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We investigate the possible effect of cascade transitions from the (4s5p)3P0,1,2 states to the
(4s5s)3S1 state of Zn. The polarization of the light emitted in the subsequent decay to the
(4s4p)3P0,1,2 states has been the subject of recent controversy, with significant disagreement between
the experimental data reported by Pravica et al. (Phys. Rev. A 83 (2011) 040701) and by Clayburn
and Gay (Phys. Rev. Lett. 119 (2017) 093401) in the cascade-free region below ≈ 7.6 eV incident
energy and relatively good agreement above. The cross sections for excitation of the (4s5p)3P0,1,2

states, as well as higher-lying triplet states, and the linear polarization of the cascade radiation
seem too small to produce a significant alignment of the (4s5s)3S1 state, thereby raising additional
questions regarding the origin of the relatively large linear polarizations measured above the cascade
threshold.

I. INTRODUCTION

In a recent paper, Clayburn and Gay [1] reported their
measurements of the angle-integrated relative Stokes pa-
rameters (P1, P2, P3) in the (4s5s)3S1 → (4s4p)3P0 tran-
sition in Zn. These light polarizations completely char-
acterize the polarization state of the emitted radiation.
Specifically, with the light detector placed at right angle
to the incident beam direction, P1 and P2 are the linear
polarizations for (0◦, 90◦) and (45◦, 135◦) transmission,
respectively, while P3 is the circular polarization [2].

Of particular interest in this case is the linear polar-
ization P2. Clayburn and Gay found significant disagree-
ment of their data with the measurements reported by
Pravica et al. [3] in the cascade-free region of incident
electron energies below ≈ 7.6 eV, where the (4s5s)3S1

state can only be excited directly (no cascades) via an
electron exchange transition. Being an S state that is
classified to be essentially 100% pure [4], a spin polar-
ization of the incident beam can be transferred to the
excited Zn state and lead to circularly polarized radia-
tion. A measurement of this circular polarization may,
in fact, be used to optically determine the transversal
spin polarization Pe of the incident beam [5], since P3 is
directly proportional to this parameter. A further con-
sequence of this result is the fact that both P1 and P2

must vanish. By symmetry, P2 is generally also propor-
tional to Pe, but in this case the dynamics require the
proportionality factor to vanish.

The above situation is a special case of a more general
result derived a long time ago by Bartschat and Blum [6]:
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If the excited state is purely LS-coupled, explicitly spin-
dependent effects during the collision can be neglected,
and there is no cascade population to account for, then
P2 should vanish. This prediction was confirmed in sev-
eral experiments on heavy noble gases [7, 8] and held up
well until the report by Pravica et al. [3]. In a subse-
quent paper, Williams et al. [9] proposed an explanation
for their result. Their claim of a missing “geometrical
phase” in the ab initio quantum-mechanical numerical
treatments drew several dissenting Comments [10, 11].
In one of those Comments [11], it was demonstrated that
for a very heavy target such a Hg the total electronic an-
gular momentum J in the (6s7s)3S1 state can indeed be
aligned to a small extent, due to a combination of rela-
tivistic effects in the target description and some explic-
itly spin-dependent forces during the collision. However,
even for Hg the magnitude of the near-threshold P2/Pe

value was far less than the ≈ 10% found in Zn [3].

While the “zero” results of Clayburn and Gay for
P2/Pe below the cascade threshold in Zn, and hence the
strong disagreement with the Pravica et al. data in that
energy region, may not be surprising in light of the states
involved and the Bartschat-Blum theory, the two sets of
experimental data agree (within the specified uncertain-
ties) above the cascade threshold. Good agreement be-
tween the two experimental datasets also exists for both
P1 and P3/Pe.

The principal motivation for the present study was
the somewhat unexpected good agreement of P2/Pe be-
tween the two sets of experimental data above the cas-
cade threshold, where significant nonzero values (about
−10%) were reported from both experiments. This
is particularly relevant a few eV above the excitation
threshold. For the first 0.2 eV, only the (4s5p)3P0,1,2

states can be excited and subsequently emit radiation
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that may populate and hence align the (4s5s)3S1 state.
Given that these states are also well LS-coupled (about
95% [4]), one would not expect a significant polariza-
tion P2/Pe either. The largest effect might come from the
(4s5p)3P1 state, due to a small mixing with (4s5p)1P1,
which violates the conditions outlined by Bartschat and
Blum [6]. The (4s5p)3P0,2 states, on the other hand,
should be nearly pure LS-states, and a J = 0 state can-
not be aligned by any means. Consequently, one would
expect P2/Pe for (4s5p)

3P2 → (4s5s)3S1 to also be small.
While the (4s4d)3DJ states open up around 7.78 eV,

followed by other states with configurations (4s6s),
(4s6p), (4s5d), and (4s4f), the combined excitation cross
sections of the triplet states from these configurations
is relatively small (see Fig. 1 below). Furthermore, it
seems highly unlikely that one- or multi-step cascades
from these states to the (4s5s)3S1 state would collabo-
rate in such a way that the latter state would become
significantly polarized. Experience with cascades in gen-
eral, in fact, suggests that depolarization effects would
be the more probable outcome. Consequently, below we
limit the treatment of cascade effects to those originating
from the (4s5p)3PJ manifold. This is relatively straight-
forward and algebraically exact for the first 0.2 eV above
threshold. It can also be expected to be very appropriate
for the next few eV.

II. GENERAL THEORY

As shown in [6] and [13], all the light polarizations
can be expressed in terms of so-called “angle-integrated
state multipoles” (or “statistical tensors” [14]), which are
a combination of the density-matrix elements describing
an excited state. Specifically, only relative state multi-
poles enter, since everything can be normalized to the
monopole 〈T (J)+00〉, which is proportional to the abso-
lute cross section for excitation of the state with total
electronic angular momentum J according to 〈T (J)+00〉 =
Q(J)/

√
2J + 1.

A. Basic Formulas

We are specifically interested in electron impact ex-
citation by a transversally spin-polarized electron beam
without observation of the scattered electrons. Hence
we define our coordinate system as follows: The z-axis is
chosen along the incident-beam direction, while the spin-
polarization defines the y-axis. This is also the direction
along which the photon detector is placed. Due to the ax-
ial character of the spin-polarization vector, this problem
has planar symmetry similar to an electron-photon coin-
cidence setup with unpolarized electrons. However, addi-
tional restrictions apply. Specifically, Bartschat et al. [13]
showed that the monopole 〈T (J)+00〉 as well as the align-
ment component 〈T (J)+20〉 are independent of the elec-
tron spin polarization, the state multipole 〈T (J)+22〉 van-

ishes, and 〈T (J)+21〉 as well as the orientation 〈T (J)+11〉
are directly proportional to the transversal spin polariza-
tion Py. Furthermore, 〈T (J)+21〉 is real while 〈T (J)+11〉 is
purely imaginary.
We now define the reduced state multipoles

Akq(J) = 〈T (J)+kq〉/〈T (J)+00〉. (1)

The second-rank multipoles (k = 2) describe the align-
ment of the angular momentum J , the first-rank multi-
poles (k = 1) describe its orientation. With these defini-
tions, we can express the relative Stokes parameters for
a transition to a final state with total electronic angular
momentum Jf as

P1 = − α2

√

3/8A20(J)

1− α2A20(J)/
√
24

, (2a)

P2 =
α2A21(J)

1− α2A20(J)/
√
24

, (2b)

P3 = − α1Im{A11(J)}
1− α2A20(J)/

√
24

, (2c)

where Im{X} denotes the imaginary part of the quan-
tity X and

αk = (−1)J+Jf+k+13
√
2J + 1

{

1 1 k

J J Jf

}

. (3)

Here

{

j1 j2 j3
j4 j5 j6

}

is a standard 6j-symbol. For the

(4s5s)3S1 → (4s4p)3P0 transition we have J = 1 and
Jf = 0. After evaluating the 6j-symbols, this leads to

αk =
√
3 for this case.

B. Inclusion of Cascades

We now consider cascades from an upper level with
a total electronic angular momentum Ju down to a level
with J . According to [15] (Section 3.4.2), the state multi-
poles “seen” experimentally (labelled by the superscript
“e”) are given by

〈T e(J)+kq〉 = 〈T (J)+kq〉+
∑

Ju

g(J, Ju, k)〈T u(Ju)
+

kq〉, (4)

where the sum has to be performed over all upper levels
that can cascade into the level of interest.
Equation (4) shows that only state multipoles of the

same rank k and component q will contribute to a given
state multipole of the state of interest, i.e., the state
from which the radiation is ultimately observed. The
factor g(J, Ju, k) contains the relevant dipole matrix ele-
ments for the radiative transition, as well as several other
terms that depend on the angular momenta of the various
states involved. In principle, additional quantum num-
bers summarized by αu and α could be introduced to
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further specify the states of interest. However, we do not
need them for the few states considered here and hence
omit them for simplicity of notation.
In order to apply the above equations to our specific

case, we now make a few important, though very ap-
propriate assumptions. To begin with, we limit our-
selves to cascade effects involving only the (4s5p)3P0,1,2

states. Note that these states practically decay only to
the (4s5s)3S1 state. We therefore neglect the small de-
cay probabilities from the (4s5p)3P1 state to both the
(4s5s)1S0 excited state and the (4s2)1S0 ground state,
which can be nonzero due to the intermediate-coupling
nature of the (4s5p)3P1 state. Based on our own struc-
ture calculations, as well as the very small relative inten-
sity of the (4s5p)3P1 → (4s2)1S0 line and the absence
of a (4s5p)3P1 → (4s5s)1S0 line in the NIST Atomic
Spectra database [4], we estimate the branching ratio to
be less than 0.01%. Finally, we assume that the observed
radiation from the (4s5p)3P0,1,2 states is coming from in-

coherently excited fine-structure levels. Note that there
is no time resolution in the experiment under considera-
tion. The above assumption is valid, since the line width
of the emitted cascade radiation is much smaller than the
fine-structure splitting of the energy levels.

With these assumptions the general expression (3.78)
of [15] simplifies considerably, giving the factor g(J, Ju, k)
in Eq. (4) as

g(J, Ju, k)=(−1)J+Ju+k+1 (2Ju + 1)

{

Ju J 1

J Ju k

}

. (5)

Note that all dipole matrix elements for the
(4s5p)3P0,1,2 → (4s5s)3S1 transitions cancel as these
radiative decay channels are either the only possible
ones or at least by far dominant. Using the values J = 1
and Ju = 0, 1, 2 in Eq. (5) and collecting all the factors,
we obtain

〈T e(1)+00〉 = 〈T (1)+00〉+
[

〈T u(0)+00〉+
√
3〈T u(1)+00〉+

√
5〈T u(2)+00〉

]

/
√
3; (6a)

〈T e(1)+11〉 = 〈T (1)+11〉+
[

〈T u(1)+11〉+
√
5〈T u(2)+11〉

]

/2; (6b)

〈T e(1)+20〉 = 〈T (1)+20〉 −
[

〈T u(1)+20〉 −
√
7〈T u(2)+20〉

]

/2; (6c)

〈T e(1)+21〉 = 〈T (1)+21〉 −
[

〈T u(1)+21〉 −
√
7〈T u(2)+21〉

]

/2. (6d)

Equation (6a) expresses the fact that the apparent (i.e.,
observed) absolute cross section in this case is the sum of
the direct cross section for the (4s5s)3S1 state plus the
excitation cross sections for the (4s5p)3P0,1,2 states that
decay into it.
As a final step, we use the state multipoles 〈T e(1)+kq〉

to calculate the corresponding reduced state multipoles
of Eqs. (1) and finally the light polarizations according
to Eqs. (2).

III. COMPUTATIONS

In order to generate explicit values for the Stokes pa-
rameters, both characterizing the radiation from the di-
rectly excited (4s5s)3S1 and the (4s5p)3P0,1,2 states that
can radiatively decay into the former state, we performed
semi-relativistic Breit-Pauli collision calculations using
the B-spline R-matrix (BP-BSR) method [16] and the as-
sociated computer code [17], as well as the fully relativis-
tic convergent close-coupling (RCCC) approach [18, 19].
Specifically, the BP-BSR-43 model [20] coupled the low-
est 29 discrete states of Zn up to (3d104s4f)1F3, together
with the 14 states built from the configurations (3d104p2)
and (3d94s24p), respectively. The latter states lie above

the first ionization threshold of Zn and, to some extent,
account for coupling to the ionization continuum. As a
convergence check, we also carried out calculations with
just the lowest 15 discrete levels (BP-BSR-15). As ex-
pected for the low projectile energies considered here, the
results from the two models did not differ significantly to
alter the conclusions drawn below.

The RCCC calculations were also performed in a vari-
ety of approximations. We again started by coupling just
the lowest 15 discrete levels (the RCCC-15 model) before
increasing the total number of states to 94. All states had
an inert 3d10 Zn2+ core, but exchange with the inner elec-
trons was included. The actual target states were then
obtained by diagonalizing the quasi-two-electron Hamil-
tonian of the valence electrons in a large Laguerre basis.
The Hamiltonian was supplemented by semi-empirical
polarization potentials to account for the dipole polar-
izability of the doubly-ionized core. As in the BP-BSR
case, the RCCC-15 predictions were very similar to the
RCCC-94 results, which can safely be considered con-
verged with the number of states included in the close-
coupling expansion. For the physical states, the CCC
structure results were similar to those of BP-BSR-43 pub-
lished in [20] and are regarded as sufficiently accurate
for the problem at hand. Occasionally, the collision re-
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sults at individual energy points can become very sen-
sitive to tiny differences (e.g., in resonance positions or
very close to a threshold), but the overall conclusions of
the present work are not affected. In fact, the principal
result, namely a nearly vanishing P2/Pe is very stable
against changes in the structure and collision models.

In order to obtain the angle-integrated state multi-
poles, we used two different methods. The energy-
and angle-dependent scattering amplitudes can be con-
structed from the output of the BSR code by using
Eq. (2) of Bartschat and Scott [21]. Since the BSR pro-
gram yields energy- and angular-momentum dependent
transition (T ) matrix elements, it is convenient to carry
out the angular integration over the spherical harmonics
analytically as suggested in [13], perform the sum over
the unobserved spin components of the projectile, and
then express the bilinear products of angle-integrated
scattering amplitudes directly in term of the above T -
matrix elements. A general computer code for this task
was published by Grum-Grzhimailo [22]. The RCCC
program, on the other hand, evaluates angle-dependent
scattering amplitudes. Hence we performed the integra-
tion over the polar angle numerically while the integra-
tion over the azimuthal angle is just a multiplication by
2π, which cancels out in all relative parameters. Having
completely independent computer programs and ways to
obtain the final light polarizations gives us further confi-
dence in the results presented below.
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FIG. 1: Cross section for electron-impact excitation of the
(4s5s)3S1 and (4s5p)3P0,1,2 states in Zn. The solid lines are
the BP-BSR-43 results, while the small solid circles represent
the RCCC-94 predictions. The dashed line represents the
sum of the excitation cross sections to all the triplet states
with configurations (4s4d), (4s6s), (4s6p), (4s5d), and (4s4f),
respectively, as obtained in the BP-BSR-43 model.

IV. RESULTS AND DISCUSSION

Figure 1 shows the absolute cross sections for electron-
impact excitation of the (4s5s)3S1 and (4s5p)3P0,1,2

states in Zn from the (4s2)1S0 ground state. The
BP-BSR-43 calculations in particular were performed on
a narrow energy grid, which reveals a large number of
resonance features, the most important ones of which are
also visible in the RCCC-94 predictions. As will be seen
below, however, these are largely irrelevant for the light
polarizations that are the principal focus of the present
paper. We also note that the relative excitation strengths
of the fine-structure levels of the (4s5p)3P0,1,2 manifold
agree well with the expected statistical ratio, i.e., being
proportional to 2Ju + 1, and that the excitation cross
section of the (4s5s)3S1 state is comparable to that of
the combined (4s5p)3P manifold. The RCCC-94 pre-
dictions are generally larger than those obtained with
BP-BSR-43. Since for these low energies the results are
essentially converged with the number of states included
in the close-coupling expansion, these differences are due
to the different structure descriptions used in the two ap-
proaches. As will be seen below, the predictions for the
relative light polarizations are far less sensitive to details
in the target structure than the absolute cross sections.

Also shown in Fig. 1 is the sum of the excitation cross
sections to higher-lying triplet states. The curve sug-
gests that these states should have little effect altogether.
Furthermore, as mentioned already, the most probable
(small) effect of multiple cascades would be depolariza-
tion of the state under observation.

Figures 2 and 3 show our results for the light po-
larizations P1, P2/Pe, and P3/Pe for the two cascade
transitions (4s5p)3P1 → (4s5s)3S1 and (4s5p)3P2 →
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FIG. 2: Angle-integrated light polarizations for the
(4s5p)3P1 → (4s5s)3S1 transition. The solid lines are the
BP-BSR-43 results, while the small solid circles represent the
RCCC-94 predictions. P1 is generally positive, P3 is always
negative, and P2 ≈ 0.
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(4s5p)3P2 → (4s5s)3S1 transition. The solid lines are the
BP-BSR-43 results, while the dashed lines the small solid
circles represent the RCCC-94 predictions. P1 is positive,
P3 ≈ −1, and P2 ≈ 0.

(4s5s)3S1, respectively. Recall that all light polariza-
tions for transitions starting at the (4s5p)3P0 state must
vanish. Being P -states, their orbital angular momen-
tum can be aligned, and hence it is not surprising that
both of the above transitions show a significant nonzero
linear polarization P1, which also exhibits a substantial
energy dependence. While the agreement between the
BP-BSR-43 and RCCC-94 is by no means perfect for P1,
there is definitely good qualitative agreement. Very close
to threshold (approximately 0−0.2 eV above in our case),
fractions like the light polarizations become very sensi-
tive to details, both in the physics and the numerics, since
both the numerator and the denominator approach zero
at threshold. Furthermore, resonances that lead to differ-
ent energy dependencies in the two parts of the fraction
may have the largest effect. Hence, while the theoretical
predictions are expected to be least reliable in this energy
region, measurements would also be very difficult due to
the anticipated small signal.

Moving on to the linear polarization P2/Pe, we note
that its magnitude is very small, except perhaps very
close to the threshold in the (4s5p)3P1 state in the
BP-BSR-43 results. Once again, this is not surprising at
all. The (4s5p)3P2 state has virtually pure LS-character,
and the (4s5p)1P1 admixture to the (4s5p)3P1 state is
also very small. As mentioned above, we confirmed this
by our own structure calculations, but the conclusion is
also supported by the relative line strength of one and the
absence of the other intercombination line in the NIST
tables [4]. Hence, P2/Pe ≈ 0 is in excellent agreement
with the Bartschat-Blum result [6]. We expect essentially
zero for both cases. If there are deviations, they should
be larger for the (4s5p)3P1 state than for the (4s5p)3P2

state due to the small intermediate-coupling character of
the former state.

While it is extremely difficult to accurately calculate
very small deviations from zero, we emphasize again that
it is not essential for the conclusions of the present work
whether P2/Pe calculated here for just one of the cas-
cade transitions (there are more for which the results
are similar) is slightly positive or slightly negative. The
important aspect is whether its magnitude reaches val-
ues that could ultimately lead to those reported in both
experiments above the cascade threshold. Our present
calculations, which represent the best we can do at this
time, suggest that this is not the case.
Finally, the circular polarization P3/Pe, once again,

shows nonzero values for the (4s5p)3P1 → (4s5s)3S1

transition with a clearly noticeable energy-dependence.
Except very close to threshold, the agreement between
the BP-BSR-43 and RCCC-94 predictions is very satis-
factory. On the other hand, both theories yield a nearly
energy-independent P3/Pe ≈ −0.75 for the (4s5p)3P2 →
(4s5s)3S1 transition. Since this came originally as a sur-
prise to us, we carried out further analytical calculations
along the lines of Bartschat and Blum [6] and Balashov
et al. [15]. If one neglects the alignment term in the con-
struction of 〈T (J)+11〉 according to Eq. (3) of [6], and also
the alignment term in the denominator of Eq. (2c), one
obtains

〈T (J=2)+00〉 =

√

5/3

3
〈T (L=1)+00〉; (7a)

〈T (J=2)+11〉 = iPe

√

5/3

6
〈T (L=1)+00〉; (7b)

Im {A11(J)} = Pe/2; (7c)

P3/Pe = −0.75. (7d)

Equation (7a) is obtained by using the statistical
factor Q(J=2) = 5

9
Q(L = 1), together with 〈T (J)+00〉 =

Q(J)/
√
2J + 1 mentioned earlier and 〈T (L)+00〉 =

Q(L)/
√
2L+ 1. For a more general treatment, we refer

to the Appendix.
Before we discuss our final results, it is worth summa-

rizing the results for the cascade transitions. To begin
with, we find that the (4s5p)3P0,1,2 states will essentially
all decay to the (4s5s)3S1 state during an experiment
that is performed in the way described above, i.e., with-
out the observation of the scattered projectile and no res-
olution of the collision time. Since the (4s5p)3P0 state
cannot be oriented or aligned at all, its (small) contri-
bution to the observed light polarizations in transitions
starting from the (4s5s)3S1 state will be a depolarization
of the emitted radiation. The orbital alignment of the
(4s5p)3P1,2 states leads to nonvanishing values of the lin-
ear polarization P1, which can in turn align the MJ sub-
levels of the (4s5s)3S1 state and hence lead to an observ-
able P1 also for transitions from that state. Due to the
very good LS-character of the (4s5p)3P0,1,2 states, how-
ever, the expected values for P2/Pe remain close to zero,
and hence the (4s5s)3S1 cannot be aligned in a way that a
significant P2/Pe would be seen in its subsequent optical
decay. Finally, |P3/Pe| is less than unity, with a special
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value of P3/Pe ≈ −0.75 for the (4s5p)3P2 → (4s5s)3S1

transition. As a result, we expect a reduction in the spin
orientation of the (4s5s)3S1 state and hence also a re-
duction of the observed circular polarization for incident
energies above the cascade threshold. Finally, cascades
from higher-lying states should have little effect due to
the smallness of the respective excitation cross sections.
Should there be a small effect, it will likely cause depo-
larization of the observed radiation.
In light of the above, our results shown in Fig. 4 for the

three light polarizations in the (4s5s)3S1 → (4s4p)3P0

transition are exactly what we expected. As for the cas-
cade transitions, there is some noticeable structure in the
energy dependence. This structure is due to resonances
and increased sensitivity close to threshold, but we reem-
phasize that these details are not affecting the main mes-
sage of this paper. Regarding P1, the BP-BSR-43 and
RCCC-94 predictions agree very well. Even though they
are larger than the measured values (probably at least
in part due to depolarization from cascades that we did
not account for), there is definitely qualitative agreement
with the experimental data from both groups, which also
agree very well with each other. For P2/Pe, we continue
to predict essentially zero values. Our results agree with
the measurements of Clayburn and Gay [1] below the
cascade threshold, while their data above that thresh-
old agree, within the error bars, with those of Pravica et

al. [3]. Hence, both experimental datasets above the cas-
cade threshold contradict general theory [6] as well as the
present numerical calculations. Finally, there is excellent
agreement between both theories and both experiments
in the predicted depolarization of P3/Pe = −1 below the
cascade threshold when that threshold is crossed.

V. SUMMARY AND CONCLUSIONS

We have investigated the possible effect of cascade
transitions from the (4s5p)3P0,1,2 states to the (4s5s)3S1

state of Zn. In our fully ab initio numerical calculations
using a semi-relativistic 43-state Breit-Pauli B-spline
R-matrix model and a fully relativistic 94-state close-
coupling model, we obtained the cross sections for ex-
citation of the (4s5s)3S1 and (4s5p)3P0,1,2 states, as
well as the light polarizations for the cascade radia-
tion (4s5p)3P1,2 → (4s5s)3S1 and, subsequently, for the
(4s5s)3S1 → (4s4p)3P0 transition observed experimen-
tally. Accounting in an ab initio way for cascade effects
shows that cascading only complicates the situation, but
it does not change the underlying basic physics.
Our results are in excellent agreement with the general

theoretical predictions made by Bartschat and Blum [6]
many decades ago. Consequently, they also agree well
with the P2/Pe data of Clayburn and Gay [1] below the
cascade threshold. However, our calculations raise new
questions regarding, in particular, the relatively large
magnitude of P2/Pe reported in both experiments above
the cascade threshold, where the agreement between the

 0.00

 0.05

 0.10

 0.15

           

(4s5s)3S1 --> (4s4p)3P0

P1

BP-BSR-43

+ cascades

RCCC-94

+ cascades

 0.00

 0.05

 0.10

 0.15

           

(4s5s)3S1 --> (4s4p)3P0

P1

-0.20

-0.15

-0.10

-0.05

 0.00

 0.05

           

P
2

-0.20

-0.15

-0.10

-0.05

 0.00

 0.05

           

P
2

 -1.0

 -0.9

 -0.8

 -0.7

 -0.6

6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6
energy (eV)

P3

 -1.0

 -0.9

 -0.8

 -0.7

 -0.6

6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6
energy (eV)

P3 CG-2017

Prav-2011

FIG. 4: Angle-integrated light polarizations for the
(4s5s)3S1 → (4s4p)3P0 transition. The dashed lines (almost
indistinguishable from P1 = P2/Pe = 0 and P3/Pe = −1)
are the results without cascades, while the solid lines and
small circles represent the BP-BSR-43 and RCCC-94, respec-
tively, with the cascades included. The experimental data are:
triangle-up: Clayburn and Gay [1]; triangle-down: Pravica et

al. [3]. The published error bars on the latter are generally
smaller than the symbol size.

experimental datasets, somewhat surprisingly, is very
good. Additional experiments, with increased energy res-
olution and reduced uncertainties, seem highly desirable
in order to resolve this issue. If our predictions were in-
deed incorrect, a shadow might be cast on essentially all
collision calculations, at least for observables like those
discussed in the present paper.
It may also be advisable to (re-)investigate other tar-

gets, in particular Hg. While some data exist for this
case [11], we note that those were never published by the
experimentalists themselves.
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Appendix

This Appendix is devoted to the general derivation
of angle-integrated state multipoles of an atomic state
excited by a spin-polarized electron beam in the non-
relativistic approximation. We start from the general
Eq. (2.61) of [15], which describes (unnormalized) angle-
differential state multipoles for the total angular momen-
tum J of an atomic state excited by an arbitrarily po-
larized electron beam. Recall that we choose the z-axis
along the incident electron beam, integrate analytically
over the scattering angles, and sum over the unobserved
spin components of the scattered projectile. Further-
more, we assume an atomic target initially in a closed-
shell (1S0) configuration. Then we transform the scatter-
ing amplitudes from the jj-coupling scheme to the LSJ-
coupling scheme, take into account conservation of the
total spin St and the total orbital angular momentum
Lt individually (i.e., St = 1

2
, and Lt equals the orbital

momentum of the incoming electron, Lt = ℓ0). Many of
the summations can then be performed analytically and
the integrated reduced state multipoles can be expressed
in terms of vector coupling coefficients and transition-
matrix elements:

Akq(J) =

〈

T (J)+kq

〉

〈

T (J)+00
〉 = (−1)k+L+S+12Ĵ L̂2Ŝ2N−1

×
∑

kLks

k̂Lk̂s(kL0, ksq | kq)
{

1

2

1

2
ks

S S 1

2

}







S S ks
L L kL
J J k







ρksq

×
∑

LtL
′

tℓ

(−1)ℓ(Lt0, L
′
t0 | kL0)

{

Lt L
′
t kL

L L ℓ

}

TLℓLt
T ∗

LℓL′

t
, (8)

where

N =
∑

Ltℓ

L̂−2
t {ℓLLt} |TLℓLt

|2 . (9)

Here L and S are the total orbital angular momentum
and spin of the excited atomic state, standard notations
are used for the Clebsch-Gordan coefficients and the 6j-
and 9j-symbols, â ≡

√
2a+ 1, {abc} = 1 if a + b + c is

integer and |a− b| ≤ c ≤ a+ b, and {abc} = 0 otherwise.
We also introduced a short-hand notation for the reduced
transition-matrix elements

TLℓLt
≡ 〈(L, ℓ)Lt ||T || (0, ℓ0 = Lt)Lt〉 , (10)

where T is a scalar operator in the subspace of the total
orbital momentum, ℓ is the orbital angular momentum
of the scattered electron, and L+ℓℓℓ = Lt. The statistical

tensors describing the spin of the incident electron ρksq

(ks = 0, 1) are

ρ00 =
1√
2
, ρ10 =

1√
2
Pz, ρ1±1 = ∓1

2
(Px ∓ iPy) .

(11)
It follows from the 9j-symbol with identical columns in
Eq. (8) that kL + ks + k must be even. Another observa-
tion is that the projection q in the integrated state multi-
pole equals the projection of the electron tensor (11) and
thus is restricted by |q| ≤ 1. For this reason, for example,
we did not consider the case q = ±2 in Eq. (6).
The incident electron beam in our derivation is still

arbitrarily polarized and the x- and y-axes of the rect-
angular coordinate system need to be chosen. As in the
main part of the manuscript, we take the y-axis along the
transversal electron polarization, i.e., Px = Pz = 0 and
Py = Pe. It is practical to split Eq. (8) into two parts
corresponding to ks = 0 (contribution from unpolarized
electrons) and ks = 1 (contribution from the electron
beam polarization):

Akq(J) = N−1Ĵ

[

δq0(−1)J+SL̂2

{

J J k

L L S

}

×
∑

LtL
′

tℓ

(−1)ℓ(Lt0, L
′
t0 | k0)

{

Lt L
′
t k

L L ℓ

}

TLℓLt
T ∗

LℓL′

t

+ iPy

√
3L̂2Ŝ2(−1)k+L+S+1

×
∑

kL=k±1

k̂L(kL0, 1q | kq)
{

1

2

1

2
1

S S 1

2

}







S S 1

L L kL
J J k







×
∑

LtL
′

tℓ

(−1)ℓ(Lt0, L
′
t0 | kL0)

{

Lt L
′
t kL

L L ℓ

}

× TLℓLt
T ∗

LℓL′

t

]

. (12)

With these reduced state multipoles we can find the
Stokes parameters of the fluorescence radiation according
to Eqs. (2a)-(2c).
Let us consider a few special cases of Eq. (12). For

example, for singlet states (S = 0, J = L) only reduced
statistical tensors with zero projection, q = 0, survive
and form the first term of (12), A11(J) = 0, and there-
fore P3 = 0. For S-states (L = 0, J = S) the result is
independent of the scattering amplitudes:

Akq(J) = δk0 + δk1iPy(−1)J
√
3

{

1

2

1

2
1

J J 1

2

}

. (13)

Since only k = 0 and k = 1 contribute in Eq. (13),
P1 = P2 = 0. For the fluorescence transition 3S1 →3 P0,
we obtain P3 = −Py, in excellent agreement with the
cascade-free calculations shown in Fig. 4.
Finally, after substituting the quantum numbers for

the 3P2 state (L = 1, S = 1, J = 2) in Eq. (12), we
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obtain

A11(
3P2)=iPy





1

2
+

√
3

10
√
2
N−1

∑

LtL
′

tℓ

(−1)ℓ(Lt0, L
′
t0 | 20)

×
{

Lt L
′
t 2

L L ℓ

}

TLℓLt
T ∗

LℓL′

t

]

. (14)

Assuming that the second term is much smaller than the

first because of a small algebraic coefficient and mutual
cancellations of the interfering terms in the sum, we have
A11(

3P2) = i
2
Pe. As mentioned in the main text, after

also neglecting the alignment contribution in the denom-
inator of (2c), we obtain P3/Pe = − 3

4
for the 3P2 →3S1

fluorescence radiation.
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