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ABSTRACT

A three-dimensional simulation of hovering flap-

ping wings was performed using an immersed

boundary method. This was done to investi-

gate the effects of chordwise wing deformation

on three important unsteady aerodynamic mech-

anisms found in flapping flight, namely Lead-

ing Edge Vortex (LEV) shedding, wake capture

and clap and fling. A wing was modeled as a

flat plate, flapping close to a symmetry plane.

Three different deforming chords were defined,

a rigid case, a case with maximum deformation

at the trailing edge and increased angle of attack

(AoA) near the leading edge, and a case with the

maximum deformation in the center of the chord

and decreased AoA near the leading edge. All

cases had zero deformation at the wing root and

maximal deformation at the wing tip. A higher

AoA near the leading edge resulted in faster LEV

buildup and faster buildup of lift. No shedding of

the LEV was observed in any of the cases even

when deformation caused a high AoA near the

leading edge. A distinct dip in lift buildup was

observed and shown to be caused by the inter-

action between the previously shed vortex and

the newly developing LEV. This interaction oc-

curred faster when the AoA at the leading edge

was increased, and slower when the angle of at-

tack was decreased. Moving the wing closer to

the symmetry plane had a positive effect on the

cycle average value of CL. This positive effect

was reduced however by the earlier interaction

between the LEV and the previously shed vor-

tex.

1 INTRODUCTION

In view of the Reynolds number range at which MAVs op-

erate and the desired flight performance flapping flight con-

cepts are considered beneficial, since fixed-wing aircraft do

not have the desired maneuverability and helicopters are too

inefficient and noisy [1]. This has motivated designers to look

to nature for inspiration, since insects are extremely maneu-

verable, silent and can be more efficient at low flight speeds
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[2]. The aerodynamics of insect flight are very different from

those of fixed wing aircraft or rotorcraft however, since it ex-

ploits unsteady aerodynamic mechanisms to generate suffi-

cient lift force, including a stable leading-edge vortex (LEV),

clap and fling use of rotational mechanisms and wake capture

[3]. Biologist have been interested in the flying capabilities

of insects for a long time and have conducted many exper-

iments using free flying insects [3], tethered insects [4] and

dynamically scaled mechanical flappers [4, 5, 6]. To further

understand the effect of all relevant parameters it is essential

to quantify and visualize the three-dimensional flow around

the wings. Although recent developments in non-intrusive

measurement techniques allow researchers to capture three

dimensional flow fields [7, 8], it remains very difficult to cap-

ture all relevant details of the flow using only experimental

techniques. Therefore numerical simulations can provide ad-

ditional information for understanding the flow phenomena

[9]. Several three-dimensional simulations have been per-

formed on specific insect geometries, however, the computa-

tional requirements of such simulations are too demanding to

do a systematic parametric study of all the important param-

eters involved. More general studies on the wing flexibility

have used two-dimensional simulations and have particularly

noted the positive effect of a more flexible wing on leading

edge vortex (LEV) stability [10, 11, 12], which in turn has

a large positive effect on the lift force. The LEV stability is

also affected by three dimensional flow however [13, 14], so

the benefit of a flexible wing in a three dimensional case can-

not be determined from a two-dimensional simulation alone.

Studies investigating the three-dimensional effects in flapping

flight using simulations with rigid wings have shown that the

tip vortex created at the free end of the wing stabilizes the

LEV, from which can be concluded that this stability is also

affected by the aspect ratio of the wing [15] and the kinemat-

ics of the wing [16]. To get a complete picture of how dif-

ferent parameters affect the LEV stability, and with that the

force coefficients of the wing, a three-dimensional simulation

is required.

The objective of the present study is to perform a three-

dimensional simulation of hovering flapping wings, in order

to investigate the effects of chordwise wing deformation on

three important unsteady aerodynamic mechanisms found in

flapping flight, namely LEV shedding, wake capture and clap

and fling. This will result in a better understanding of the

physics involved in flapping flight, which in turn could lead to
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improved MAV designs. Since the actual three-dimensional

deformation of both insect and MAV wings is very specific

to the wings’ structural and material properties, this study

does not attempt to include fluid-structure interaction, instead

prescribing the time dependent deformation of the wings di-

rectly. The direct prescription of the wing deformation al-

lows a more controlled way to investigate its effect on the

unsteady aerodynamic mechanisms. The configuration of the

wings that will be simulated is based on a wing pair as found

on a four-winged MAV in biplane configuration such as the

DelFly [17]. This means the wings will rotate in opposing

phase around a point at the leading edge root. Under this

condition the flow around one wing will be affected by the

presence of the other wing. The wing interaction effects will

be modeled by creating a symmetry plane, and investigated

by varying the distances to the symmetry plane. Only de-

formation in chordwise direction will be investigated in this

study, with the wing considered fully rigid in spanwise di-

rection. However, the chordwise deformation will be varied

along the span, resulting in a twist in spanwise direction.

2 NUMERICAL METHOD

A serious issue in simulating flapping wings is the large

translational and rotational motions of the wings. In conven-

tional body conforming grid simulation methods these large

movements result in large grid deformations, which causes

problems in convergence and stability of the algorithms as

well as having a negative impact on the accuracy [18]. The

Immersed Boundary Method (IBM) used in this study is a

combination of the methods described by [19], [20] and [21].

In both the method by [21] and the one by [20] the forc-

ing term fc is calculated explicitly using an Adam-Bashforth

second-order (AB2) scheme. In this study, fc is calculated ex-

plicitly using the first-order forward Euler and second-order

AB2 schemes for the viscous and convective terms, respec-

tively. This will reduce the computational cost while having

no observable difference on the results compared to an AB2

scheme [22]. The forcing term fc will be calculated according

to Equation 1.

fcn+1 =
uf − un

∆t
+

[

un
· ∇un

−
1

Re
∇

2un

]

+∇pn (1)

In this equation the superscript indicates the time step

number and uf is the velocity contribution of the boundary

which has to be imposed. Since the boundary does not match

the grid this velocity is not known and is obtained through a

simple triangle linear interpolation of the interface and three

points in the surrounding velocity field [22]. Finally the to-

tal force exerted on the surface of the solid will be calculated

using fcn+1, according to Equation 2.

Fi = −

∫

solid

fcn+1

i dV +

∫

solid

(

∂ui

∂t
+

∂uiuj

∂xj

)

dV (2)

Figure 1: Three-dimensional view of the flapping motion.

This method displays spurious pressure fluctuations due to

its method of dealing with the immersed boundary [23]. To

reduce the effect of these fluctuations on the results, the force

response of several flapping cycles will be averaged.

3 SIMULATION SETUP

To investigate how deformation of the chord affects the

aerodynamic mechanisms around a flapping wing under hov-

ering conditions, a simplified wing model has been created

for the flow simulations. A wing will be modeled as a rect-

angular flat plate with a chord of c = 0.1[m], a thickness of

0.006[m] and an aspect ratio AR = 2. This aspect ratio value

is at the lower side of the range of that of flying insects which

is between 2 and 10 [24]. Instead of modeling two separate

plates, a symmetry plane is used to reduce the required com-

putational resources. Perspective and top views of the wing

and the parameters defining the motion are shown in Figure

1. In this figure D represents the distance to the symmetry

plane, and θ the flapping angle. Insects have a wide range of

flapping angles [24] and in this case a total flapping angle θ
of 45◦ is chosen. This flapping angle would be small for two-

winged insects but is more typical to that of a four-winged

MAV in biplane configuration [17]. The configuration would

then correspond to one wing pair, with the assumption that

the opposite wing pairs do not influence one another. The

motion will start with an outstroke, which results in θ given

by Equation 3.

θ = 22.5− 22.5 cos(ft) (3)

Where f is the flapping frequency and t is the elapsed time.

The Reynolds number based on the average tip velocity and

standard conditions at sea level is equal to Re = 2002, and

a reduced frequency of k = fc/U = 0.319. All vari-

ables are summarized in Table 1. This table also includes

the non-dimensionalized variables, which are calculated us-

ing the chord length and the average tip velocity. The differ-

ent deformation scenarios considered in the simulations are

detailed in the following subsections.
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Parameter Value Dimensionless value

Chord 0.1[m] 1

Thickness 0.006[m] 0.06

Aspect ratio 2 2

Average tip velocity 0.314 [m/s] 1

Frequency 1 [s−1] 0.319

Reynolds number 2002 2002

Max flapping angle 45◦

Table 1: Parameters of the simulations

(a) (b) (c)

Figure 2: Chordwise plate deformation profiles. a) Rigid

case; b) Deforming end case; c) Deforming center case

3.1 Rigid case with rotation

For the rigid plate case the flapping motion described in

the previous section is combined with a pitching motion to

create an angle of attack. This is done by rotating the plate

around the leading edge as shown in Figure 2a. This rotation

angle is given by Equation 4.

α = −αmax sin(kT ) (4)

In which αmax represents the maximum angle. Note that this

angle α is not the angle of attack as conventionally defined,

but instead 90 degree minus the angle of attack.

3.2 Deforming end

The first deforming case does not contain any pitching, in-

stead an angle of attack is created by the deformation alone.

This is achieved by modeling that the leading edge remains

straight and the maximum deformation occurs at the trailing

edge. The shape of the chord is described using a quadratic

function of the distance from the leading edge. The deforma-

tion is given by Equation 5.

δend = −D
max

end

(

z

c

)2

sin(kT ) (5)

Where Dmax

end
is the maximum deformation and z

c
is the dis-

tance from the leading edge normalized by the length of the

chord. The resulting shape is shown in Figure 2b. It can

(a) (b) (c)

Figure 3: Three dimensional overview of the instrokes of the

three cases. a) Rigid case; b) Deforming end case; c) De-

forming center case

be seen that this shape increases the angle of attack near the

leading edge compared to the rigid case.

3.3 Deforming center

The second deforming case allows the leading edge to ro-

tate. It again uses a quadratic function to describe the defor-

mation, with this case having the maximum deformation at

the center of the chord. The deformation is given by Equa-

tion 6.

δcenter = −D
max

center

[

1− 4
(

z

c
− 0.5

)2
]

sin(kT ) (6)

The deformation given by Equation 6 is combined with the

angle of attack given by Equation 4 to give the complete de-

formed shape in time. The resulting cross-sectional shape of

the wing is shown in Figure 2c. From the figure it is clear that

for this case the deformation decreases the angle of attack at

the leading edge compared to the rigid case.

In insect wings the deformation is usually higher near the

wing tip due to torsional flexibility of the wing [25]. This

is included in the present simulation model by varying the

maximum deformation linearly along the span, resulting in

a undeformed unrotated chord at the root of the plate and

the maximum rotation and deformation at the tip. All defor-

mation parameters are shown in Table 2. Three dimensional

views of the instroke of the three cases are shown in Figure 3.

Note in view of this spanwise deformation, that the r̈igidc̈ase

indicates that there is no chordwise deformation, but it does

not imply that the wing is rigid as a whole.

Parameter Root value Tip value

Angle αmax 0◦ 30◦

Dmax

end
0 0.5

Dmax
center

0 0.175

Table 2: Deformation parameters.

4 RESULTS

For the three cases the lift coefficients were calculated,

and averaged over the last 3 cycles. Figure 4 shows the lift

coefficient CL, as well as the cycle average value. Here CL is
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Case Average CL

Rigid 0.5558

Deforming center 0.6171

Deforming end 0.5948

Table 3: Cycle averaged values of CL for the cases.

defined as CL =
L

1/2ρU2S with lift L positive in negative z-

direction. Although averaging the plots over 3 cycles reduces

the fluctuations which are caused by the moving boundary,

they are still present to some extent. Figure 4 represent one

entire cycle, starting with an outstroke. The value of the cy-

cle average CL for the three cases is given in Table 3. It is

observed that both deforming cases produce a higher average

and peak lift than the rigid case.
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Rigid
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Figure 4: CL for the three cases. The motion starts with an

outstroke.

A noticeable difference between the three cases is the CL

buildup at the beginning of both the instroke and the out-

stroke. The deforming end case shows the fastest CL buildup,

followed by the rigid case, and the deforming center case

shows the slowest buildup. The difference in CL buildup

speed is caused by different LEV buildup speeds, and is re-

lated to the difference in leading edge orientation, as can be

seen from Figure 5. This figure shows the Q criterion contour

plots at half of the span, at the beginning of the outstroke. The

deforming end case shown in Figures 5e and 5f clearly shows

that the higher angle of attack in the deforming end case cre-

ates a stronger LEV compared to the rigid case (Figures 5a

and 5b). The deforming center case shown in Figures 5c and

5d has a lower angle of attack and can be seen to create a

weaker LEV.

The second clear difference between the cases is the dis-

tinct dip in CL that can be seen in Figure 4 during the acceler-

ation phase of the plates. This dip occurs both during the out-

(a) T=0.040 (b) T=0.080

(c) T=0.040 (d) T=0.080

(e) T=0.040 (f) T=0.080

Figure 5: Q criterion contour plots of the three cases at the

start of the outstroke with the plate moving to the left. Top:

rigid case; middle: deforming center; bottom: deforming end
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stroke and the instroke. The contour plots of the Q criterion

are investigated at the moments around this dip during the in-

stroke, at T=0.559, 0.599 and 0.639 at 50% of the span to see

if this is associated to shedding of the LEV, to which such a

decrease in lift buildup is commonly associated. The plots are

shown for the deforming center and deforming end cases in

Figure 6. Although it can be seen that the LEV moves further

away from the plate for the deforming end case, the difference

does not explain the large dip shown in CL. Contour plots of

the Q criterion at different locations along the span do not

show distict shedding of the LEV either. Since the shedding

of the LEV cannot be identified as the source for the dip, the

pressure isosurfaces are investigated as further means to vi-

sualize the vortex behaviour around the wings. The pressure

isosurfaces with p = −1 at the beginning of the instroke are

shown in Figure 7. In Figures 7a and 7b the vortices from

the previous outstroke stroke can be clearly identified, with

the shed tip vortex, trailing edge vortex and LEV in front of

the plate. Figure 6c show that at T=0.64, the new LEV in the

deforming end case interacts with the previously shed LEV,

this instant corresponds to the dip in CL in Figure 4. The de-

forming center case shows no interaction, and no change in

the CL slope as seen in Figure 4. At the next instance, shown

in Figure 7e the shed LEV from the previous stroke has been

completly absorbed into the new LEV for the deforming end

case, and CL is again increasing. For the deforming center

case the dip occurs much later, as does the interaction be-

tween the previously shed vortex and the new LEV.

From the previous results it can be concluded that not the

shedding of the LEV is responsible for the dip in CL seen in

Figure 4, but the interaction of the LEV with the shed LEV

from the previous stroke. For this to be true there should be

no dips in the buildup of CL during the initial stroke, since

there will be no previously shed vortices in this case, and in-

vestigation shows that these dips are indeed absent [23]. The

faster buildup of the LEV in the deforming end case causes

the interaction with the shed vortex to occur earlier. The low-

ering of the angle of attack by the deforming center case de-

lays the interaction and reduces the negative effect. The cur-

vature of the chord of the plate in the deforming center case

also causes the previously shed vortex to get trapped below

the plate, delaying the interaction further. This can be clearly

seen in Figure 8.

To investigate the effect of the deformation on the clap

and fling mechanism the distance to the symmetry plane was

varied. Three cases are defined with D=0.25c, 0.50c and a

case without symmetry plane. Table 4 shows the increase

in the average CL compared to the case without symme-

try plane, for both the rigid case and the deforming center

case. Although the average CL increases for both cases when

the symmetry plane is closer an important difference can be

noted. The increase in average CL is higher for the deforming

center case with the symmetry plane at D=0.50c, but higher

for the rigid case with the symmetry plane at D=0.25c. The

(a) T=0.559 (b) T=0.559

(c) T=0.599 (d) T=0.599

(e) T=0.639 (f) T=0.639

Figure 6: Q criterion contour plots of the deforming end and

deforming center cases during the instroke, with the wings

moving to the right. The deforming center case on the left

and the deforming end case on the right.
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(a) T=0.559 (b) T=0.559

(c) T=0.599 (d) T=0.599

(e) T=0.639 (f) T=0.639

Figure 7: Pressure isosurfaces of p = −1 at the starting of

the instroke with the plate moving to the front. Left for the

deforming end case and right for the deforming center case.

(a) Deforming center (b) Deforming end

Figure 8: Previously shed vortices at the beginning of the in-

stroke for the the deforming center and deforming end cases.
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Figure 9: Lift coefficient plot for the rigid cases, at different

distances from the symmetry plane. The motion starts with

an outstroke.

difference between the cases can be explained by looking at

the development in CL as shown in Figures 9 and 10. Fig-

ure 10 clearly shows a very large dip in CL buildup during

the outstroke for the case with D=0.25c. This dip is much

larger than for the case with the symmetry plane at D=0.50c,

and greatly reduces the average CL. The faster LEV buildup

caused by the presence of the symmetry plane causes the in-

teraction between the LEV and the previously shed vortex to

occur sooner. Since the previously shed vortex is trapped be-

low the wing as was shown in Figure 8b, the interaction takes

significantly longer than for the rigid case. This longer inter-

action limits the benefit of fast LEV buildup.

0.5c 0.25c

Rigid case +3.4% +11.3%

Deforming center case +5.1% +9.2%

Table 4: Increase in cycle average CL by changing distance

to symmetry plane.

5 CONCLUSION

Three different deforming wings were simulated to inves-

tigate the effect of the deformation on lift generation by un-

steady aerodynamic mechanisms. It was shown that deform-

ing the wing in such a way that the angle of attack near the

leading edge increased, leads to faster LEV buildup and with

this a faster buildup of lift. No shedding of the LEV was ob-

served in any of the cases even when deformation caused a

high angle of attack near the leading edge. The distinct dip

in lift buildup that was observed was shown to be caused by

the interaction between the previously shed vortex and the

newly developing LEV. This interaction occurred faster when

the angle of attack near the leading edge was increased, and
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Figure 10: Lift coefficient plot for the deforming center cases,

at different distances from the symmetry plane. The motion

starts with an outstroke.

slower when the angle of attack was decreased. The lower an-

gle of attack caused the previously shed vortex to get trapped

below the wing preventing the interaction. Moving the wing

closer to the symmetry plane had a positive effect on the cy-

cle average value of CL. This positive effect was reduced

however by the earlier interaction between the LEV and the

previously shed vortex. This was especially clear for the case

were the angle of attack was reduced, since the position of the

previously shed vortex caused the interaction to take longer.
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