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Effect of cannabidiol on endocannabinoid, glutamatergic and GABAergic
signalling markers in male offspring of a maternal immune activation (poly
I:C) model relevant to schizophrenia

Abstract

The mainstay treatment for schizophrenia is antipsychotic drugs (APDs), which are mostly effective against
the positive symptoms (e.g. hallucinations), but provide minimal benefits for the negative symptoms (e.g.
social withdrawal) and cognitive deficits. We have recently shown that treatment with the non-intoxicating
phytocannabinoid, cannabidiol (CBD), can improve cognition and social interaction deficits in a maternal
immune activation (MIA) model relevant to the aetiology of schizophrenia, however, the mechanisms
underlying this effect are unknown. An imbalance in the main excitatory (glutamate) and inhibitory (GABA)
neurotransmitter systems in the brain plays a role in the pathophysiology of schizophrenia. Therefore, the
endocannabinoid system could represent a therapeutic target for schizophrenia as a regulator of glutamate and
GABA release via the CB1 receptor (CB1R). This study investigated the effects of chronic CBD treatment on
markers of glutamatergic, GABAergic and endocannabinoid signalling in brain regions implicated in social
behaviour and cognitive function, including the prefrontal cortex (PFC) and hippocampus (HPC). Time-
mated pregnant Sprague-Dawley rats (n = 16) were administered poly I:C (4 mg/kg, i.v.) or saline (control)
on gestational day 15. Male offspring were injected with CBD (10 mg/kg, i.p.) or vehicle twice daily from
postnatal day 56 for 3 weeks. The prefrontal cortex (PFC) and hippocampus (HPC) were collected for post-
mortem receptor binding and Western blot analyses (n = 8 per group). CBD treatment attenuated poly I:C-
induced deficits in cannabinoid CB1 receptor binding in the PFC and glutamate decarboxylase 67, the
enzyme that converts glutamate to GABA, in the HPC. CBD treatment increased parvalbumin levels in the
HPC, regardless of whether offspring were exposed to poly I:C in utero. Conversely, CBD did not affect N-
methyl-d-aspartate receptor and gamma-aminobutyric acid (GABA) A receptor binding or protein levels of
fatty acid amide hydrolase, the enzyme that degrades the endocannabinoid, anandamide. Overall, these
findings show that CBD can restore cannabinoid/GABAergic signalling deficits in regions of the brain
implicated in schizophrenia pathophysiology following maternal poly I:C exposure. These findings provide
novel evidence for the potential mechanisms underlying the therapeutic effects of CBD treatment in the poly
I:C model.
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Abstract  51 

The mainstay treatment for schizophrenia is antipsychotic drugs (APDs), which are mostly 52 

effective against the positive symptoms (e.g. hallucinations), but provide minimal benefits for 53 

the negative symptoms (e.g. social withdrawal) and cognitive deficits. We have recently 54 

shown that treatment with the non-intoxicating phytocannabinoid, cannabidiol (CBD), can 55 

improve cognition and social interaction deficits in a maternal immune activation (MIA) 56 

model relevant to the aetiology of schizophrenia, however, the mechanisms underlying this 57 

effect are unknown. An imbalance in the main excitatory (glutamate) and inhibitory (GABA) 58 

neurotransmitter systems in the brain plays a role in the pathophysiology of schizophrenia. 59 

Therefore, the endocannabinoid system could represent a therapeutic target for schizophrenia 60 

as a regulator of glutamate and GABA release via the CB1 receptor (CB1R). This study 61 

investigated the effects of chronic CBD treatment on markers of glutamatergic, GABAergic 62 

and endocannabinoid signalling in brain regions implicated in social behaviour and cognitive 63 

function, including the prefrontal cortex (PFC) and hippocampus (HPC). Time-mated 64 

pregnant Sprague-Dawley rats (n = 16) were administered poly I:C (4 mg/kg, i.v.) or saline 65 

(control) on gestational day 15. Male offspring were injected with CBD (10 mg/kg, i.p.) or 66 

vehicle twice daily from postnatal day 56 for 3 weeks. The prefrontal cortex (PFC) and 67 

hippocampus (HPC) were collected for post-mortem receptor binding and Western blot 68 

analyses (n = 8 per group). CBD treatment attenuated poly I:C-induced deficits in 69 

cannabinoid CB1 receptor binding in the PFC and glutamate decarboxylase 67, the enzyme 70 

that converts glutamate to GABA, in the HPC. CBD treatment increased parvalbumin levels 71 

in the HPC, regardless of whether offspring were exposed to poly I:C in utero. Conversely, 72 

CBD did not affect N-methyl-D-aspartate receptor and gamma-aminobutyric acid (GABA) A 73 

receptor binding or protein levels of fatty acid amide hydrolase, the enzyme that degrades the 74 

endocannabinoid, anandamide. Overall, these findings show that CBD can restore 75 
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cannabinoid/GABAergic signalling deficits in regions of the brain implicated in 76 

schizophrenia pathophysiology following maternal poly I:C exposure. These findings provide 77 

novel evidence for the potential mechanisms underlying the therapeutic effects of CBD 78 

treatment in the poly I:C  model.   79 
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1. Introduction 80 

  81 

The prefrontal cortex (PFC) and hippocampus (HPC) are anatomically connected and 82 

synchrony between the two regions in important for normal brain function (Li et al., 2015). 83 

However, people with schizophrenia exhibit structural abnormalities in these brain regions, 84 

including reduced hippocampal volume and cortical thinning in the PFC (Dietsche et al., 85 

2017; van Erp et al., 2016). In addition, patients show abnormal activity in the default mode 86 

network (i.e. the network of brain regions that are active at rest) and during memory tasks 87 

(e.g. evidenced by reduced gamma oscillations), suggesting that dysfunction in these regions 88 

may underlie the symptomatology of the disorder, particularly the negative and cognitive 89 

symptom domains (Gonzalez-Burgos and Lewis, 2012; Guo et al., 2017). Unfortunately, the 90 

negative and cognitive symptoms tend to precede the onset of psychosis, are persistent over 91 

the course of the disorder, and are associated with poor functional outcomes in patients 92 

(Lindenmayer et al., 2013; Barch and Ceaser, 2012). Although antipsychotic drugs (APDs) 93 

are generally effective at controlling the positive symptoms of schizophrenia (e.g. 94 

hallucinations and delusions), the drugs have poor efficacy against the negative symptoms 95 

(e.g. social withdrawal) (Lindenmayer et al., 2013) and cognitive deficits of schizophrenia 96 

(Goff et al., 2011), and in some cases can worsen cognition (Hill et al., 2010). Despite the 97 

introduction of newer ‘second generation’ APDs to the market, this drug class does not 98 

exhibit superior efficacy to ‘first generation’ APDs (reviewed in MacKenzie et al., 2018). 99 

Therefore, new therapeutic options that can address the negative and cognitive symptom 100 

domains of schizophrenia are required. 101 

 102 

Cannabidiol (CBD), the main non-intoxicating phytocannabinoid found in the cannabis plant, 103 

has the potential to alleviate symptoms across a range of pathological conditions, including 104 
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epilepsy, chronic pain, anxiety and movement disorders (e.g. Parkinson’s disease) (Crippa et 105 

al., 2018; Osborne et al., 2017b). However, there are limited studies that have investigated the 106 

chronic effects of CBD treatment in schizophrenia. CBD (800 mg, 4 weeks) significantly 107 

improved symptoms (measured on the Positive and Negative Syndrome Scale (PANSS)) in 108 

acute paranoid schizophrenia patients in a manner comparable to amisulpride, but had a more 109 

favourable side effect profile (e.g. less body weight gain) (Leweke et al., 2012). Recent 110 

clinical trials have explored the therapeutic potential of CBD as an adjunct to existing APD 111 

medications of stable schizophrenia outpatients. After 6 weeks of treatment, PANSS scores of 112 

the CBD-treated group (1000 mg/day, 6 weeks) significantly improved compared to placebo, 113 

while cognition improved from baseline (assessed using Brief Assessment of Cognition in 114 

Schizophrenia), but fell short of statistical significance against placebo (p = 0.068) (McGuire 115 

et al., 2018). In contrast, a similar trial that used a lower dose of CBD (600 mg/day, 6 weeks) 116 

found no improvement on PANSS or the MATRICS Consensus Cognitive Battery compared 117 

to baseline (Boggs et al., 2018), suggesting that dosage may be a critical factor for the 118 

efficacy of CBD in schizophrenia, particularly in APD-treated patients. Our laboratory 119 

recently reported that CBD treatment improved cognition and social interaction in adult male 120 

rat offspring exposed to maternal immune activation (MIA) using polyinosinic-polycytidilic 121 

(poly I:C) acid (Osborne et al., 2017a), which mimics some of the positive and negative 122 

symptoms, and cognitive deficits observed in schizophrenia (Meyer and Feldon, 2012). 123 

However, the mechanisms by which CBD improves negative and cognitive phenotypes in 124 

poly I:C offspring is unknown.  125 

 126 

The endogenous cannabinoid (eCB) system plays an important role in various physiological 127 

functions, including neuroprotection, synaptic plasticity, memory and reward processing. The 128 

cannabinoid CB1 receptor (CB1R) is the main receptor of the eCB system in the brain with 129 
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high expression levels in regions involved in cognitive function, including the PFC and HPC 130 

(Lu and Mackie, 2016). Multiple studies have implicated eCB system dysregulation in the 131 

pathophysiology of schizophrenia, including alterations in CB1R expression (reviewed in 132 

Ferretjans et al., 2012), its endogenous ligand anandamide (AEA) (De Marchi et al., 2003; 133 

Giuffrida et al., 2004; Koethe et al., 2009; Leweke et al., 1999), and fatty acid amide 134 

hydrolase (FAAH), the enzyme primarily responsible for the degradation of AEA (Bioque et 135 

al., 2013; Takata et al., 2013). The eCB system is functionally linked to the major excitatory 136 

(glutamatergic) and inhibitory (GABAergic) neurotransmitter systems in the brain, as 137 

endogenous cannabinoids bind to the CB1R and dampen presynaptic glutamate and/or 138 

GABA release (Viveros et al., 2012). An imbalance in glutamatergic and GABAergic 139 

signalling in the brain has been implicated in the cognitive deficits of schizophrenia 140 

(Gonzalez-Burgos and Lewis, 2012). Post-mortem schizophrenia studies report alterations in 141 

the ionotropic glutamatergic N-methyl-D-aspartate receptor (NMDAR) and its obligatory 142 

GluN1 subunit (Catts et al., 2016), and gamma-aminobutyric acid alpha receptor (GABAAR) 143 

(Gonzalez-Burgos and Lewis, 2008), as well as a reduction in glutamate decarboxylase 67 144 

(GAD67; the rate-limiting enzyme that converts glutamate to GABA) and the calcium binding 145 

protein parvalbumin (PV), expressed on GABAergic interneurons (Cohen et al., 2015). The 146 

interaction of CBD with the eCB, glutamatergic and GABAergic systems is not well 147 

understood. CBD blocks the effects of CB1R/CB2 combined receptor agonists (McPartland 148 

et al., 2015; Pertwee, 2008; Thomas et al., 2007), acting as a CB1R negative allosteric 149 

modulator (NAM) in vitro (Laprairie et al., 2015) and may increase AEA levels by inhibiting 150 

FAAH activity (Leweke et al., 2012). Studies show that CBD can prevent behavioural and 151 

neurochemical deficits induced by NMDAR antagonism (Gomes et al., 2015a; Gururajan et 152 

al., 2012), and can act as a positive allosteric modulator of the GABAAR to increase 153 

inhibitory tone (Bakas et al., 2017). Therefore, the aim of this study was to examine the 154 
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effects of CBD treatment on eCB (CB1R binding density and FAAH protein levels), as well 155 

as glutamatergic (NMDAR binding and subunit levels) and GABAergic (GABAAR binding 156 

density, GAD67 and PV protein levels) markers in the brains of poly I:C offspring that exhibit 157 

cognitive deficits.  158 

 159 

 160 

2. Experimental Procedures 161 

 162 

2.1 Ethics Statement  163 

Experimental procedures were approved by the Animal Ethics Committee of the University 164 

of Wollongong, NSW, Australia (AE15/05) and complied with the National Health and 165 

Medical Research Council (NHMRC), Australian Code of Practice for the Care and Use of 166 

Animals for Scientific Purposes (NHMRC, 2013). All efforts were made to minimise the 167 

number and suffering of animals. 168 

 169 

2.2 Animal Experiments 170 

The detailed methods used for the animal experiments have been reported previously 171 

(Osborne et al., 2017a) in accordance with the Animal Research: Reporting of In Vivo 172 

Experiments (ARRIVE) guidelines (Kilkenny et al., 2010). Briefly, 16 time-mated pregnant 173 

Sprague-Dawley rats (12 weeks old, gestational day (GD) 15; Animal Resources Centre, 174 

Perth, WA) were administered poly I:C (4 mg/kg, i.v; Sigma-Aldrich, Castle Hill, Australia) 175 

or saline (control) to the lateral tail vein. Offspring were not cross-fostered and were 176 

maintained with their respective dams until weaning. After weaning (postnatal day (PN) 21), 177 

male offspring were pair-housed with same-treatment littermates. Offspring were 178 

administered CBD (10 mg/kg; i.p.; THC-Pharm GmbH, Frankfurt, Germany) dissolved in 179 
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Tween 80 and saline (vehicle, 1:16 (v/v); Chem Supply, Gillman, Australia), or vehicle 180 

(control), twice daily at 12 hourly intervals from PN 56 to PN 80, equating to late 181 

adolescence/early adulthood (Osborne et al., 2017a). The dose and duration of CBD 182 

administration was based on studies that report improvement in models with cognitive 183 

impairment following CBD treatment (Cassol et al., 2010; Barichello et al., 2012; Fagherazzi 184 

et al., 2012; Schiavon et al., 2014). During the second week of treatment (i.e. PN72), 185 

offspring underwent behavioural testing using the Novel Object Recognition, T-maze and 186 

Social Interaction tests as reported previously (Osborne et al., 2017a). The day after the last 187 

drug treatment, offspring were euthanased using carbon dioxide asphyxiation followed by 188 

rapid decapitation, between 09:00 and 11:30 h to minimise the potential effects of circadian 189 

rhythm variation on protein expression (Jasinska and Pyza, 2017). Whole brains were 190 

removed, immediately frozen in liquid nitrogen and stored at -80ºC until further analysis. 191 

 192 

2.3 Histological Procedures 193 

Rat brains (n = 8 per group) were sectioned coronally into alternating 14 µM or 500 µM 194 

sections using a cryostat (-17°C; Jung CM 3000, Leica Instruments GmbH, Nussloch, 195 

Germany). Sections were collected from the PFC (containing the prelimbic and infralimbic 196 

cortices; Bregma level: 4.2 mm to 2.56 mm) and HPC (containing the dorsal and ventral 197 

subregions, Bregma level: - 4.36 mm to - 6.00 mm). Consecutive sections (2-3 per region, per 198 

rat) were collected for receptor autoradiography experiments (14 µM) and thaw-mounted 199 

onto PolysineTM slides (Sigma-Aldrich, Castle Hill, NSW, Australia) then stored at -20ºC 200 

until further analysis. Sections (2-3 per region, per rat) collected for Western blot 201 

experiments (500 µM) were mounted on glass slides and regions of interest were 202 

microdissected using a micropuncture kit, then stored at -80ºC until further use. This 203 
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dissection protocol allowed investigation of receptor binding and protein levels from the 204 

same animals.  205 

 206 

2.4 In situ Receptor Autoradiography 207 

 208 

2.4.1 CB1R binding  209 

CB1R binding density was examined using in situ receptor autoradiography methods 210 

previously reported by our laboratory (Weston-Green et al., 2012a; Yu et al., 2013). Briefly, 211 

slides (3 slides per rat, per treatment group) were air-dried and incubated in 50 mM Tris-HCl 212 

buffer (pH 7.4) with 0.1% bovine serum albumin (BSA) for 15 min at room temperature. To 213 

determine total binding, sections were incubated in 50 mM Tris-HCl buffer (with 0.1% BSA) 214 

containing 10 nM [3H]SR141716A (43 Ci/mmol; PerkinElmer TM Life and Analytical 215 

Sciences, Boston, USA), a selective inverse agonist for the CB1R, for 60 min at room 216 

temperature. Non-specific binding was determined by incubating additional sections in 10 217 

nM [3H]SR141716A in the presence of 100 μM CP-55940 (Sapphire Bioscience, Redfern, 218 

NSW, Australia), a non-selective agonist of cannabinoid receptors. After incubation, slides 219 

were washed twice for 30 min in ice-cold buffer, rinsed in cold milliQ water and air-dried 220 

overnight.  221 

 222 

2.4.2 NMDAR binding  223 

NMDAR binding density was examined based on methods previously described by our 224 

laboratory (du Bois et al., 2009; Newell et al., 2007). Briefly, sections were incubated in 30 225 

mM N-2-hydroxyethyl piperazine-N′-2-ethanesulphonic acid (HEPES) buffer pH 7.5, 226 

containing 100 µM glycine, 100 µM glutamate, 1 mM ethylenediaminetetraacetic acid 227 

(EDTA) and 20 nM [3H]MK-801 (specific activity 22.5 Ci/mmol, PerkinElmer, Boston, 228 
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USA) for 2.5 hours at room temperature (RT). Non-specific binding was determined by 229 

incubating sections in the same buffer containing [3H]MK-801 in the presence of 200 µM 230 

unlabelled MK-801 (Sigma-Aldrich, Castle Hill, NSW, Australia). After incubation, sections 231 

were washed twice in ice-cold 30 mM HEPES buffer containing 1 mM EDTA (pH 7.5) for 232 

20 min each, rinsed in cold milliQ water and air-dried overnight. 233 

 234 

2.4.3 GABAAR binding  235 

GABAA receptor binding density was examined based on methods previously described by 236 

our laboratory and others (du Bois et al., 2009; Xia and Haddad, 1992; Yu et al., 2013). 237 

Briefly, sections were pre-incubated three times in 50 mM Tris-citrate (pH 7.0) buffer at 4ºC 238 

for 5 mins. Sections were incubated in 50 mM Tris-citrate buffer containing 50 nM [3H] 239 

muscimol (specific activity 29.5 Ci/mmol, PerkinElmer, Boston, USA), a selective agonist 240 

for the GABAAR, for 45 min at 4ºC. Non-specific binding was determined by incubating 241 

sections in 50 mM Tris-citrate (pH 7.0) buffer containing [3H] muscimol and 100 µM GABA 242 

(Sigma-Aldrich, Castle Hill, NSW, Australia). After incubation, sections were rinsed four 243 

times for 2 sec each in 50 mM Tris-citrate buffer (4°C), rinsed in cold milliQ water and air-244 

dried overnight.  245 

 246 

2.4.4 Quantification 247 

Slides from CB1R, NMDAR and GABAAR binding experiments were exposed to Amersham 248 

Hyperfilm ECL (GE Healthcare Life Sciences, Parramatta, NSW, Australia) for 5 (NMDAR 249 

and GABAAR) or 8 weeks (CB1R) with a set of Amersham tritium standards. After 250 

development, autoradiography films were de-identified, scanned using a GS-800 Imaging 251 

Densitometer (Bio-Rad, Hercules, California, USA), and quantified (left and right 252 

hemispheres) with Image J software (https://imagej.nih.gov/ij). Images were calibrated based 253 

https://imagej.nih.gov/ij
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on the Rodbard curve obtained from the tritium standards to produce nCi/mg tissue 254 

equivalent (TE) values. Specific binding density was estimated by subtracting non-specific 255 

binding from total binding values. Values were converted to fmoles [3H] ligand per mg TE 256 

taking into account the specific activity of the ligand, as we have previously reported 257 

(Weston-Green et al., 2012a, 2012c, 2008). Tissue sections that were damaged were excluded 258 

from analysis. Anatomical structures were confirmed using a standard rat brain atlas (Paxinos 259 

and Watson, 2007).  260 

 261 

2.5 Western Blot and Quantification 262 

Brain samples containing the PFC and HPC (left and right hemispheres combined) were 263 

homogenised in buffer containing 0.1 M Tris-HCl, 2 mM EDTA, 10% glycerol, 2% SDS, 0.5 264 

mM PMSF, Protease Inhibitor Cocktail (P8340; Sigma-Aldrich, Australia) and Phosphatase 265 

Inhibitor Cocktail 2 (P5726; Sigma-Aldrich, Australia) as previously described (Lum et al., 266 

2016). A DC assay kit was used to determine total protein concentration following the 267 

manufacturer’s instructions (Bio-Rad, Australia). Crude homogenates (10 µg protein; within 268 

the linear range of detection of the primary antibodies, see Supplementary Figure 1) were 269 

loaded into CriterionTM TGX Stain-FreeTM 4-20% gels (Bio-Rad, Australia) and underwent 270 

electrophoresis in SDS buffer at 180V for 1 h. Gels were activated (GelDoc XR+ imaging 271 

system; Bio-Rad, Australia) (Colella et al., 2012; Gürtler et al., 2013), proteins were 272 

transferred on to polyvinylidene difluoride (PVDF) membranes (Bio-Rad, Australia) via 273 

electrophoresis for 1 h at 100 V, and imaged (GelDoc XR+ imaging system; Bio-Rad, 274 

Australia) to capture total protein in each lane (Colella et al., 2012; Gürtler et al., 2013). 275 

Membranes were blocked in 5% milk (w/v) in Tris Buffered Saline with Tween 20® (TBST) 276 

for 1 h at room temperature. To detect the proteins of interest, membranes were incubated 277 

overnight at 4ºC in the following primary antibodies: anti-FAAH (PFC: 1:2500, HPC: 1:5000 278 
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; #ab54615, Abcam), anti-GluN1 (1:10 000; #MAB363, Millipore), anti-GAD67 (1:7500 279 

#MAB5406, Millipore), anti-PV (1:10 000; #Ab11427, Abcam). Membranes were washed in 280 

TBST (5 x 5 min) and incubated at room temperature for 1 h with either horseradish 281 

peroxidase (HRP)-conjugated goat anti-rabbit (1:5000; #AP307P, Millipore) or anti-mouse 282 

secondary antibody (1:5000; #AP308P, Millipore). After washing in TBST (3 x 5 min), 283 

membranes were incubated in Enhanced Chemiluminescence (ECL) reagents (Bio-strategy 284 

Laboratory Products, Tingalpa, QLD Australia) and scanned using a Gel Imager (Amersham 285 

600RB, GE Healthcare, Parramatta, NSW Australia). De-identified band signals were 286 

quantified using Image Lab software (ver 6, Bio-Rad Laboratories Inc, California, USA). The 287 

values for each signal were normalised to total protein in the respective lane to account for 288 

loading variability (Colella et al., 2012; Gürtler et al., 2013). Values were then normalised to 289 

an internal control sample (consisting of equal amounts of sample pooled together) to account 290 

for inter-gel variability. Samples were assayed in duplicate at a minimum.  291 

 292 

2.6 Statistical Analysis 293 

Statistical analyses were performed using SPSS (Version 21.0, IBM Inc., Illinois, USA). Data 294 

points that were ± 2SD from the mean were considered outliers and removed from analysis. 295 

Data were tested for normality using Shapiro-Wilk tests. Two-way ANOVAs were used to 296 

examine the effects of PRENATAL INFECTION (poly I:C vs. vehicle) and OFFSPRING 297 

TREATMENT (CBD vs. vehicle) on receptor binding density and protein levels. Pairwise 298 

comparisons (with Bonferroni adjustment) were used to examine differences between groups. 299 

Data that were not normally distributed were transformed, retested for normality using 300 

Shapiro-Wilk tests, and analysed using parametric testing. Variables that remained non-301 

normally distributed following transformation or that violated Levene’s Test for Equality of 302 

Variances were analysed using non-parametric Mann-Whitney U tests (indicated in the 303 
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Results section). Relevant comparisons were made between vehicle-treated control and poly 304 

I:C offspring (CONT+VEH vs. POLY+VEH), vehicle and CBD-treated poly I:C offspring 305 

(POLY+VEH vs. POLY+CBD), as well as vehicle and CBD-treated control offspring 306 

(CONT+VEH vs. CONT+CBD). Where significant differences between the POLY+VEH and 307 

POLY+CBD groups were observed, an additional comparison was made between the 308 

CONT+VEH and POLY+CBD groups to determine if CBD restored the parameter to control 309 

levels. P values less than 0.05 were considered statistically significant. Data are presented as 310 

mean ± standard error of the mean (SEM).  311 

 312 

 313 

3. Results 314 

To determine the potential mechanisms underlying the beneficial effects of CBD, eCB, 315 

NMDAR and GABAergic markers were analysed in the brains of control and poly I:C 316 

offspring. Representative autoradiographs of CB1R ([3H]SR141716A), NMDAR ([3H]MK-317 

801) and GABAAR ([3H]Muscimol) total binding density (as well as non-specific binding for 318 

the respective ligands) in the PFC and HPC are shown (Figure 1). There was no difference in 319 

receptor binding density along the dorsal-ventral axis of the HPC (Supplementary Figure 2); 320 

therefore, the subregions were combined for analysis. Representative immunoblots showing 321 

the expected bands for FAAH (Figure 2C, 2D), the obligatory GluN1 subunit of the NMDAR 322 

(Figure 3C, 3D), GAD67 (Figure 4C, 4D) and PV (Figure 4E, 4F) are displayed with their 323 

respective graphs.   324 
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 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

Figure 1: Example autoradiographs showing cannabinoid CB1 receptor (CB1R), N-methyl-341 

D-aspartate receptor (NMDAR) and gamma-aminobutyric acid A receptor (GABAAR) 342 

binding in the adult rat brain. Schematic diagram adapted from a rat brain atlas (Paxinos and 343 

Watson, 2007) showing the approximate Bregma level quantified for the prefrontal cortex 344 

(PFC): 2.52 mm (containing the prelimbic and infralimbic cortices; shaded) and the 345 

hippocampus (HPC): - 4.92 mm (shaded). Example autoradiographs demonstrate 346 

[3H]SR141716A binding to CB1Rs, [3H]MK-801 binding to NMDARs and [3H]muscimol 347 

binding to GABAARs in the PFC and HPC. Autoradiographs show total binding (left) and 348 

non-specific binding (right) for each ligand. Example autoradiographs are from vehicle-349 

treated control offspring.  350 

 351 

 352 

3.1 Effect of cannabidiol on endocannabinoid markers 353 

CB1R binding density and FAAH protein levels were examined in the PFC and HPC to 354 

determine if maternal poly I:C exposure could result in persistent alterations to eCB markers, 355 

and whether chronic CBD treatment could reverse any changes. In the PFC, there was a 356 



16 

 

significant main effect of OFFSPRING TREATMENT (F (1, 26) = 6.481, p = 0.017) and a 357 

tendency for a PRENATAL INFECTION x OFFSPRING TREATMENT interaction (F (1, 26) 358 

= 2.993, p = 0.095), but no main effect of PRENATAL INFECTION (F (1, 26) = 1.679, p = 359 

0.206). Although the interaction did not reach statistical significance, visual inspection of the 360 

graph showed that poly I:C offspring had lower CB1R binding density in the PFC compared 361 

to control counterparts (-24.62%; POLY+VEH vs. CONT+VEH, p = 0.042) (Figure 2A). 362 

CBD treatment restored CB1R binding deficits in poly I:C offspring (+46.16%; POLY+CBD 363 

vs. POLY+VEH, p = 0.006) to control-like levels (POLY+CBD: 247.85 ± 15.19 vs. 364 

CONT+VEH: 224.97 ± 13.03; p = 0.275) (Figure 2A). CBD administration did not 365 

significantly alter CB1R binding density in the PFC of control offspring (CONT+CBD: 366 

239.91 ± 19.92 vs. CONT+VEH: 224.97 ± 13.03; p = 0.569) (Figure 2A). The reduction in 367 

CB1R binding density in poly I:C offspring appeared to be specific to the PFC, since there 368 

were no significant effects of maternal poly I:C exposure or CBD treatment on CB1R binding 369 

density in the HPC of offspring (PRENATAL INFECTION: F (1, 23) = 0.326, p = 0.574; 370 

OFFSPRING TREATMENT: F (1, 23) = 0.790, p = 0.383; PRENATAL INFECTION x 371 

OFFSPRING TREATMENT: F (1, 23) = 0.321, p = 0.576) (Figure 2B). FAAH protein levels 372 

in the PFC did not differ significantly between treatment groups (PRENATAL INFECTION: 373 

F (1, 27) = 0.112, p = 0.740; OFFSPRING TREATMENT: F (1, 27) = 1.610, p = 0.215; 374 

PRENATAL INFECTION x OFFSPRING TREATMENT: F (1, 27) = 0.690, p = 0.413) 375 

(Figure 2C). In line with the findings in the PFC, a two-way ANOVA showed no significant 376 

effects on FAAH protein levels in the HPC (PRENATAL INFECTION: F (1, 28) = 0.066, p = 377 

0.800, OFFSPRING TREATMENT: F (1, 28) = 0.356, p = 0.556, PRENATAL INFECTION x 378 

OFFSPRING TREATMENT: F (1, 28) = 0.185, p = 0.671) (Figure 2D).  379 
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 396 

 397 

Figure 2: Cannabidiol (CBD) attenuated deficits in cannabinoid CB1R binding density in the 398 

prefrontal cortex (PFC) of male offspring exposed to maternal poly I:C infection. CB1R 399 

([3H]SR141716A) binding density in the (A) PFC and (B) hippocampus (HPC) of offspring 400 

treatment groups. Normalised fatty acid amide hydrolase (FAAH) protein levels in the (C) 401 

PFC and (D) HPC with typical immunoblots for each treatment group shown underneath the 402 

graphs (normalised to total protein levels in the respective lanes). Data expressed as mean ± 403 

SEM. n = 6-8 rats per group. *p<0.05 vs. CONT+VEH, #p<0.05 vs. POLY+VEH group. TE 404 

= tissue equivalent.  405 
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3.2 Effect of cannabidiol on the glutamatergic NMDAR 407 

The effect of CBD treatment on NMDAR binding density and the obligatory GluN1 subunit 408 

of the NMDAR were examined in the PFC and HPC of offspring. A two-way ANOVA 409 

showed no significant effects of PRENATAL INFECTION (F (1, 25) = 0.054, p = 0.818) or 410 

OFFSPRING TREATMENT (F (1, 25) = 0.430, p = 0.518) on NMDAR binding density in the 411 

PFC, and no significant interaction between the factors (F (1, 25) = 0.224, p = 0.640) (Figure 412 

3A). A similar pattern was also observed in the HPC (PRENATAL INFECTION: F (1, 23) = 413 

0.120, p = 0.732; OFFSPRING TREATMENT: F (1, 23) = 2.256, p = 0.147; PRENATAL 414 

INFECTION x OFFSPRING TREATMENT: F (1, 23) = 0.712, p = 0.408) (Figure 3B). 415 

Reflecting the lack of change in binding density, GluN1 protein levels were not significantly 416 

altered between treatment groups in the PFC (Figure 3C) or HPC (Figure 3D) (PFC: 417 

PRENATAL INFECTION: F (1, 27) = 0.045, p = 0.833; OFFSPRING TREATMENT: F (1, 27) 418 

= 1.763, p = 0.195; PRENATAL INFECTION x OFFSPRING TREATMENT: F (1, 27) = 419 

1.524, p = 0.228. HPC (Mann-Whitney U tests): POLY+VEH vs. CONT+VEH, p = 0.600; 420 

POLY+CBD vs. POLY+VEH, p = 0.916; CONT+CBD vs. CONT+VEH, p = 0.999).  421 
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 438 

 439 

Figure 3: Cannabidiol (CBD) did not alter glutamatergic N-methyl-D-aspartate receptor 440 

(NMDAR) binding density or GluN1 protein levels in select brain regions of control (CONT) 441 

and poly I:C (POLY) offspring. NMDAR ([3H]MK801) binding density in the (A) PFC and 442 

(B) HPC of offspring. Normalised GluN1 subunit protein levels (normalised to total protein 443 

levels in the respective lane) in the (C) PFC and (D) HPC, with typical GluN1 immunoblots 444 

(~105 kDa) shown underneath each graph. Data expressed as mean ± SEM. n = 6-8 rats per 445 

group.  446 
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 449 

3.3 Effect of cannabidiol on GABAergic markers 450 

GABAAR binding density, as well as GAD67 and PV protein levels were examined in the 451 

PFC and HPC to determine whether CBD treatment could attenuate any changes in 452 

GABAergic markers following maternal poly I:C exposure. Mann-Whitney U tests revealed 453 

that poly I:C exposure did not significantly alter GABAAR binding density in the PFC 454 

(POLY+VEH vs. CONT+VEH: p = 0.568), and there was no significant impact of CBD 455 

treatment on GABAAR binding density in poly I:C (POLY+CBD vs. POLY+VEH: p = 456 

0.668) or control offspring (CONT+CBD vs. CONT+VEH: p = 0.317) (Figure 4A). 457 

Similarly, no significant changes in GABAAR binding density were observed in the HPC 458 

(PRENATAL INFECTION: F (1, 22) = 0.382, p = 0.543; OFFSPRING TREATMENT: F (1, 22) 459 

= 1.186, p = 0.288; PRENATAL INFECTION x OFFSPRING TREATMENT: F (1, 22) = 460 

1.814, p = 0.192) (Figure 4B). In the PFC, there was no significant difference in GAD67 461 

protein levels between groups (PRENATAL INFECTION: F (1, 28) = 0.244, p = 0.625; 462 

OFFSPRING TREATMENT: F (1, 28) = 0.149, p = 0.703; PRENATAL INFECTION x 463 

OFFSPRING TREATMENT: F (1, 28) = 0.364, p = 0.551) (Figure 4C). Conversely, a two-way 464 

ANOVA revealed significant main effects of PRENATAL INFECTION (F (1, 27) = 5.987, p = 465 

0.021) and OFFSPRING TREATMENT (F (1, 27) = 9.253, p = 0.005) on relative GAD67 466 

protein levels in the HPC. There was no significant PRENATAL INFECTION x 467 

OFFSPRING TREATMENT interaction (F (1, 27) = 0.600, p = 0.445); however, visual 468 

inspection of the means suggested individual group differences. Exploratory pairwise 469 

comparisons showed a significant reduction in GAD67 protein levels in poly I:C offspring (-470 

15.50%; POLY+VEH vs. CONT+VEH, p = 0.028), that was attenuated by CBD treatment 471 

(+17.85%; POLY+CBD vs. POLY+VEH, p = 0.013), and did not differ from controls 472 

(POLY+CBD: 1.04 ±0.05 vs. CONT+VEH: 1.01±0.05, p = 0.108) (Figure 4D). In the PFC, 473 
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Mann-Whitney tests showed no significant difference in PV protein levels between groups 474 

(CONT+VEH vs. CONT+CBD, p = 0.208; CONT+VEH vs. POLY+VEH, p = 0.247; 475 

POLY+VEH vs. POLY+CBD, p = 0.180) (Figure 4E). In the HPC however, CBD treatment 476 

significantly increased PV protein levels (+21.09 %, OFFSPRING TREATMENT: F (1, 26) = 477 

8.610, p = 0.007) relative to vehicle treatment (CBD: 1.04±0.05 vs. VEH: 0.82±0.06) (Figure 478 

4F). There was no main effect of PRENATAL INFECTION (F (1, 26) = 0.314, p = 0.580) and 479 

no significant interaction between the factors (F (1, 26) = 0.509, p = 0.482). 480 

 481 
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 520 

Figure 4: Cannabidiol (CBD) treatment altered glutamate decarboxylase 67 (GAD67) and 521 

pavalbumin (PV) protein levels in the hippocampus (HPC) of control (CONT) and poly I:C 522 

(POLY) offspring. GABAAR ([3H]Muscimol) binding density in the (A) prefrontal cortex 523 

(PFC) and (B) hippocampus (HPC) of offspring. Normalised glutamate decarboxylase 67 524 
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(GAD67) (C, D) and parvalbumin (PV) (E, F) protein levels (normalised to total protein 525 

levels in the respective lanes) in the PFC and HPC with representative immunoblots shown 526 

underneath the graphs. *p < 0.05 vs. CONT+VEH group, #p < 0.05 vs. POLY+VEH group; 527 

lines indicate offspring treatment effect (p < 0.01 CBD vs. VEH). Data expressed as mean ± 528 

SEM. n = 6-8 rats per group.  529 

 530 

 531 

4. Discussion 532 

 533 

We have previously shown that CBD treatment restored working and recognition memory, as 534 

well as social interaction deficits in male poly I:C offspring (Osborne et al., 2017a), however, 535 

the effects of CBD treatment on brain neurochemistry had not been characterised. The 536 

present study examined the effect of CBD treatment on eCB, glutamatergic and GABAergic 537 

markers in the PFC and HPC of male poly I:C offspring. We have shown that CBD treatment 538 

restored poly I:C-induced deficits in CB1R binding density in the PFC and hippocampal 539 

GAD67 levels, and increased PV protein levels in the HPC regardless of whether offspring 540 

were exposed to poly I:C in utero. This study provides the first evidence for the potential 541 

molecular mechanisms underlying the therapeutic effects of CBD in the poly I:C model, and 542 

may have implications for schizophrenia treatment.  543 

 544 

In the present study, we found that CB1R binding density was reduced in the PFC, but not the 545 

HPC of male poly I:C offspring that exhibit social interaction, recognition and working 546 

memory deficits (Osborne et al., 2017a). In line with our findings, post-mortem studies of 547 

predominantly male schizophrenia cohorts report alterations in CB1R expression in the PFC 548 

(Eggan et al., 2010, 2008; Urigüen et al., 2009), but not the HPC (Dean et al., 2001). 549 

Similarly, in other neurodevelopmental rodent models of schizophrenia, studies report 550 

alterations in CB1R protein and mRNA expression in the PFC following gestational 551 
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methylazoxymethanol (MAM) administration (Stark  et al., 2019; Gomes et al., 2018), with 552 

no change in CB1R binding, protein or mRNA expression in the HPC of male 553 

lipopolysaccharide- or MAM-exposed (in utero) offspring (Stark et al., 2019; Gomes et al., 554 

2018; Zavitsanou et al., 2013). However, this is the first study to report a corresponding 555 

reduction in CB1R binding density in the PFC, a region critical to memory and social 556 

behaviour, in male poly I:C offspring that also exhibit negative and cognitive phenotypes. 557 

Our findings are similar to a recent study that reported social interaction and recognition 558 

memory deficits in male offspring following gestational methylazoxymethanol (MAM) 559 

exposure, with concurrent alterations in CB1R protein and mRNA expression (albeit 560 

increases) in the PFC, but not the HPC of male offspring (Stark et al., 2019). It is unknown 561 

how CBD rescues changes in CB1R expression in neurodevelopmental models. Recent in 562 

vitro evidence suggests that CBD has an alternative mechanism of action to other 563 

phytocannabinoids (e.g. THC), instead acting as a negative allosteric modulator of the CB1R 564 

(Laprairie et al., 2015; Straiker et al., 2018; Tham et al., 2018). However, whether negative 565 

allosteric modulation of the CB1R by CBD is responsible for the therapeutic effects observed 566 

in the present study and others (e.g. Stark et al., 2019) is yet to be elucidated.  567 

 568 

Deficits in GABAergic signalling are thought to underlie the pathophysiology of 569 

schizophrenia, with post-mortem studies consistently reporting a reduction in GAD67 and PV 570 

expression in the cortex and HPC of patients (Guidotti et al., 2000; Zhang et al., 2002; 571 

Thompson et al., 2011; Kimoto et al., 2014). The reduction in hippocampal GAD67 levels 572 

observed in the present study aligns with previous poly I:C studies that report reduced GAD67 573 

protein and mRNA expression, mainly in the dorsal HPC (Dickerson et al., 2014; Luoni et al., 574 

2017; Richetto et al., 2013), with no changes in the medial PFC (Dickerson et al., 2014). 575 

Conversely, this is the first study to show that CBD can reverse deficits in hippocampal 576 
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GAD67 protein levels in poly I:C offspring. GAD67 is the rate-limiting enzyme responsible for 577 

approximately 90% of GABA synthesis in the brain and can provide an indication of GABA 578 

levels (Lazarus et al., 2015). Indeed, previous in vitro studies have reported that CBD can 579 

elevate GABA levels in cortical (Banerjee et al., 1975) and striatal membranes (Sagredo et 580 

al., 2007) by inhibiting GABA reuptake. While not impaired in poly I:C offspring in the 581 

present study, PV protein levels in the HPC were significantly increased by CBD treatment. 582 

The effect of CBD on hippocampal PV+ interneurons has not been reported in maternal 583 

manipulation models of schizophrenia previously; however, CBD attenuated a reduction in 584 

PV+ cells in the medial PFC following chronic administration of the NMDAR antagonist 585 

MK-801 (Gomes et al., 2015a). Importantly, PV expression is activity-dependent, therefore, 586 

taken together with recent in vitro findings that CBD can enhance inhibition elicited by PV+ 587 

and CCK+ GABAergic neurons (Khan et al., 2018), the results of the present study suggest 588 

that CBD may increase inhibitory tone within the hippocampus.  589 

 590 

In the present study, CBD treatment did not alter FAAH protein levels in the PFC or HPC. 591 

FAAH is the primary enzyme responsible for the intracellular hydrolysis of AEA in neurons 592 

(Lu and Mackie, 2016). AEA may play a protective role in schizophrenia, especially in the 593 

early stages of the disorder (Giuffrida et al., 2004; Koethe et al., 2009); therefore, compounds 594 

that limit AEA degradation (e.g. FAAH inhibitors) may be beneficial. Previous in vitro 595 

investigations have identified CBD as a FAAH inhibitor (Elmes et al., 2015; Leweke et al., 596 

2012; Bisogno et al., 2001; De Petrocellis et al., 2011). Although we did not detect any 597 

changes in FAAH protein levels following CBD treatment in the present study, we cannot 598 

discount changes in enzymatic activity. Alternatively, CBD could interact with fatty acid 599 

binding proteins, which are responsible for transporting AEA across the membrane for 600 

intracellular hydrolysis by FAAH (Elmes et al., 2015). Further examination of AEA transport 601 
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and degradation may provide additional insight into the mechanisms underlying the 602 

therapeutic benefits of CBD in the poly I:C model.  603 

 604 

CBD treatment did not alter NMDAR (or protein levels of its obligatory GluN1 subunit) and 605 

GABAAR binding, which are primarily responsible for excitation and inhibition in the mature 606 

brain, respectively. Our findings contrast with post-mortem studies in schizophrenia patients 607 

that report a modest down-regulation in NMDAR binding (Catts et al., 2016), with a 608 

corresponding up-regulation in GABAAR binding density (Benes et al., 1996a, 1996b; 609 

Verdurand et al., 2013). Alterations in individual receptor subunits have also been reported, 610 

including down-regulation of the GluN1 subunit of the NMDAR (Catts et al., 2015; Weickert 611 

et al., 2013), as well as specific α subunits of the GABAAR in patients (Beneyto et al., 2011; 612 

Volk et al., 2002) and poly I:C offspring (Meyer et al., 2008; Richetto et al., 2014). This is 613 

the first study to report that CBD treatment does not alter NMDAR and GABAAR binding 614 

density in male poly I:C offspring that do not exhibit binding deficits in these receptors. 615 

Literature investigating the effects of CBD treatment on these neurochemical markers in 616 

other preclinical schizophrenia models is limited. In line with the present study, CBD did not 617 

alter NMDAR or GABAAR density in a genetic mouse model of schizophrenia-like 618 

phenotypes (Neuregulin 1 transmembrane domain heterozygous mutant mice) that did not 619 

exhibit binding deficits (Long et al., 2012), but did restore GluN1 gene expression in the PFC 620 

of rodents exposed to NMDAR antagonism (MK-801) (Gomes et al., 2015a). Overall, the 621 

findings of the present study suggest that CBD may not exert its therapeutic effects via the 622 

NMDAR and GABAARs in poly I:C offspring. However, we cannot discount changes in 623 

other subunits of the NMDAR (e.g. GluN2A or GluN2B) or GABAAR (e.g. α subunits). 624 

Alternatively, CBD could alter receptor activity or expression on specific neuronal 625 
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populations (e.g. PV+ interneurons, pyramidal cells) not detectable in the present study, 626 

which could be addressed by future investigations.  627 

 628 

Although further research is needed to characterise the neurochemical changes observed 629 

following CBD treatment, this study provides the first insight into the potential mechanisms 630 

underlying the beneficial effects of CBD in a MIA model of schizophrenia. Following on 631 

from the previous behavioural investigation (Osborne et al., 2017a), the present study is 632 

limited by the use male offspring only. The eCB system is known to exhibit sexual 633 

dimorphism, particularly in CB1R expression and functionality (Rubino and Parolaro, 2011), 634 

therefore, future studies are needed to determine if female poly I:C offspring show a similar 635 

response to CBD treatment. Additionally, it is unclear whether the downregulation in CB1R 636 

binding and GAD67 levels in poly I:C offspring are a delayed result of the poly I:C stimulus; 637 

GABAergic and eCB signalling is present in the brain from early prenatal development 638 

(Danglot et al., 2006; Harkany et al., 2007), playing an important role in neuronal migration 639 

and proliferation, and is vulnerable to neuroinflammation (Di Marzo et al., 2015). Given that 640 

some behavioural phenotypes show delayed onset in the poly I:C model (reviewed in Meyer 641 

and Feldon, 2012), tracking the neurochemical profile of offspring would elucidate whether 642 

the deficits in CB1R binding and GAD67 levels are present from gestation (i.e. after the 643 

immune stimulus is delivered), or if the poly I:C insult primes the brain for altered maturation 644 

during adolescence. Nevertheless, CBD treatment during adolescence/early adulthood was 645 

able to rectify the behavioural (Osborne et al., 2017a) and neurochemical deficits observed in 646 

poly I:C offspring. 647 

 648 

 649 

 650 
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Conclusions 651 

In the present study, CBD treatment reversed deficits in CB1R binding density in the PFC 652 

and hippocampal GAD67
 protein levels in male poly I:C offspring. CBD also increased 653 

hippocampal PV levels regardless of in utero poly I:C exposure. CBD had no effect on 654 

FAAH protein levels, NMDAR or GABAAR binding density in either brain region examined, 655 

however, poly I:C offspring did not exhibit deficits in these markers. This is the first study to 656 

characterise the neurochemical changes that occur following CBD treatment in a MIA model 657 

of schizophrenia. Overall, our findings implicate eCB and GABAergic signalling markers in 658 

the therapeutic effects of CBD in male poly I:C offspring, and this may have important 659 

implications for schizophrenia treatment.  660 
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Supplementary Figure 1: Crude rat brain homogenate was prepared at increasing 1097 

concentrations of total protein (2.5, 5, 10, 15, 20 and 30 μg) and immunoblotted for the 1098 

primary antibodies of interest, A, B) fatty acid amide hydrolase (FAAH), C) GluN1 subunit, 1099 

D) glutamate decarboxylase (GAD67) and E) parvalbumin (PV), as previously described in 1100 

the original manuscript. 1101 
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Supplementary Figure 2: No difference in (A) CB1R ([3H]SR141716A), (B) NMDAR 1121 

([3H]MK801) or (C) GABAAR ([3H]Muscimol) binding density in the dorsal (left) and 1122 

ventral (right) hippocampus of control (CONT) and poly I:C (POLY) offspring. Data 1123 

expressed as mean ± SEM. n = 5-7 rats per group.  1124 
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