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IMPORTANCE Gait and balance impairment is associated with poorer functional recovery after

stroke. The cerebellum is known to be strongly implicated in the functional reorganization of

motor networks in patients with stroke, especially for gait and balance functions.

OBJECTIVE To determine whether cerebellar intermittent θ-burst stimulation (CRB-iTBS) can

improve balance and gait functions in patients with hemiparesis due to stroke.

DESIGN, SETTING, PARTICIPANTS This randomized, double-blind, sham-controlled phase IIa

trial investigated efficacy and safety of a 3-week treatment of CRB-iTBS coupled with

physiotherapy in promoting gait and balance recovery in patients with stroke. Thirty-six

patients with consecutive ischemic chronic stroke in the territory of the contralateral middle

cerebral artery with hemiparesis were recruited from a neuro-rehabilitation hospital.

Participants were screened and enrolled fromMarch 2013 to June 2017. Intention-to-treat

analysis was performed.

INTERVENTIONS Patients were randomly assigned to treatment with CRB-iTBS or sham iTBS

applied over the cerebellar hemisphere ipsilateral to the affected body side immediately

before physiotherapy daily during 3 weeks.

MAIN OUTCOMES ANDMEASURES The primary outcomewas the between-group difference

in change from baseline in the Berg Balance Scale. Secondary exploratory measures included

the between-group difference in change from baseline in Fugl-Meyer Assessment scale,

Barthel Index, and locomotion assessment with gait analysis and cortical activity measured

by transcranial magnetic stimulation in combination with electroencephalogram.

RESULTS A total of 34 patients (mean [SD] age, 64 [11.3] years; 13 women [38.2%])

completed the study. Patients treated with CRB-iTBS, but not with sham iTBS, showed an

improvement of gait and balance functions, as revealed by a pronounced increase in the

mean (SE) Berg Balance Scale score (baseline: 34.5 [3.4]; 3 weeks after treatment: 43.4 [2.6];

3 weeks after the end of treatment: 47.5 [1.8]; P < .001). No overall treatment-associated

differences were noted in the Fugl-Meyer Assessment (mean [SE], baseline: 163.8 [6.8]; 3

weeks after treatment: 171.1 [7.2]; 3 weeks after the end of treatment: 173.5 [6.9]; P > .05) and

Barthel Index scores (mean [SE], baseline: 71.1 [4.92]; 3 weeks after treatment: 88.8 [2.1];

3 weeks after the end of treatment: 92.2 [2.4]; P > .05). Patients treated with CRB-iTBS, but

not sham iTBS, showed a reduction of step width at the gait analysis (mean [SE], baseline:

16.8 [4.8] cm; 3 weeks after treatment: 14.3 [6.2] cm; P < .05) and an increase of neural

activity over the posterior parietal cortex.

CONCLUSIONS AND RELEVANCE Cerebellar intermittent θ-burst stimulation promotes gait and

balance recovery in patients with stroke by acting on cerebello-cortical plasticity. These

results are important to increase the level of independent walking and reduce the risk

of falling.
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G
ait and balance impairment owing to limb deficit after

stroke is oneof themaindeterminants associatedwith

poorer functional recovery.1Becausegait isacriticalde-

terminantof independent living, improvementofwalkingfunc-

tion is one of themajor goals of stroke rehabilitation.2Balance

dysfunctions have substantial impact on functional indepen-

dence and overall recovery.3However, rehabilitation of gait in

patientswithstrokestill lacksofadvancedwell-definedrehabili-

tationprotocols. The contralesional cerebellum is strongly im-

plicated in functional reorganization of themotor network af-

ter stroke when recovery takes place.4,5 In animal models of

stroke, thestimulationofcerebellar-corticalnetworkswasfound

to improve functional recovery.6,7Notably, functionalmagnetic

resonanceimagingstudiesshowedthatactivity incontralesional

cerebellum positively correlates with gait recovery in patients

with stroke.8Patients oftenhave to relearn simplemotor strat-

egies, amechanismthat is supposedtobeactivelycontrolledby

thecerebellum.9Thesetypesofcerebellar-mediatedmotorlearn-

ingcanbepotentiatedbysimultaneousapplicationofnoninva-

sivebrainstimulationmethods,10especially forgaitandbalance

functions.11 In particular, the neural activity of the cerebellum

can be strongly activated by means of cerebellar intermittent

θ-burststimulation(CRB-iTBS),12anovelformofrepetitivetrans-

cranialmagneticstimulation(TMS)thatmimicsprotocols induc-

ing long-termpotentiation inanimalmodels.13-16Onthebasisof

thisbackground,wehypothesized thatCRB-iTBScoupledwith

physiotherapy (PT) could improvegait andbalance recovery in

patientswithstrokebyenhancingmotorrelearningandpromot-

ing favorable cortical reorganization.

Methods

Inclusion and Exclusion Criteria

Among52patientsassessedforeligibility,36(13women[36.1%];

mean [SD] age, 64 [11.3] years)were recruited for the studybe-

tweenMarch2013andJune2017at theSantaLuciaFoundation

IRCCS(Table). Inclusioncriteria included(1) firsteverchronic is-

chemic stroke (ie, at least 6months after the stroke event); (2)

hemiparesis due to left or right subcortical or cortical lesion in

the territory of themiddle cerebral artery; and (3) residual gait

andbalanceimpairment.Exclusioncriteriawere(1)historyofsei-

zures; (2) severe general impairment or concomitant diseases;

(3) patients older than80years; and (4) treatmentwith benzo-

diazepines, baclofen, and antidepressants.

Trial Design and Treatments

Weinvestigatedsafetyandefficacyof3weeksofdailyCRB-iTBS

coupled with PT on motor recovery in a randomized, double-

blind, sham-controlledphase IIa study.Clinical efficacywasas-

sessed by the Berg Balance Scale (BBS), the Fugl-Meyer

Assessment (FMA), and the Barthel Index (BI). Locomotion

assessmentwasperformedwithgaitanalysis.WecombinedTMS

and electroencephalogram (EEG) to determine the patterns of

cortical reorganization over the posterior parietal cortex (PPC)

and the primary motor cortex (M1) of both affected and unaf-

fected hemisphere.17 The PPCwas selected being a key area of

thebroadfronto-parietalnetwork involved involuntarycontrol

ofgaitandbalance.18-20Eachpatientperformed1sessionperday

of conventional PT. Physiotherapy consisted of exercises de-

signed to promote recovery of voluntary motor and balance

functions, includingmuscle stretching, active-assistedmobili-

zations,progressiveneuromuscular facilitationtrainingbalance

exercises, andgait training,21 lasting90minutes including rest

periods between exercises. During gait training, the therapist

(A.M.C.) was positioned behind the patient to support hip and

trunk stability. Cerebellar intermittent θ-burst stimulation

wascarriedoutusingaMagstimRapidmagneticbiphasicstimu-

lator connected with a figure-8 coil with a 70-mm diameter

(Magstim Company). Before each daily PT session, 2 runs of

CRB-iTBSwere applied over the contralesional lateral cerebel-

lum, spacedbyan interval of 5minutes.12For each stimulation

session, in total, we delivered 1200 pulses over the lateral cer-

ebellum,contralateral to theaffectedhemisphere.13-16Cerebel-

lar intermittentθ-burst stimulation intensitywas set at80%of

theactivemotorthreshold,22adjustedaccordingtotheindividual

scalp-to-cortexdistance.23Thecoilwaspositioned tangentially

to thescalp,withthehandlepointingsuperiorly.24Aneuronavi-

gation system (SofTaxic; EMS) coupledwith a Polaris Vicra in-

fraredcamerawasusedtoensure that ineachpatient,CRB-iTBS

wasappliedoverthesamespotacrossdifferentsessions.Thesta-

tistical analysis plan is available in Supplement 1, and the trial

protocol is available in Supplement 2.

This studywas reviewed and approved by the local insti-

tutional ethical committee on January 25, 2013, andwas con-

ducted in compliancewith theDeclarationofHelsinki,25Good

Clinical Practice, and applicable regulations. All patients pro-

vided written informed consent. After the trial was com-

pleted, the trial was registered late on March 7, 2018, in the

ClinicalTrials.gov site following an initial failed attempt to get

approval for the European Clinical Trials Database platform

through the Italian regulatory authority.We decided to regis-

ter the trial to get a public registration into an internationally

recognized site, in agreement with current standard scien-

tific and ethical responsibilities and in agreement with edi-

torial policies of most peer-reviewed international journals.

Registrationwas completed after patient recruitment started

but before data analysis began.

Randomization and Blinding

Patients were randomly assigned to 2 age-matched groups

treatedeitherwithCRB-iTBS treatment (18patients; 6women

Key Points

Question Is it possible to enhance gait and balance recovery in

patients with hemiparesis due to stroke by using noninvasive

cerebellar stimulation?

Findings In this randomized clinical trial that included 34 patients

with ischemic stroke, cerebellar magnetic stimulation coupled with

physiotherapy vs sham stimulation improved gait and balance

functions by promoting cerebello-cortical plasticity.

Meaning Cerebellar magnetic stimulationmay be an effective,

low-cost, and noninvasive strategy to promote gait and balance

recovery in patients with stroke.

Effect of Cerebellar Stimulation on Gait and Balance Recovery in Patients With Hemiparetic Stroke Original Investigation Research

jamaneurology.com (Reprinted) JAMANeurology February 2019 Volume 76, Number 2 171

© 2018 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2018.3639&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2018.3639
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2018.3639&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2018.3639
http://www.jamaneurology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2018.3639


[33.3%]; mean [SD] age, 63 [11] years) or sham iTBS (18 pa-

tients; 7women[38.9%];mean [SD]age,65 [12] years) coupled

withPT (Figure 1).The randomizationalgorithmusedthemini-

mal sufficientbalancingmethodtoprevent imbalances inbase-

line age and stroke severity. Clinical scores, locomotion analy-

sis, andcortical activitywereassessedatbaseline (T0)andafter

3weeksof treatment (T1).A further clinical evaluationwasper-

formedagain after 3weeks fromtheendof the treatment (T2).

Eachevaluationwasperformedbya clinician (G.K. orF.S.) (for

clinical rating) or by a neurophysiologist (V.P. orM.I.) (for gait

analysis andTMS/EEG recordings)whowas blinded to the ex-

perimental condition of the patient. We used a power analy-

sis to determine the necessary sample size, based on previ-

ously published work on cortical plastic changes induced by

cerebellar TBS protocols,13,14,17 considering 80% power and a

95% CI, we calculated that 32 patients would be needed.

Locomotion Analysis

Patients were asked to walk at their comfortable speed while

wearing comfortable shoes within a rectangle (6 m × 2.5 m)

formedbyoptoelectronicbarsplacedonthegroundinour labo-

ratory (Optogait; Microgate). Half of the electronic bars con-

tained an infrared light emitter (each 1.04 cm), and the other

half contained a receiver at the samedistance. The frequency

of emission and detection was 100 Hz. This instrumentation

allowedtomeasurespatiotemporalgaitparameterssuchasstep

Table. Demographic and Clinical Information of Patients

Patient
No./Sex/Age, y Group Stroke Lesion AH Time From Stroke, mo NIHSS Score

RMTa

AH UH

1/M/70 CRB-iTBS F-P Right 78 3 87 57

2/M/55 CRB-iTBS CN Right 6 4 96 75

3/F/44 CRB-iTBS T-INS Right 14 7 MEP− 56

4/F/79 CRB-iTBS INS-T-P-CN Right 10 6 89 81

5/F/61 CRB-iTBS F-P Left 13 7 MEP− 54

6/M/70 CRB-iTBS F-P Right 16 10 MEP− 71

7/F/74 CRB-iTBS CN, CR Right 6 9 MEP− 75

8/M/62 CRB-iTBS F-INS, P-O, PUT Right 6 10 MEP− 86

9/M/62 CRB-iTBS F-T-P Left 7 4 50 46

10/M/67 CRB-iTBS F-T-P Right 24 5 58 71

11/M/75 CRB-iTBS F-T-P, BG Right 29 7 62 59

12/M/77 CRB-iTBS CN, LN Right 6 5 71 66

13/M/56 CRB-iTBS CR, SC Right 7 5 MEP− 69

14/M/73 CRB-iTBS O-T, CN Left 7 7 82 75

15/M/49 CRB-iTBS CN, CR Left 6 4 65 52

16/M/58 CRB-iTBS CR, IC Left 6 5 80 89

17/M/45 CRB-iTBS LN, SC Left 6 9 MEP− 58

18/F/40 Sham iTBS SC, CR Left 7 4 63 72

19/M/59 Sham iTBS F-T-P Right 7 10 MEP− 56

20/M/64 Sham iTBS CR, EC Left 6 8 60 56

21/M/54 Sham iTBS F-T-P, LN, IC Right 13 4 60 49

22/M/64 Sham iTBS F-P, INS, CR, BG Left 12 8 MEP− 56

23/M/58 Sham iTBS F-T-P Right 5 2 59 86

24/F/50 Sham iTBS CN Right 7 7 MEP− 65

25/F/70 Sham iTBS F-T, INS Left 6 7 66 74

26/M/61 Sham iTBS F-T-P Left 77 11 MEP− 84

27/F/51 Sham iTBS CN Left 13 11 81 56

28/M/76 Sham iTBS CN, LN Left 6 3 MEP− 90

29/F/81 Sham iTBS LN Right 6 5 51 50

30/F/71 Sham iTBS CN Right 7 6 MEP− 65

31/M/71 Sham iTBS CN Right 6 4 MEP− 68

32/M/75 Sham iTBS CN, LN Right 6 7 54 52

33/F/78 Sham iTBS CR, CN Right 6 9 62 58

34/M/81 Sham iTBS F-T-P Left 7 10 68 60

Abbreviations: AH, affected hemisphere; BG, basal ganglia; CN, capsular

nucleus; CR, corona radiata; CRB-iTBS, cerebellar intermittent θ-burst

stimulation; EC, external capsula; F, female; F-T-P-O, fronto-temporal-parietal-

occipital; IC, internal capsula; INS, insula; iTBS, intermittent θ-burst stimulation;

LN, lenticular nucleus; M, male; MEP−, not motor-evoked potentials;

NIHSS, National Institutes of Health Stroke Scale; PUT, putamen; RMT, resting

motor threshold; SC, semioval center; UH, unaffected hemisphere.

aMeasured with biphasic transcranial magnetic stimulation pulses.
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length, stepwidth, speed, stance, and swingpercentagesdur-

ing steps performed by affected and unaffected leg (ie, when

theaffectedorunaffected legare in stancephaseand theother

in swing phase, respectively).

Analysis of Cortical Activity

Analysisof cortical activitywasperformedwithTMS-EEG.Dur-

ingtheentiresession,patientswereseatedonadedicated,com-

fortablearmchairinasoundproofedroom.Eachsessionconsisted

of80TMSsinglepulsesappliedata randominterstimulus inter-

val of 2 to 4 seconds overM1 and PPC of both the hemispheres

(320pulsesintotal).17Theintensityofstimulationwassetat90%

of the restingmotor threshold.22Whenrestingmotor threshold

wasnot recordable in theaffectedhemisphereowingto the lack

of any motor-evoked potentials response, TMS was set at the

samevalueoftheunaffectedhemisphere.Transcranialmagnetic

stimulation–EEG data were analyzed offline with Brain Vision

Analyzer (BrainProductsGmbH).Toevaluate theeffectsof the

CRB-iTBS treatment, the single-pulse TMS-evoked responses

wereevaluatedwith2approaches: (1) aspatiotemporal–domain

analysis to assess cortical evoked activity and (2) a time/

frequency–domain analysis to evaluate the cortical oscillatory

activity. Spatiotemporal–domain analysis was conducted on a

timewindow lasting from 100milliseconds before to 500mil-

liseconds after a single TMS pulse. To assess the TMS-evoked

globalcortical response,weperformedaglobalmeanfieldpower

(GMFP)analysis, computedas theSDof thesignal acrossall the

electrodes on the scalp. For each patient and each stimulation

site, the first 4 peaks (ie, P1, P2, P3, P4) of the GMFPwaveform

weredetectedwithin300millisecondsfollowingtheTMSpulse.

Toevaluatechangesintheoscillatorydomain,weappliedatime/

frequencydecompositionbasedonMorletwavelet (parameters

c = 3; 41 linear 1-Hz steps from 4 to 45 Hz) on the entire EEG

epoch.Spectralpowerwassubsequentlyextractedfor theθ(4-7

Hz),α (8-13Hz),β (14-30Hz),andγband(31-45Hz)andaveraged

in a timewindow lasting from20milliseconds to 300millisec-

onds, where the TMS-evoked cortical activity was visible.26

Transcranialmagneticstimulation-evokedspectralpower,sepa-

rately foreachfrequencyband,wasaveragedamongeachchan-

nel to assess the global oscillatory activity.

Outcomes

For efficacy analyses, the primary endpointwas change from

baseline in BBS score27 for the assessment of gait and balance

Figure 1. Experimental Design andMethods

Schematic presentation of the experimental designA

Cerebellar stimulation with iTBSB TMS-EEG evaluation of M1 and PPC activityC

Group 1:

CRB-iTBS + physical therapy

Group 2:

sham iTBS + physical therapy

T
re

a
tm

e
n

tPretreatment

Clinical scale

Gait analysis

TMS-EEG

Posttreatment 1

Clinical scale

Gait analysis

TMS-EEG

Posttreatment 2

Clinical scale

Day 1 (T0) Day 1-20 (3 wk, Monday-Friday) Day 21 (T1) Day 42 (T2)

M1 M1

TMS
50

6

PPC PPC

500 ms

µ
V

H
z

Clinical evaluation, gait analysis, and transcranial magnetic stimulation (TMS)

with electroencephalogram (EEG) were performed at baseline (T0), after 3

weeks of treatment (T1), and 3 weeks after the end of treatment (T2) (A).

The treatment consisted of 3 weeks of daily cerebellar intermittent θ-burst

stimulation (CRB-iTBS) or sham iTBS preceding the physiotherapy session.

θ-Burst stimulation was applied over the cerebellum contralateral to the

hemisphere affected by the stroke in the territory of themiddle cerebral artery

(B). Cortical activity was evaluated with TMS-EEG over primary motor cortex

(M1) and posterior parietal cortex (PPC) of both affected and unaffected

hemispheres (C) in terms of oscillatory activity (right upper panel, C) and

TMS-evoked potentials (right lower panel, C).
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functionsatT1. Secondaryendpointswerechanges frombase-

line in total scoresof theFMA28andtheBI,29change frombase-

line in locomotionassessedwithgait analysis, andchange from

baseline in cortical activity recorded with TMS-EEG at T1.17

Statistical Analysis

Clinical scales (BBS, FMA, andBI scores)were separately ana-

lyzedwith repeated-measuresmixedanalysis of variancewith

a between-individual factor group (CRB-iTBS and sham iTBS)

andawithin-individual factor time (T0,T1, andT2).Gait analy-

sis of step length, step width, speed, stance, and swing per-

centages for the affected and the unaffected leg was sepa-

rately performed with repeated-measures mixed analysis of

variancewith abetween-individual factor groupandawithin-

individual factor time. Transcranial magnetic stimulation–

evoked cortical activitywas averagedwithin eachGMFPpeak

timewindow.Toevaluate the treatment effects on cortical ex-

citability,weuseda repeated-measuresmixedanalysis of vari-

ance with between-individuals factor group and within-

individuals factors hemisphere, time, andpeak separately for

each stimulation site. Repeated-measures mixed analysis of

variance with between-individuals factor group and within-

individuals factors hemisphere and time was performed to

evaluate the treatment effects on oscillatory activity, sepa-

rately for each frequency and stimulation site. Correlationbe-

tween clinical, behavioral, and neurophysiological data were

tested with Pearson coefficient.

Results

The procedure was well tolerated, and no significant adverse

effectswere reported in either group.The2groupsdidnotdif-

fer at baseline level (T0) in age, sex, lesion side, number of

months from the stroke event, and severity of stroke as as-

sessed by National Institutes of Health Stroke Scale. Two

patients discontinuedduring the treatment period and 34pa-

tients (mean [SD] age, 64 [11.3] years; 13women [38.2%]) com-

pleted treatments (Figure 2). The effective training time was

similar between groups. We found that 3 weeks of CRB-iTBS

coupled with PT resulted in an increase of BBS score com-

paredwith sham iTBS (group × time interaction, F2,60 = 3.73;

P = .03; ε = 0.111). Posthoc analysis revealed thatBBS score in-

creased in the CRB-iTBS at T1 comparedwith T0 (P < .001), at

T2 compared with T0 (P < .001), and at T2 compared with T1

(P = .04) (mean[SD],T0:34.5 [3.4];T1:43.4 [2.6];T2:47.5 [1.8])

(Figure 3A). No differences were observed for the sham iTBS

group (mean [SD], T0: 32.8 [4.9]; T1: 36.1 [5.2]; T2: 38.8 [4.8]).

Post hoc analysis also showed a significant difference at T2

between the 2 groups (P < .05). The analysis of effectiveness

showed that BBS score improvedby 15.8% (T1) and 23.1% (T2)

in the CRB-iTBS group and by 5.8% (T1) and 10.3%

(T2) in the sham iTBS group (Figure 3A). We did not find any

differences on FMA and BI scores between the 2 groups. Spe-

cifically, the analysis of FMA scores revealed a mild increase

at T1 and T2 similarly for both the CRB-iTBS and sham iTBS

groups (F2,60 = 13.73;P < .001; ε = 0.314).Also for theBI scores,

we found a similarmild increase in the 2 groups after 3weeks

of treatment (F2,40 = 19.94;P < .001; ε = 0.499) both at T1 and

T2 compared with T0 (T0 vs T1, P < .001; T0 vs T2 post hoc,

P < .001) and at T2 compared with T1 (T1 vs T2, P < .05). The

analysis of effectiveness revealed that, compared with base-

line,FMAscores improvedby2.3%(T1) and3.3%(T2),whereas

BI scores improvedby12.6%(T1) and18.1%(T2) in the2groups.

Theinstrumentedgaitanalysisshowedthatstepwidth,mea-

sured during the step of unaffected limb, was significantly re-

duced in theCRB-iTBSgroup (F1,14 = 7.794,P < .01) (mean [SD],

CRB-iTBS,T0: 16.8 [4.8];T1: 14.3 [6.2] cm; shamiTBS,T0: 16.8

[4.0],T1: 15.7 [2.5]cm) (Figure3B).Asimilar trendwasobserved

duringthestepsperformedwiththeaffectedlimb,butthehigher

variabilitymadethisresultnotsignificant(mean[SD],CRB-iTBS,

T0:15.9 [4.3],T1: 14.1 [5.4]cm;shamiTBS,T0:15.8 [2.5],T1: 17.1

[2.7]cm).Nogroup-specificeffectswereobservedforsteplength

or stance percentage duration.

After 3weeksof treatment, theM1-GMFPamplitudeevalu-

ated over the affected hemisphere was higher for both groups

(F1,26 = 6.669; P < .05; ε = 0.204) (Figure 4A). In contrast, the

PPC-GMFP (P3) evaluated over the affected hemisphere was

significantlyhigher only for theCRB-iTBSgroup (F3,78 = 3.148;

P < .05; ε = 0.108; P3 post hocP < .001) (Figure 4A). No effects

weredetectablewhenstimulating theunaffectedhemisphere.

When stimulatingM1,we foundageneral increaseof β activity

evoked over the affected hemisphere for both CRB-iTBS and

sham iTBS groups (F1,26 = 4.568; P = .04; ε = 0.149; post hoc

P = .05) (Figure 4B). On the other hand, when we tested PPC

oscillatoryactivity,wefoundthat3weeksofCRB-iTBStreatment

enhanced the oscillatory activity evoked over affected hemi-

sphere in the θ range of frequency (F1,26 = 6.226; P < .05;

ε = 0.193;posthocP < .001)andnotintheotherfrequencybands

(Figure4B).NoeffectswereobservedaftershamiTBS,norwhen

stimulating the unaffected hemisphere.

The correlation analysis revealed that posttreatment BBS

changes correlated with step width (r = −0.517; P = .03) and

withPPC-GMFP(r = 0.496;P = .04) (Figure4C), indicating that

Figure 2. CONSORT FlowDiagram for Randomization of Patients

With Stroke Enrolled in the Study

52 Assessed for eligibility

16 Excluded

0 Not meeting inclusion criteria

13 Declined to participate

3 Other reasons

36 Randomized

18 Allocated to iTBS

18 Received allocated intervention

18 Allocated to sham

18 Received allocated intervention

0 Lost to follow-up

1 Discontinued intervention
(pneumonia)

0 Lost to follow-up

1 Discontinued intervention
(depression)

17 Analyzed 17 Analyzed

iTBS indicates intermittent θ-burst stimulation.

Research Original Investigation Effect of Cerebellar Stimulation on Gait and Balance Recovery in Patients With Hemiparetic Stroke

174 JAMANeurology February 2019 Volume 76, Number 2 (Reprinted) jamaneurology.com

© 2018 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/27/2022

http://www.jamaneurology.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2018.3639


a greater increase in gait and balance functions was associ-

ated with more pronounced reduction of step width and to a

larger increase of TMS-evoked PPC cortical activity.

Discussion

Our study shows thatCRB-iTBS coupledwithPT improves gait

andbalancefunctionsinpatientswithhemiparesisduetostroke,

asdemonstratedby the increase inBBSscoreandby the reduc-

tionofstepwidthprovidedbythegaitanalysis.Importantly,these

changeswere paralleled by an enhancement of neural activity

inthePPCof theaffectedhemisphereasmeasuredbyTMS-EEG.

From a clinical point of view, we found that CRB-iTBS

coupledwithPT increasedBBSscore from35to47points,pass-

ing from a level inwhich patients need assistance forwalking

to a level of independentwalking.Notably, this increase in the

BBS score indicates also a significant reduction of the risk of

falling, passing fromamediumfall risk to a low fall risk.27This

result is relevant for several reasons. First,wewere able to im-

prove gait in a sample of patients with chronic stroke. This is

important since walking functions tend to decline more at 6

months from stroke onset after a transient initial improve-

ment, and such deficit is associatedwith long-term disability

and reduced quality of life.9 Second, such improvement was

achieved inarelativelyshortperiodof training (3weeks), show-

ing that CRB-iTBS can be useful to design fast, low-cost, and

effective protocols for gait rehabilitation.

Fromabehavioralpointofview, theTBS-inducedreduction

ofstepwidthwasduetoadecreaseofthestepofunaffectedlimb.

Owing to the lackofgait stability, thegaitpatternof individuals

after strokediffers fromthatofhealthy individuals.30,31 Indeed,

a largerstepwidth in individualsafterstrokehasbeenexplained

asacompensationforthelargerbodyswayinthefrontalplane.32

Therefore, the reduction of stepwidth should be considered a

clear signof the improvement of gait stability inpatients in the

CRB-iTBSgroup.Ontheotherhand, the lower increase inwalk-

ing speed can be seen as a strategy to improve gait stability.33

Figure 3. Clinical Scores and Gait Analysis
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Despite the dramatic consequences on the daily activities,

the precise mechanism underlying balance impairment after

stroke is still unclear.Oscillatory activity is enhanced in senso-

rimotor area and PPC while participants voluntarily tracked a

target speed on an active treadmill and during simulated

walking.34-36Alongthesame lines, a recent studyusedcontinu-

Figure 4. Cortical Activity
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ous TBS to disrupt the activity of the PPC, decreased the com-

plexityofbodyswayand itsvariability, supporting the involve-

mentofthisareainthecontrolofbodybalance.19Takentogether,

thesestudiesdemonstrate thatPPC is crucially involvedduring

the integration of sensorimotor inputs in nonsimplistic motor

commands. Inagreementwith thisbackground,ourdatadem-

onstrate that the induction of cerebellar plasticity bymeans of

iTBSwas indeedassociatedwith relevant changes in theneural

activityof thecontralateralPPC, likely throughtheactivationof

cerebello-thalamo-cortical pathways targetingparietal-frontal

networks.17 In thepresent study, the3-weekCRB-iTBSprotocol

couldhavepromoted long-termpotentiationat the level of the

cerebellar cortex36with aneffect on the interconnectedPPCof

thecontralateral lesionedhemisphere.18Notably,cerebellarout-

put influencesnotonlyM1butalsopremotor,prefrontal,andpa-

rietal areas such as the PPC.37 The potentiation of PPC activity

wasobservablenotonly intermsofTMS-evokedactivitybutalso

ofcorticalθoscillations,probingthestateofthethalamo-cortical

circuits.Onepossibility is thatcerebellar iTBScouldhavemodu-

lated γ-aminobutyric acid–ergic activity at thalamic or cortical

level.17At this regard, it has been proposed that cerebellar TBS

exerts its effects likelyby impingingonspecific set of interneu-

ronsdependentonaminobutyricacid–ergicactivity,13whichplays

akeyrole indrivingmechanismsofbrainplasticityduringpost-

stroke recovery.38Thus, the long-termpotentiationlikemecha-

nism induced by the CRB-iTBS could have reinforced the

cerebello-thalamo-cortical interactionscyclingat low-frequency

range, responsible forspatial-motor learningrequiredformove-

mentexecution.Indeed,wearguethatCRB-iTBScouldhavecon-

tributed to the better clinical improvement by promoting

cerebellar-dependentmechanismofmotor learning.

Wealso foundageneralenhancementofM1activity inboth

groups. These effects are likely due to the course of coupled 3

weeks of daily PT, independently from the CRB-iTBS treat-

ment. Moreover, we did not observe any neurophysiological

changes in theunaffectedhemisphere, in agreementwith the

notion thatCRB-iTBS is able topotentiate specifically theneu-

ral activity of the contralateral parieto-frontal network.17

The novelty of our results lies in the novel multimodal

approach we used, consisting of combining TMS, EEG, gait

analysis, and clinical scores. Accordingly, patients who had a

greater increase of PPC activity showed a higher score in the

BBS score anda stronger reductionof the stepwidth in thegait

analysis. So far, TMS measures in patients with stroke de-

rived mostly from motor-evoked potentials analysis, a well-

known index of cortico-spinal excitability. However, motor-

evoked potentials cannot be recorded from the lesioned

hemispheres in a large percentage of patients with stroke.39

In our sample, motor-evoked potentials were not recordable

for the purposes of evaluating cortico-spinal excitability and

intracortical activity in more than 50% of the cases, making

suchmeasurementnot reliable. In this view,TMS-evokedEEG

response was assessed in all patients and therefore repre-

sents important markers of the state of cortex in patients in

absence of any motor response.

Limitations

Weacknowledgesomelimitationsof thepresentstudy.Because

our sample includes patientswith stroke in bothhemispheres,

wecouldnot take intoaccount the influenceof laterality. Inad-

dition, therelatively lownumberof recordingelectrodesdidnot

allow us to perform any brain source analysis.Moreover, a rel-

evant concern isowing to the fact theTMS-EEGwasappliedon

thehandrepresentationofM1,whileclinicalchangesweremostly

observed ingaitandbalancefunctions.Therefore, thiscouldex-

plain the lackofspecificeffects forM1–TMS-EEG.Finally,weare

aware of the fact that our study is limited by the relatively low

sample size.

Conclusions

In conclusion, we provide novel evidence that combining

CRB-iTBS with traditional PT is an effective strategy to pro-

mote gait and balance recovery by engaging successful cer-

ebello-cortical reorganization inpatientswith ischemic stroke.
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