 uptake rates was observed in both the 244 

biochar (r2 = 0.27, n = 43, p<0.01) and the control treatment (r2 = 0.41, n = 43, p<0.01), 245 

indicating that CH4 uptake is suppressed under higher soil moisture conditions. During the 246 

major rain events from 20-23 May, uptake rates decreased substantially and methane was 247 

emitted (up to 7.3 µg CH4-C m-2 h-1 in individual chambers) under the very high soil moisture 248 

conditions (Figure 1). 249 

There was no correlation between soil temperature and CH4 uptake rates (biochar: r2 = 0.014; 250 

control: r2 = 0.012; n = 284, p>0.05). But a significant diurnal effect of soil temperature on 251 

CH4 fluxes could be observed for individual measurement days (Figure 2). During the period 252 

from 2-5 May, highest uptake rates were generally observed early in the morning whereas 253 

lowest CH4 uptake occurred in the late afternoon. The application of N fertilizer on May 5 254 

resulted in a reduction in CH4 uptake and during the following days no distinct diurnal pattern 255 

could be measured. 256 

 257 

CO2 emissions 258 

CO2 emissions arising from soil respiration could be observed during night hours only in 259 

order due to the confounding effects of plant photosynthesis during daylight hours inside the 260 

measuring chamber. Mean night-time CO2 emissions from the pasture ranged between 30 and 261 

88 mg CO2 -C m-2 h-1 with no significant differences between biochar amended vs. control 262 

plots (Table 2). There was only a weak positive correlation between soil moisture and CO2 263 

emissions in the biochar and no correlation in the control treatment (biochar: r2 = 0.16, 264 

p<0.05; control: r2 = 0.03, p>0.05, n = 41). A strong positive correlation between soil 265 

temperature and CO2 emission rates was observed in both the biochar (r2 = 0.27, n = 41, 266 

p<0.01) and the control treatment (r2 = 0.41, n = 41, p<0.01). In general, there were only 267 

minor temporal variations in CO2 emissions during the first 6 weeks of the observation 268 

period. During this time mean emissions typically ranged from 60 to 90 mg CO2 -C m-2 h-1 269 
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and followed no clear temporal trend. From 1 June, with declining soil temperature and 270 

moisture levels, CO2 fluxes decreased steadily to values of 30 mg CO2 -C m-2 h-1 (Figure 1). 271 

 272 

Discussion 273 
 274 

N2O emissions 275 

The mean N2O emissions were 30-35 µg N2O-N m-2 h-1 (corresponding to 2.7-3.1 kg N2O-N 276 

ha-1yr-1). This is higher than the 0.5 kg N2O-N ha-1yr-1 reported from extensively grazed 277 

subtropical pasture systems (Dalal et al. 2003; Denmead et al. 2000; Weier et al. 1991) and 278 

the 0.5 – 1.6 kg N2O-N ha-1yr-1 measured from a range of well established, unfertilized 279 

tropical pastures (Erickson et al. 2001; Keller and Reiners 1994; Mosier and Delgado 1997; 280 

Neill et al. 2005). But our measurements were lower than N2O flux measured in intensively 281 

managed temperate dairy pastures in Australia (4–13 kg N2O-N ha-1yr-1) (Dalal et al. 2003; 282 

Eckard et al. 2003; Phillips et al. 2007). However, it should be noted that we only measured 283 

emissions over a 2 month period in winter when high rates of fertiliser are commonly applied 284 

and consequently high fluxes of N2O can be expected. In order to fully capture seasonal and 285 

interannual variations of N2O emissions from subtropical pasture systems in Australia more 286 

year round measurements are required. 287 

N2O emissions were found to be highly episodic with one major emission pulse accounting 288 

for 68% and 49% of the total emissions in the biochar and the control treatment, respectively 289 

(Figure 1). This pulse emission occurred after heavy rainfall and the application of N 290 

fertilizer. This is in good agreement with previous reports that found highest N2O emissions 291 

following rainfall/irrigation shortly after N application (Hyde et al. 2006; Phillips et al. 2007). 292 

Various studies reported soil moisture content as one of the key regulators in gaseous N 293 

emissions from both temperate (Dobbie and Smith 2003; Ruzjerez et al. 1994; Smith et al. 294 

1998) and tropical pastures (Keller and Reiners 1994; Veldkamp et al. 1998). Water content 295 

controlls the level of microbiological activity and the pathway of nitrogen loss (aerobic 296 

nitrification vs. anaerobic denitrification). In our study, peak N2O emissions occurred under 297 

soil moisture contents ranging from 78% to 83% WFPS, indicating that these pulse emissions 298 

were primarily a result of enhanced denitrification activity. During the rest of the measuring 299 

period, soil moisture typically varied from 43% to 73% WFPS. At WFPS below 65-75%, 300 

nitrification is typically the major source of N2O emissions, with optimum rates occurring 301 
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between 60-70% (Bollmann and Conrad 1998; Linn and Doran 1984; Weier and Macrae 302 

1993). This suggests that during periods with generally low fluxes (< 50 µg N2O-N m-2 h-1) 303 

N2O emissions were predominantly produced through nitrification. However, this does not 304 

mean that at a WFPS below 70%, nitrification is the only source of N2O, and it is likely that 305 

nitrification and denitrification and/or nitrifier-denitrification were occurring simultaneously 306 

within aerobic and anaerobic microsites in the soil system (Livesley et al. 2008; Wrage et al. 307 

2001). In many laboratory studies a strong positive correlation between soil temperature and 308 

N2O emissions has been observed (Kiese and Butterbach-Bahl 2002; Smith et al. 2003). Field 309 

studies in subtropical and tropical ecosystems often could only establish a weak or 310 

nonexistent relationship between N2O flux and soil temperature. In tropical Australia, Breuer 311 

et al. (2000) reported no influence of temperature and whilst Kiese and Butterbach-Bahl 312 

(2002) demonstrated a significant influence in a laboratory experiment, however observed no 313 

influence during their field campaign using the same soil. This weak correlation is most 314 

likely related to the small daily and seasonal temperature fluctuation in tropical climates, and 315 

the overlaying effect that changes in WFPS override any obvious influence of temperature 316 

variations. This is supported by our results which only showed a significant correlation 317 

between soil temperature and N2O emissions when we excluded the extraordinarily high N2O 318 

fluxes from the emission pulse, indicating that the N2O emission pulse was primarily 319 

triggered by rapid changes in soil moisture. 320 

Over short periods when soil moisture conditions were non-limiting and near constant a clear 321 

diurnal N2O response to daily temperature fluctuations could be observed (Figure 2). Highest 322 

fluxes were generally observed in the late afternoon/early night and the diurnal amplitude in 323 

N2O emissions was approximately 2-fold. This agrees well with the work of Livesley et al. 324 

(2008) who observed 2-fold N2O flux variation in response to diurnal temperature from 5- 325 

15 °C changes in a temperate pasture system in Australia. Moreover, Scheer et al. (2008) 326 

reported a similar diurnal temperature effect in irrigated cotton when soil moisture conditions 327 

and inorganic nitrogen content were not limiting. However, other studies in agricultural 328 

systems did not observe a correlation between diurnal patterns of soil temperature and N2O 329 

flux (Ginting and Eghball 2005; Lessard et al. 1996), indicating that this diurnal emission 330 

patterns can only be observed under certain field conditions when other parameters such as 331 

WFPS and/or the availability of mineral nitrogen are not limiting. The diurnal temperature 332 

effect demonstrates that daily point measurements are often insufficient to represent the N2O 333 
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daily flux rates, and emphasises the need for automated trace gas measurements with sub-334 

daily resolution. 335 

CH4 uptake 336 

The soil at our site predominantly acted as a net sink for atmospheric methane. Mean CH4 337 

uptake rates of - 6.7 µg CH4-C m-2 h-1 (biochar) and -7.3 µg CH4-C m-2 h-1 (control)  338 

(corresponding to 0.59-0.64 kg CH4-C ha-1yr-1) are comparable to those measured in other 339 

subtropical or tropical pasture systems (Allen et al. 2009; Mosier and Delgado 1997; Verchot 340 

et al. 2000). Mosier and Delgado (1997) measured average uptake rates of -5.8 µg CH4-C m-2 341 

h-1 from different tropical soils in Western Cost Rica with no significant differences across 342 

sites. However, little data is available for subtropical/tropical pasture systems and CH4 fluxes 343 

ranging from -58 to +70 µg CH4-C m-2 h-1 have been reported for different 344 

subtropical/tropical pasture sites (Dalal et al. 2008). The uptake rates are also within the 345 

range of different pasture system in temperate climates (Mosier et al. 1991; van der Weerden 346 

et al. 1999). In Australia, Livesley et al. (2008, 2009) measured uptake rates between -6.3 and 347 

-8.6 µg CH4-C m-2 h-1 in a sheep grazed pasture in Victoria and -5.97 µg CH4-C m-2 h-1 in a 348 

clover-grass pasture in Western Australia. Generally, observed rates of CH4 consumption 349 

were higher in temperate compared to tropical grasslands. In a review study on soil CH4 350 

fluxes from different ecosystems Dalal et al. (2008) reported seven times greater CH4 uptake 351 

rates from temperate (-55 µg CH4-C m-2 h-1) compared to tropical (-8 µg CH4-C m-2 h-1) 352 

grasslands. 353 

A significant positive correlation of soil moisture content and CH4 uptake has often been 354 

reported, since the magnitude of CH4 uptake by soils is largely controlled by diffusion of 355 

atmospheric methane into the soil (Ball et al. 1997; Koschorreck and Conrad 1993). In our 356 

study, we found CH4 uptake rates suppressed under high soil moisture conditions during 357 

major rainfalls from 20-23 May (Figure 1). CH4 emissions were observed when WFPS 358 

exceeded 80%, indicating that the high soil moisture content created anaerobic conditions in 359 

the subsoil in such way that the soil became a net source of CH4. However, the soil-360 

atmosphere exchange of CH4 is the result of simultaneously occurring production and 361 

consumption processes in soils and it has been shown that both CH4 production and CH4 362 

oxidation can occur simultaneously in wet soil (Khalil and Baggs 2005). 363 

We found only a weak correlation between soil temperature and CH4 oxidation with CH4 364 

oxidation decreasing with increasing temperature. However, during the first week of the 365 
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measurements we could clearly identify a response of CH4 uptake to the diurnal temperature 366 

fluctuations (Figure 2) with highest uptake rates during the night and early in the morning 367 

when soil temperature was low. This is in contrast to other studies who found a positive 368 

correlation of net CH4 uptake with temperature (Butterbach-Bahl and Papen 2002; Dunfield 369 

et al. 1993; Wu et al. 2010). It remains unclear what caused this contrasting observations 370 

since microbial activity and hence CH4 uptake rates are generally expected to increase with 371 

soil temperatures increasing from 10°C to 25 °C. We presume that CH4 uptake was 372 

influenced by diurnal effects of root respiration and/or other microbial soil processes which 373 

affected the availability of oxygen in the soil. 374 

The application of urea on 5 May resulted in an approximate 30% decrease of CH4 uptake 375 

rates. This effect agrees well with observation from other studies where soil NH4
+ status has 376 

frequently been reported to inhibit soil CH4 oxidation (Steudler et al. 1989; Veldkamp et al. 377 

2001). This effect is commonly explained by CH4 oxidation and ammonium oxidation both 378 

competing for O2 and ammonia competitively binding to the methane monooxygenase 379 

(MMO) enzyme (Hutsch 1998). However, it has been noted that this may be an 380 

oversimplification since other studies showed no effect of fertilizer application on soil CH4 381 

oxidation or even a stimulation of CH4 consumption in N limited soils (Bodelier and 382 

Laanbroek 2004; Glatzel and Stahr 2001; Veldkamp et al. 2001). Soil N content and fertilizer 383 

application can affect CH4 oxidation via various soil physicochemical and biological factors 384 

and alter the competition for N and C between plants methanotrophs and other microbial 385 

communities. Forest soils with high deposition of atmospheric nitrogen or agricultural soils 386 

with high fertiliser input seem to be the most prevalent systems where a N-based inhibition is 387 

expected to occur (Bodelier and Laanbroek 2004). 388 

CO2 emissions 389 

Average CO2 emission of 68 mg CO2-C m-2 h-1 (corresponding to 16.3 kg CO2-C ha-1 day -1) 390 

measured in the pasture system was greater than the 9.9 kg CO2-C ha-1 day-1 reported in a 391 

sub-humid subtropical pasture in central Queensland (Kaur et al. 2005) and values  generally 392 

reported for global grasslands (4.1 -5.1 kg CO2-C ha-1 day-1) (Raich and Schlesinger 1992), 393 

though data from tropical and subtropical pastures is sparse. The high CO2 emissions from 394 

this site could also be an indication of high pasture productivity and soil microbial turnover 395 

and potentially high rates of mineralisation and de/nitrification, which is reflected in the 396 

generally high GHG fluxes. Soil temperature was the most important environmental variable 397 
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influencing CO2 flux which is in accordance with other studies on grasslands (Raich and 398 

Schlesinger 1992; Wu et al. 2010). However, there was only a weak correlation between soil 399 

moisture and CO2 emissions, which has often been reported as a key factor controlling soil 400 

respiration in pastures soils (Salimon et al. 2004; Wu et al. 2010). Soil moisture levels at our 401 

site were always in an optimal range (50-80% WFPS) for soil respiration so that it was never 402 

significantly limited by the soil water content. This is in agreement with other studies who 403 

reported enhanced CO2 emissions after the first rewetting after a prolonged dry period but 404 

only small increases after subsequent wetting events (Fierer and Schimel 2002; Wu et al. 405 

2010). Therefore, we presume that the gradual decrease of soil CO2 emissions toward the end 406 

of the measurements was mainly because of a decrease in soil temperature rather than 407 

moisture limitation. 408 

Effect of biochar amendment on soil GHG emissions 409 

Assessment of the net emissions showed that there was no influence of the biochar 410 

amendment, however, some reductions were observed during certain periods of the sampling. 411 

The hypothesis that the application of biochar would lead to a reduction in emissions of GHG 412 

from Ferrosol under pasture was not confirmed in this field experiment. This is in contrast to 413 

other studies (laboratory based) where significant reductions in GHG emissions after the 414 

addition of biochar to soils were reported (Rondon et al. 2005; Singh et al. 2010; Spokas et al. 415 

2009; Yanai et al. 2007). In a recent laboratory study Clough et al. 2010 found no impact of 416 

wood biochar on N2O emissions from a urine amended pasture soil and even elevated 417 

emissions from the biochar treatments for the first 30d of incubations. These contrasting 418 

findings clearly show that the effect of biochar on soil borne GHGs is not understood yet and 419 

that different biochar types in combination with different soils can yield varying results. 420 

Moreover, so far these experiments were mainly conducted as short term laboratory studies 421 

and care must be taken when extrapolating laboratory findings to field scenarios. In our 422 

current study, the significantly lower N2O emissions from the biochar amended plots during 423 

short periods of time where WFPS was below 75% and the significant increase of plant N and 424 

P uptake in the biochar plots (Sinclair et al. 2009) shows that biochar can potentially affect C 425 

and N transformations in the soil. In contrast, using the same soil type, Van Zwieten et al. 426 

(2010) showed the greatest influence of biochar on reduction of N2O emissions during 427 

flooding of soil in a longer-term laboratory incubation. Therefore we assume that under 428 

certain soil and management conditions biochar amendment could potentially mitigate GHG 429 

emissions from soils. Clearly, more studies are needed to investigate if biochar has the 430 
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potential to mitigate N2O emissions at field scale as has been indicated by laboratory 431 

incubations. Moreover, long-term studies are necessary to understand the long-lasting effect 432 

of biochar amendment on soil GHG emissions, and its response to seasonal and annual 433 

climatic variations. 434 

Conclusion 435 

To our knowledge this is the first study to report on the effect of soil biochar amendment on 436 

the emission of soil-borne GHGs based on high resolution field measurements. Using a fully 437 

automated closed chamber monitoring system we quantified emissions of N2O, CH4 and CO2 438 

from an intensive subtropical pasture with and without biochar amendment. The hypothesis 439 

that the application of biochar would lead to a reduction in emissions of GHG from soils did 440 

not hold. This demonstrates that conclusions drawn from microcosm incubation studies 441 

cannot be automatically applied on a field scale. This study also confirmed that intensive 442 

pastures on acidic Ferrosols in Northern NSW in Australia can be a significant source of 443 

GHGs due to substantial emissions of N2O following fertilizer application. However, more 444 

long-term studies that fully capture seasonal and interannual variations of GHG emissions are 445 

necessary in order to develop accurate greenhouse gas budgets for these subtropical pasture 446 

systems in Australia. 447 
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