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In a state of oxidative stress, there is an increase of reactive species, which induce

an altered intracellular signaling, leading to dysregulation of the inflammatory response.

The inability of the antioxidant defense systems to modulate the proinflammatory

response is key to the onset and progression of neurodegenerative diseases. The

aim of this work is to review the effect of the state of oxidative stress on the loss of

regulation of the inflammatory response on the microglia and astrocytes, the induction

of different CD4+T cell populations in neuroinflammation, as well as its role in some

neurodegenerative diseases. For this purpose, an intentional search of original articles,

short communications, and reviews, was carried out in the following databases: PubMed,

Scopus, and Google Scholar. The articles reviewed included the period from 1997

to 2017. With the evidence obtained, we conclude that the loss of redox balance

induces alterations in the differentiation and number of CD4+T cell subpopulations,

leading to an increase in Th1 and Th17 response. This contributes to the development

of neuroinflammation as well as loss of the regulation of the inflammatory response in

neurodegenerative diseases such as Alzheimer’s (AD), Parkinson’s (PD), and Multiple

Sclerosis (MS). In contrast, regulatory T cells (Tregs) and Th2 modulate the inflammatory

response of effect of T cells, microglia, and astrocytes. In this respect, it has been found

that the mobilization of T cells with anti-inflammatory characteristics toward damaged

regions of the CNS can provide neuroprotection and become a therapeutic strategy to

control inflammatory processes in neurodegeneration.

Keywords: oxidative stress, neurodegeneration, neuroinflammation, CD4+T cells, Treg cells, Th17 cells, Th2 cells,

Th1 cells

INTRODUCTION

Neurodegenerative diseases are characterized by the presence of a state of chronic oxidative
stress and dysregulation of the inflammatory response. Wide evidence shows that persistent
oxidative stress and neuroinflammation are key factors in the development and maintenance of
the progressive neurodegeneration process in these diseases. The main characteristics of the state
of oxidative stress are an increase of the levels of reactive species and a decrease in, or incapability,
of the antioxidant systems to counter free radicals (Rivas-Arancibia et al., 2010; Halliwell, 2012).
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In a redox balance state, the increase of free radicals
and reactive species enhance transcription and synthesis
of endogenous antioxidant defenses (Halliwell, 2012). These
systems help to maintain the oxidation-reduction balance in the
organism and play a restorative role during cellular damage.
In this state, both the free radicals and reactive oxygen species
(ROS) act as signals in several intracellular pathways, which
are involved in cell metabolism and contribute to homeostasis
maintenance (Rhee et al., 2003; Halliwell, 2012; Ray et al., 2012).
However, during the chronic loss of redox homeostasis, ROS-
induced intracellular signaling as pathways are altered, leading
to a loss in the regulation of signals transduction by the cells.
This occurs because the phosphorylation pathways are activated,
while the dephosphorylation enzymes are inhibited. Therefore,
the cells enter into a vicious cycle that cannot be broken (Rhee
et al., 2003). In addition, when cell signaling is modified during
oxidative state, the secretion of proinflammatory molecules
is enhanced, and neoepitopes, as well as damage-associated
molecular patterns, are produced. All these factors act together
promoting a proinflammatory response (neuroinflammation in
the central nervous system, CNS) (Bakunina et al., 2015).

The inflammatory response is modulated by oxidative stress.
While in a redox balance the inflammatory response is a defense
mechanism, which repairs, and is self-limited; in a chronic loss
of redox balance—as it occurs in neurodegenerative diseases—
the signaling pathways that modulate the immune system are
altered, leading to the dysregulation of the immune response,
which favors the predominance of pro-inflammatory responses
(Griffiths, 2005; Jayaraj et al., 2017).

Besides the stimulation of ROS in the activation of the glia,
several studies have demonstrated that CD4+T cells infiltrate into
the CNS during the neurodegenerative process. They have also
found that the contribution of these cells is highly important
for the activation of the microglia and astrocytes (González and
Pacheco, 2014; González et al., 2014).

In this review, we will explain the role of oxidative stress state
on the loss of regulation of the neuroinflammatory response. This
response is mediated through the effect of ROS on microglia,
astrocytes, and CD4+T cells. Furthermore, we will describe the
role that specific CD4+T cell subpopulations play in some of the
most important neurodegenerative diseases.

OXIDATIVE STRESS AND SIGNALING

Oxidative Stress
Oxidative stress is defined as an imbalance between the pro-
oxidant and antioxidant species, favoring the pro-oxidants.
When chronic oxidative stress state is present leads to a
disruption in redox signaling and cell damage (Halliwell, 2012).
Oxidative stress is characterized by an increase in reactive species
such as ROS and nitrogen reactive species (RNS). ROS include
species such as superoxide anion (O•−

2 ), hydrogen peroxide
(H2O2), and hydroxyl radical (•OH) (Halliwell, 2012; Ray et al.,
2012). On the other hand, RNS include nitric oxide (NO) and
peroxynitrite (ONOO−) (Halliwell, 2012; Ray et al., 2012).

Reactive species can be produced both endogenously and
exogenously. Some enzymes in the cell organelles generate ROS

and RNS endogenously; for example, the monoamine oxidase
in the mitochondria; cytochrome P450 in the mitochondria,
endoplasmic reticulum and plasma membrane; nitric oxide
synthase (NOS) in peroxisomes; cyclooxygenases (COX) and
nicotinamide dinucleotide phosphate oxidases (NOX) in cell
membrane, and xanthine oxidase (XO) in the cytoplasm (Valko
et al., 2007). On the other hand, the intracellular formation of free
radicals can also occur by the influence of environmental factors
such as ultraviolet radiation, ionizing radiation, and pollutants
like ozone. Pro-oxidants can also have an external origin; some
examples are environmental pollution, pesticides, heavy metals,
some xenobiotics, and tobacco smoke. Reactive species per se and
signals of cell damage -that derive from its action- can act as
modulators of the inflammatory response.

Reactive Species as Modulators of the
Inflammatory Response
At physiological concentrations in the organism, ROS and RNS
are regulators of several physiological functions. In a chronic
state of oxidative stress, reactive species can become injurious,
because they oxidize proteins and lipids, and they can damage
DNA. Reactive species can also mediate the signaling that leads
to the activation of the microglia and astrocytes (Pawate et al.,
2004). At the same time, in diverse cellular populations, high
concentrations of reactive species are able to activate signaling
pathways and create vicious cycles that maintain a high secretion
of proinflammatory cytokines and chemokines (Chan, 2001;
Hsieh and Yang, 2013). Proinflammatory cytokines such as IL-
6, IL-1β, tumor necrosis factor (TNF), and interferons (IFNs)
induce the generation of ROS in non-phagocytic cells such as
fibroblasts, vascular smooth muscle cells, endothelial cells, renal
mesangial cells, and tubular cells.

NOX2 is a phagocytic enzyme that produces ROS in response
to pathogens in a mechanism known as respiratory burst 10. The
latter is a defense response of the organism that is accompanied
by inflammation. However, this inflammatory response is self-
limited and the redox balance is recovered after the pathogen
has been eliminated. NOX2 has also been associated with the
progression of inflammatory diseases such as atherosclerosis
and pulmonary fibrosis, as it has been demonstrated that
NOX2-deficient mice were protected against formation of
atherosclerotic lesions and development of pulmonary fibrosis
(Mittal et al., 2014). Furthermore, mice deficient in p47phox

subunit or NOX2 were also protected against TNF-α-induced
lung inflammation or sepsis-induced lung microvascular injury
(Manoury et al., 2005).

On the other hand, NOX of non-phagocytic cells (NOX4
and NOX5) have been recognized as an important source of
ROS. Under physiological conditions, NOX derived from non-
phagocytic cells show a constitutive activity of extremely low
level. However, the enzymatic activity of this kind of NOX can
increase in response to stimuli such as growth factors, cytokines,
hyperglycemia, and hyperlipidemia, leading to the increase of the
concentration of ROS (Meier et al., 1989; Bae et al., 1997; Li and
Shah, 2003). NOX4 has been classically characterized as a kidney
“oxygen sensor,” which regulates oxygen-dependent expression

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 April 2018 | Volume 12 | Article 114

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Solleiro-Villavicencio and Rivas-Arancibia Effect of Oxidative Stress on CD4+T

of erythropoietin and development of inflammatory processes in
the kidney (Geiszt et al., 2000). Inflammatory stimuli such as LPS,
TNF-α, hyperoxia, transforming growth factor beta (TGF-β),
and hypoxia, were demonstrated to enhance ROS generation via
NOX4 (Park et al., 2006; Basuroy et al., 2009; Ismail et al., 2009;
Pendyala et al., 2009). For its part, the expression of NOX5 has
been reported in human vascular endothelial cells and smooth
muscle cells. NOX5 can be induced by thrombin (Belaiba et al.,
2007), Ang II (Montezano et al., 2010), and platelet-derived
growth factor (Jay et al., 2008). As well, an increased expression
of NOX5 has been correlated with the oxidative damage observed
in atherosclerosis (Guzik et al., 2008).

Another important source of ROS is the mitochondria.
Mitochondrial-derived ROS results from the transfer of electrons
across the mitochondrial membrane carriers. Particularly, O•−

2
generated by mitochondria reacts with manganese superoxide
dismutase (MnSOD) in the mitochondrial matrix to generate
H2O2. When this molecule crosses the mitochondrial outer
membrane to access cytosolic targets they can activate the redox-
sensitive transcription factors (such as hypoxia-inducible factor 1
alpha, HIF-1α, and nuclear factor kappa beta, NF-κB) (Ungvari
et al., 2007; Hamanaka and Chandel, 2009), upregulate the
transcription of pro-inflammatory cytokines, and activation of
inflammasomes (Naik and Dixit, 2011; Chen et al., 2015), all of
them related to the inflammatory response.

Xanthine oxidase is the main superoxide-producing enzyme.
The activity of XO is specifically induced by IFN-γ in lung
microvascular endothelial cells and in the pulmonary artery
endothelial cells. In this sense, XO-derived ROS have been
associated with the development of a variety of inflammatory
disorders such as ischemia-reperfusion injury, atherosclerosis,
diabetes, and autoimmune disorders such as rheumatoid arthritis
(Mittal et al., 2014). However, the therapeutic advantage of XO
inhibitors such as allopurinol seems to be a promising approach
in some of the inflammatory diseases that we have previously
mentioned (Lee et al., 2009).

In addition, another important source of reactive species are
the several receptors of growth factors that, when activated,
stimulate the production of ROS. Among these are the epidermal
growth factor receptor (EGFR) (Meng et al., 2007) and platelet-
derived growth factor receptor (PDGFR) (Yang J. et al., 2016).
Once the receptors are activated, they turn on the signaling
pathways of protein kinases, which include tyrosine kinases,
protein kinases C andmitogen-activated protein kinase (MAPK).
As a consequence of the activation of these signaling pathways,
cells synthesize and secrete proteins related to responses such
as proliferation, differentiation and programmed cell death. The
activation of these pathways is critical in the development of
several pathologies. For example, the activation of MAPK p38
pathway contributes to neuroinflammation mediated by glial
cells, including microglia and astrocytes (Chlan-Fourney et al.,
2011).

To this point, we have mentioned that reactive species are
closely related to the inflammatory response that characterizes
several diseases. They are able to induce the inflammatory
response because they act as regulators of signaling pathways, as
they are capable of oxidizing or reduce amino acid residues that

are sensitive to redox changes (Corcoran and Cotter, 2013). The
oxidizing modifications cause changes in the structure and/or
function of proteins (Corcoran and Cotter, 2013). For instance,
tyrosine kinases are one of the main protein families whose
function is indirectly affected by the presence of ROS. The activity
of this protein family is controlled by the action of the protein
tyrosine phosphatases (PTP). However, ROS inactivate PTP
by oxidizing cysteine residues in their catalytic site; therefore,
tyrosine kinases remain active (Denu and Tanner, 2009; Cheng
et al., 2011; Roos andMessens, 2011). Since there is no regulation
of the activity of tyrosine kinases, signaling proteins within
the pathway remain active (phosphorylated). In consequence,
the signal transduction continues, leading to the expression of
certain proteins that promote cell proliferation, apoptosis, and
inflammatory response (Figure 1).

On the other hand, the alterations in the gene expression
pattern are caused by the stimulation of ROS and RNS-sensitive
regulatory transcription factors, which include nuclear factor E2-
related factor 2(Nrf2), activator protein 1 (AP1), NF-kB, HIF-1α,
p53, and Forkhead box O (FOXO). Many of these transcription
factors have redox-sensitive cysteine residues in their DNA
binding sites. At physiological levels, ROS and RNS induce the
activation of the transcription factors mentioned above, and in
this context, they effectively neutralize and remove the excess
oxidants to restore redox homeostasis. Although, in an oxidative
stress state, ROS and RNS over-stimulate transcription factors
resulting in deficient cellular antioxidant defenses, generation of
high levels of oxidative stress-inducingmediators, and alterations
in signal transduction processes that lead to neurodegeneration
(Farooqui, 2014).

NEUROINFLAMMATION

Characteristics of Neuroinflammation
Inflammation is triggered to fight and control an injury, infection
or other stimulus and it involves many cell types, as well as the
secretion of soluble factors. In a redox balance, the inflammatory
response is self-regulated, and is able to repair tissue damage
and eliminate pathogenic elements. However, when the response
is chronic, it causes an inflammatory environment that
leads to progressive tissue damage (Inelia et al., 2016).
Neuroinflammation is defined as the inflammatory response of
CNS against elements that interfere with homeostasis. It is a
combination of responses that involves the action of resident
glial cells in CNS, which include microglia, oligodendrocytes,
astrocytes, and non-glial resident myeloid cells (macrophages
and dendritic cells) and peripheral leukocytes. This response is
involved in all neurological diseases, such as traumatic, ischemic,
metabolic, infectious, toxic, neoplastic, and neurodegenerative.
Neuroinflammation plays an important role in the development
and progression of neurological diseases. Thereby, it is important
to understand and control the interactions between the immune
system and the nervous system to prevent or delay the
progression of CNS diseases.

Microglia and astrocytes are important contributors of
neuroinflammation, thereby they play a major role in the
progression of a wide variety of diseases, which are characterized
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FIGURE 1 | Indirect regulation mechanism for tyrosine kinases mediated by ROS. In redox equilibrium there is a balance between pro-oxidant and antioxidant

species; for that reason, all the signaling pathways in which tyrosine kinases participate are regulated: protein tyrosine phosphatase (PTP) inhibits the activity of

tyrosine kinases, limiting the signal. However, in a state of chronic oxidative stress, the loss of balance between pro-oxidant and antioxidant species causes an

increase in ROS that inactivate PTP, which cannot inhibit the activity of tyrosine kinases. Then, the signaling pathway remains turned on, losing its regulation.

by neuronal dysfunction and death. Other cell types including
neurons, astrocytes, endothelial cells, etc., also express receptors
for cytokines and other inflammatory mediators. These cells can
be activated by the signals mentioned above, and participate
in a coordinated inflammatory response in the brain. One of
the common features of neuroinflammatory response in the
neurodegenerative diseases, is the T cell infiltration into the CNS.
It has been demonstrated in several neurodegeneration animal
models, that T cell numbers increase, and their phenotype change
during disease progression. However, in the human forms of
these diseases, the dysregulation of the inflammatory response is
difficult to study and thereby is not fully understood (Schettters
et al., 2017). In the following sections, we will describe the role of
microglia, astrocytes and CD4+T cells in neuroinflammation.

Characteristics of Neuroinflammation
Mediated by Microglial and Astrocytic Cells
The microglial cells account for 10% of the total glial cells
in human adult brain (Liu et al., 2015). The microglia of
the CNS parenchyma consists of cells that are sensitive to
changes occurring in their immediate environment (González-
Scarano and Baltuch, 1999). These cells are the primary defense
line against the presence of pathogen microorganisms and can
detect critical changes in the activity and physiological state of
neurons by interacting with them. In the healthy brain, neurons
contribute maintainingmicroglia in a quiescent state by secreting
factors that bind to receptors in the microglia membrane. Among
them are the microglial receptors for the following molecules:
the cluster of differentiation 200 (CD200), fractalkine, and some
neurotransmitters such as γ-aminobutyric acid, acetylcholine,
and noradrenaline (Korzhevskii and Kirik, 2016). An example
of microglial regulation mediated by receptors is the binding
of CD200 in neurons and CNS endothelial cells to its receptor
CD200R, whose expression is predominant in myeloid cells,
including macrophages and microglia. This is a mechanism to

maintain microglia in a quiescent state (Hoek et al., 2000; Barclay
et al., 2002).

Microglial cells can be activated by several molecules
(Hanisch and Kettenmann, 2007), for example, matrix
metalloproteinase 3 (MMP-3), α-synuclein, amyloid beta
peptides (Aβ), neuromelanin and ATP. On the other hand,
cell damage signals can also stimulate the microglia. Among
these signals are heat shock proteins, calcium-binding proteins,
proteases, uric acid, DNA, and high-mobility group box 1 protein
(HMGB1). Additionally, the increase of ROS levels during the
state of oxidative stress is a key factor to induce microglial
activation. In this sense, it has been proven that exposure to
ozone, which increases the state of oxidative stress in rats,
leads to activation and phenotypical changes in the microglia
(Rivas-Arancibia et al., 2010). Moreover, the stimuli that activate
the microglia can bind to the receptors present in these cells
(Doens and Fernández, 2014), including Toll-like receptors
(TLRs), NOD-like receptors (NLR), the receptor for advanced
glycation end products (RAGE) and scavenger receptors. In
addition, themicroglia has receptors for CD40 and CD91 ligands.
All these receptors and their ligands contribute to microglial
activation that leads to further production of cytokines and other
inflammatory mediators, which may contribute to the apoptotic
neurons death of in multiple neurodegenerative diseases (Owens
et al., 2005). The most important cytokines that take part in the
inflammatory process and that are secreted by the microglia are
interferon gamma (IFN-γ), members of the TNF family, and
several interleukins (IL-1β, IL-6, IL-8, and IL-12).

It has been described that microglial responses can have either
a protective or a neurodegenerative effect, and this depends
on the timing in which microglial activation appears in the
disease. In an acute injury, microglial cells can cause oxidative
and nitrative stress, but in this case, it is usually short-lived and
helps to repair damaged tissue in the CNS. Although, when the
stimulation is persisting for a long time, microglial cells can
enter into an overactivated state in which the levels of ROS
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and RNS cause microenvironmental toxicity for surrounding
neurons. Therefore, chronic microglial stimulation would trigger
a chronic neuroinflammatory response, which is almost always
harmful and damaging to nerve tissue (Krause andMüller, 2010).

On the other hand, astrocytes account for 20–30% of the total
number of glial cells in the human brain (Pelvig et al., 2008).
Under physiological conditions, astrocytes carry out numerous
functions that are essential for neuronal survival (Bakunina et al.,
2015); for example, the crosstalk between astrocytes and neurons,
which occurs through the release of several neurotrophic factors
(Choi et al., 2012). Besides, astrocytes are fundamental to the
formation and regulation of the blood-brain barrier (BBB)
(Hayashi et al., 1997).

As the microglia, astrocytes express several receptors; among
them are the TLRs, which have usually been related to
proinflammatory responses. Although, a study by Bsibsi et al.
(2006) reported that, unlike the response of TLR3 observed in
macrophages, the activation of the TLR3 signaling pathway in
astrocytes is associated to the expression of anti-inflammatory
cytokines such as IL-10. This cytokine promotes neuroprotection
and the increase of neuronal survival. With respect to the
capacity of astrocytes to release cytokines, chemokines and
trophic factors, a study by Choi et al. (2014) investigated the
secretome of human astrocytes by microarray. The study found
that (unstimulated) cultured human astrocytes express eight pro-
inflammatory factors: the granulocyte colony-stimulating factor
(G-CSF), the granulocyte-macrophage-colony-stimulating factor
(GM-CSF), chemokine ligand-1 (CXCL1), IL-6, IL-8, monocyte
chemoattractant protein (CCL2), migration inhibitory factor
(MIF), and serpin E1. This shows that astrocytes take part in
the activation and chronicity of neuroinflammatory response.
The activation of astrocytes is a critical factor in cell responses
to brain injuries and chronic neurodegeneration (Pekny and
Nilsson, 2005). The transition of astrocytes from a quiescent state
to an active one has been observed in many neuroinflammatory
conditions. The activation of astrocytes has been associated with
the expression of the glial fibrillary acidic protein (GFAP); still,
the molecular mechanisms underlying the induction of GFAP
remain unclear (Pekny and Pekna, 2014).

Although the structural and communication functions
of astrocytes have been well characterized, some evidence
suggests that astrocytes also have the capacity of acting as
immunocompetent cells (Dong and Benveniste, 2001). It has
been observed that, under certain conditions as treatment with
IFN-γ, astrocyte activation is characterized by an enhanced
expression of the major histocompatibility complex (MHC)-II
(Vardjan et al., 2012), which is a molecular complex implicated
in antigen presentation. In addition, other studies revealed that
astrocytes activated in culture with IFNγ, TNF-α, lymphotoxin,
and IL-1 express CD80/86 (Soos et al., 1999) and CD40 (Abdel-
Haq et al., 1999), which allow the costimulation signaling. The
ability of astrocytes to express the molecules mentioned above,
suggests that they can act similarly to professional antigen-
presenting cells and, therefore, activate naive lymphocytes.

Due to their location and characteristics, astrocytes are in
close contact with resident cells of CNS and blood vessels.
The glial limiting membrane derived from astrocytes creates a

barrier between the brain parenchyma and the vascular system
(Ransom et al., 2003), known as the perivascular space, which
is an accumulation site of immune cells in neuroinflammatory
processes and is delimited by the endothelial basal membrane and
the glia limitans (Bechmann et al., 2007). After the ligands bind
to their respective receptor, astrocytes secrete chemoattractant
factors that induce changes in the permeability of the BBB,
leading to the recruitment and transmigration of leukocytes to
the CNS. To enter the brain parenchyma, leukocytes need the
secretion of MMP, which are able to break the glial limiting
membrane (Rosell et al., 2008). This means that astrocytes play
a critical role in the leukocyte infiltration into the CNS. The
profile of leukocyte populations observed in neuroinflammation
is highly selective. It is important to note that neutrophils—the
most abundant leukocytes in the blood (70%)—are present in
low concentrations within the CNS, as opposed to what occurs
in inflammation in most of the tissues (Hickey, 2001). The main
leukocytes observed in neuroinflammation are lymphocytes and
mononuclear phagocytes, which constitute the most common
populations in chronic inflammatory processes.

The Role of CD4+T Lymphocytes in
Neuroinflammation
CD4+T cells are capable of activating and directing the functions
of other cells. They participate in cellular mechanisms as
antibody isotype switching and activation, and mobilization
of cytotoxic T lymphocytes. They also regulate phagocytic
and lytic activity of mononuclear phagocytes (microglial and
tissue macrophages) (Male, 2014). Activated CD4+T cells can
easily cross the BBB (Engelhardt and Ransohoff, 2005). Once
they enter the damaged site, the cells exert several actions
according to their phenotype (Vishal et al., 2012). Each cell
subpopulation is specialized in coordinating immune responses
against different types of threats and will produce particular
effects. For example, in a medium where IL-12 is predominant,
there will be a polarization toward the T helper 1 (Th1)
phenotype, which has been associated to the elimination of
intracellular microorganisms and causes neuroinflammation and
neuronal damage in the CNS (Mosmann and Coffman, 1989).
Th17 is another inflammatory phenotype whose differentiation
is mediated by the presence of IL-23 (Bettelli et al., 2006). These
cells participate in intestinal immunity, autoimmune diseases and
have been related to neuroinflammation and neurodegeneration
mediated by the activation of apoptotic Fas/FasL pathway
(Zhang et al., 2008). On the other hand, differentiation toward
Th2 phenotype occurs in a microenvironment where IL-4 is
predominant. This cell subpopulation directs immune response
against helminths and in allergy (Paul, 2010), but it is also
involved in the attenuation of neuroinflammatory processes
(Beers et al., 2008). Tregs are a cell subpopulation that suppresses
the effector function of Th cells (Limón-Camacho et al., 2013).
These cells usually participate in the maintenance of peripheral
tolerance to own molecules, limiting inflammatory responses
against exogenous antigens. Within the CNS they attenuate
neuroinflammation and, in consequence, neurodegeneration (He
and Balling, 2013) (Figure 2).
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FIGURE 2 | Subpopulations of CD4+T cells that play an important role in the development of neuroinflammation. APC, antigen presenting cell; Tn, T naive cell.

CD4+T CELLS

Regulation of CD4+T Effector Cells by
Oxidative Stress
The equilibrium between oxidant and reducing species regulates
the redox state in immunological cells. This is important since
the changes in the concentration of reactive species are critical
in the signaling of several biological mechanisms such as cell
growth, apoptosis, and modulation of the immune response.
Therefore, in pathological states in which there is a state of
chronic inflammation, as in neurodegenerative diseases. The
extended and persistent production of reactive species that
exceeds the capacity of being countered by antioxidant systems,
leads to a state of oxidative stress that affects the functions and
differentiation of CD4+T cells. In general, it has been observed
that the presence of ROS is required during redox balance for the
adequate activation of T cells. In vivo studies have demonstrated
that ROS act as a third activation signal upon T lymphocytes.
This has been demonstrated with the evidence that the treatment
with antioxidants, which reduces the amount of ROS, provides a
deficient activation and proliferation of T cells of BALB/c, NOD,
DO11.10, and BDC-2.5 mice (Hubert et al., 2007). Contrastingly,
the increased concentration of ROS can lead to enhanced T-cell
apoptosis, as a result of damage to the DNA and activation of
genes induced by p53 and FasL (Kesarwani et al., 2013).

Subpopulations of T cells are characterized by the differential
production of cytokines and cell distribution. They also show
plasticity, that is, the ability to change from one lineage to another
under certain inflammatory conditions (O’Shea and Paul, 2010)
that can be affected by an oxidant microenvironment. In this
respect, it has been proven that in an oxidative stress state,
Th1 cells present an opposite response compared to Th2 cells

(Frossi et al., 2008). In the study mentioned above, clones of Th1
and Th2 were used to evaluate the proliferation and secretion
capability of cytokines as a response to oxidative stress. It was
observed that low doses of H2O2 reduce the production of IFN-γ
by activated Th1 cells, and increase IL-4 secretion by activated
Th2 cells. It must be underlined that another study proved
that T-cell activation by an oxidative signal originated in the
mitochondrial respiratory complex I increases the expression of
IL-2 and IL-4 (Kaminski et al., 2010). Moreover, using isolated
T cells of atopic dermatitis patients, a study demonstrated that
inhibition of ROS production mediated by complex I, blocks
the hyperexpression of Th2 cytokines. Therefore, oxidative stress
plays an important role by inhibiting the inflammatory response
of Th2 phenotype. Similarly, another study documented the role
of superoxide in T cell polarization (Hubert et al., 2010). In that
study, NOX inhibition led to the production of superoxide in
macrophages and T cells; as a result, the polarization of T cells
was modified. The authors reported that, after activation with
immobilized anti-CD3 and anti-CD28, NOX-deficient mice T
cells showed an increase in Th17 phenotype while those cells
with physiological levels of NOX produced cytokines related
to Th1-like response. In addition, it has been observed that
mitochondrial inhibitors of ROS, such as N-acetylcysteine and
mitoquinone, lower differentiation to Th17 phenotype in a
mouse model of IEX-1 gene deficiency (this deficiency increases
apoptosis) (Zhi et al., 2012). Therefore, different levels of ROS
exert a modulating effect upon T cells, both at activation and
differentiation.

Regulatory T Cells and Oxidative Stress
Treg cells, compared to effector CD4+T cells, are less sensitive to
oxidative stress-induced cell death, a fact that may be attributed
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to their observed high antioxidative capacity (Mougiakakos
et al., 2011). This capacity is related to a higher expression of
thioredoxins (Trx), which are ubiquitously expressed enzymes
that facilitate cysteine thiol-disulfide exchange to reduce proteins.
Trx counteracts oxidative stress by scavenging ROS, therefore
they play an important antioxidant role in the organism. Tregs
express and secrete higher levels of Trx-1 than effector CD4+T
cells. It has been demonstrated that Trx-1 is critical for the
resistance of Tregs to oxidative stress. At the same time, Trx-1
is responsive to inflammatory stimuli, such as TNF, a mechanism
that enhances the survival of Tregs in an inflammatory millieu
(Mougiakakos et al., 2011).

Regarding the effect of oxidative stress on Treg cells, results
have been variable, depending on the type of study and disease.
In this sense, it was recently discovered that high levels of free
oxygen species target mitochondria and induce apoptosis in Treg
cells, resulting in a suppressive cascade of Treg cells, as it occurs
in the tumor microenvironment (Maj et al., 2017).

On the other hand, most of the studies agree that the state
of oxidative stress exerts a negative influence on the function
of Tregs. In order to explain this dysfunction in Tregs, several
authors point out that it is related to the inhibition of Foxp3
expression. Firstly, under conditions of chronic oxidative stress
there usually is an overproduction of IL-6, which inhibits Foxp3
expression during Treg differentiation (Yang P. et al., 2016).
Oxidative stress can promote the enhanced production of nitric
oxide, mitochondrial hyperpolarization, and Ca2+ influx. These
are factors that promote the overexpression of the mechanistic
target of rapamycin complex 1 (mTORC1), whose activity
inhibits the proliferation of Tregs. However, mTORC1 promotes
the expansion of Th1 and Th17 proinflammatory lymphocytes
(Perl, 2016). Finally, leptin, a hormone primarily produced by
adipocytes, also regulates T-cell differentiation. Leptin is an
adipokine, whose increase has been associated with oxidative
stress. It was recently found that leptin inhibits Treg proliferation
and that its neutralization enhances TCR activity and expansion
of Tregs (De Rosa et al., 2007; Margiotta et al., 2016). With
this experimental evidence, we can establish that reactive species
act as a third signal to take part in the differentiation and
function of CD4+T cells. In a state of chronic oxidative stress,
the excess of reactive species promotes differentiation toward
proinflammatory phenotypes such as Th1 and Th17 and inhibits
Tregs, which constitute an important peripheral mechanism of
immune regulation.

OXIDATIVE STRESS, CD4+T CELLS, AND
NEURODEGENERATIVE DISEASES

The pathogeneses of the neurodegenerative diseases are complex
and there are not fully understood. As we have already
mentioned, in physiological conditions, ROS derived from
mitochondria, NOX, and XO are maintained at relatively low
levels by the effect of antioxidants. However, redox balance can
be disturbed by neural inflammation or abnormal mitochondrial
function (Rego and Oliveira, 2003). In the neurodegenerative
diseases, it is common to observe that aggregates of misfolded

proteins and mitochondrial dysfunction are major inducers of
ROS release.

We have previously reviewed that activation and
differentiation of CD4+T cells, depends on the redox conditions
of the microenvironment. These kinds of cells play a crucial role
in the progression of neurodegenerative diseases; however, the
intensity and type of CD4+T response vary between pathologies.
In the next sections, we will describe the influence of oxidative
stress in some of the most common neurodegenerative diseases,
and the subpopulations of CD4+T cells are predominant under
those conditions (Figure 3).

Alzheimer’s Disease
Alzheimer’s Disease (AD) is the most common
neurodegenerative pathology worldwide. It is characterized
by irreversible cognitive impairment and significant behavioral
alterations (González and Pacheco, 2014). The pathophysiology
of the AD is mainly associated with the extracellular deposition
of Aβ plaques and the accumulation of intracellular tau
neurofibrillary tangles (NFT) (Querfurth and LaFerla, 2010).
Aβ 1-42 induces the release of calcium, from the endoplasmic
reticulum to cytosol, where it accumulates. In consequence,
endogenous levels of GSH decrease and ROS increase till they
reach an oxidative stress state.

Oxidative stress has been identified as a key feature in the
pathogenesis of AD, and has been associated with the deposition
of Aβ. The Aβ plaques have been related to cellular effects,
such as (1) the activation of p38 MAPK signaling pathway
that leads to tau hyperphosphorylation, which, in turn, lead to
intracellular NFT formation; (2)mediation of apoptotic pathways
by triggering the death promoter Bcl-2, which leads to the
mitochondrial release of cytochrome C, and 3) the infiltration of
T cells into the brain parenchyma (Awasthi et al., 2005; Giraldo
et al., 2014; Liu et al., 2017). On the other hand, CNS or systemic
inflammation positively feedback ROS over-accumulation.

Regarding Th cell activity, there are reports of increased Th17
response in AD (Togo et al., 2002; Ferretti et al., 2016). In this
sense, Saresella et al. (2011) conducted an immunophenotypic
and functional analysis of T lymphocytes from peripheral blood
of AD patients. The results obtained from this group were
compared against those from subjects with mild cognitive
impairment (MCI) and healthy controls (HC). In the study,
the authors observed that, when stimulated in vitro, naive
lymphocytes fromADpatients increased the production of Th17-
like cytokines (IL-21, IL-6, and IL-23) and expression of the
RAR-related orphan receptor gamma (RORγt). Interestingly,
there was a significant increase in the expression of the Th2-
related transcription factor GATA-3 only in the group of MCI
patients. These results suggest that the increase in GATA-3
observed in MCI patients might be a mechanism to modulate
the activation of Th17 cells. The failure of this mechanism
would allow the evolution of neuroinflammation that leads to
the AD. In this respect, McQuillan et al. (2010) demonstrated
that the production of IFN-γ and IL-17 by Th1 and Th17 cells,
respectively, is inhibited by the transfer of Th2 cells. That is,
the transfer of Th2 cells might have a regulatory and anti-
inflammatory function in AD (McQuillan et al., 2010).
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FIGURE 3 | The oxidative stress state induces neuroinflammation and neurodegeneration. In an oxidative stress state, ROS and RNS levels are augmented; these

reactive species can activate signaling pathways that lead to the activation of the major glial inflammatory characters: microglia and astrocytes. These glial cells

secrete proinflammatory factors which positively feedback the neuroinflammatory response. On the other hand, SNC-secreted factors and peripheral cytokines are

able to disrupt the blood brain barrier (BBB) integrity; thereby, leukocytes such as T cells are able to infiltrate into SNC and take turn in the positive feedback of

neuroinflammation. Inflammatory cells and secreted factors lead to neurodegeneration, in which the most characteristic feature is the neuron injury and death. iNOS,

inducible nitric oxide synthase; COX-2, cyclooxigenase-2; NOX, NADPH oxidase; IL, interleukin; Th, T helper cell; Tn, T naive cell; Treg, T regulatory cell; ROS, reactive

oxygen species; RNS, reactive nitrogen species; TNF-α, tumor necrosis factor alpha; TGF-β, transforming growth factor beta.

Regarding Tregs, some works using animal AD models have
pointed out that these cells can critically regulate the response
of Th cells, both in physiological and pathological environments
(Baruch et al., 2015; Ye et al., 2016). A recent study conducted
by Dansokho et al. (2016) analyzed the impact of Tregs on
AD progression in a murine model of the disease. The authors
found that the elimination of Tregs boosted the onset of signs
of cognitive impairment in APPPS1 mice (mice in which the
expression of human APP transgene is approximately 3-fold
higher than in endogenous murine APP). On the contrary, when
there was an amplification of the Treg population due to a
peripheral injection of low doses of IL-2, the study reported an
increase in the number of microglial cells, which helps to restore
the cognitive functions in these mice. This work suggests that
transfer of Tregs might have a beneficial effect on the regulation
of the inflammatory response; this, in turn, might contribute to
delaying the progression of the AD.

Parkinson’s Disease
Parkinson’s Disease (PD) is characterized by a 50–70% loss
of dopaminergic neurons located in the substantia nigra (SN).
The progressive degeneration of the dopaminergic fibers in
the brain leads to the onset of prominent motor symptoms
that characterize this disease (González and Pacheco, 2014).
Several groups have provided evidence of the participation of
oxidative stress and alterations in the immune system in the
pathogeny of PD. In this sense, the over-accumulation of ROS
or other free radicals has been related to the major pathological
hallmark in PD: the degeneration of dopaminergic neurons90.
As it occurs in the AD, excessive ROS production can be caused

by mitochondrial dysfunction or inflammation. Mitochondrial
dysfunction in PD has been related to complex I deficiency.
Mutations in some target molecules have been associated with
mitochondrial dysfunction, for example, PINK-1, DJ-1, parkin,
α-synuclein and leucine-rich repeat kinase 2 (LRRK2). These
mutations can impair mitochondrial function, leading to an
increase of ROS levels and susceptibility to oxidative stress
(Adam-Vizi, 2005; Zuo and Motherwell, 2013).

In regard to the molecular mechanisms involved in the death
of dopaminergic neurons, a study by González et al. (2013) found
that dopamineD3 receptors (D3R) expressed in CD4+T cells play
a key role in the loss of dopaminergic neurons in SN. Using a
PD animal model, an investigation found that when transferring
CD4+T cells from wild-type (WT) mice to D3R-deficient
mice, the latter became susceptible to neurodegeneration. On
the other hand, RAG1−/− mice (animals that lack T cells)
are resistant to neurodegeneration induced by 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, these mice
become susceptible to the loss of dopaminergic neurons when
CD4+T cells from WT mice were transferred into them. The
opposite occurs when the cells come from D3R-deficient mice
given that these animals show no loss of dopaminergic neurons.
The study also analyzed the activation and differentiation of
CD4+T cells and found that the dopaminergic activation of D3R
promotes T-cell activation and acquisition of Th1 phenotype.
Therefore, the results of these work underline the importance
of dopamine receptors in the activation of CD4+T cells and
regulation of T cell-mediated immunity at substancia nigra,
which contributes to neurodegeneration. Although these studies
were carried out using an animal model, they suggest that D3R
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must be considered an important pharmacological target in PD
treatment.

On the other hand, a study by Reynolds et al. (2010) observed
that immunization with nitrated α-synuclein (N-α-syn) causes
adaptive immune responses that exacerbate neuroinflammation
and nigrostriatal degeneration in an MPTP-induced PD model.
Such responses are primarily mediated by Th17 subset, which
loses its regulation since there is a dysfunction of the Treg
population. In PD, there is a chronic state of oxidative stress;
hence, Tregs probably show hypoactivity and, in consequence,
inability to regulate effector T cells. However, the administration
of the vasoactive intestinal peptide (VIP), a known inductor of
Treg activity, enhanced the neuroprotector capability of Tregs
of mice treated with VIP in an MPTP-induced PD model.
These results show that when administering a treatment that
promotes the regulatory activity of Tregs, the neuroinflammatory
response induced by N-α-syn can be modulated. The above
provides the elements to continue developing and evaluating
future vaccination or immunotherapy strategies using Tregs
in PD.

Multiple Sclerosis
Multiple sclerosis (MS) is a chronic, progressive, demyelinating,
and inflammatory disease (González and Pacheco, 2014). The loss
of myelin is expressed in clinical symptoms as paralysis, muscle
spasms, optic neuritis, and neuropathic pain. MS is characterized
by destruction of myelin sheaths, axonal damage, the formation
of a glial scar, and presence of inflammatory cells, primarily
myelin antigen-specific Th cells (Kobelt et al., 2017).

In regard to oxidative stress in MS, most studies have related
the lesion formation and progression to glial cells and recruited
monocytes, which are the major producers of ROS. It has been
demonstrated that ROS are critically involved in autoimmune-
mediated tissue damage in MS. In this sense, observations in
white matter and cerebral cortex lesions of MS autopsies suggest
that demyelination and neurodegeneration could be a cause of
the presence of oxidized lipids inmyelinmembranes, in apoptotic
oligodendrocytes and in the axons of neurons (Haider et al., 2011;
Fischer et al., 2013).

On the other hand, it is well known that cells belonging
to the adaptive immune response, particularly Th cells play an
important role in the pathogenesis of MS lesions. For decades,
experimental autoimmune encephalomyelitis (EAE) has been
the primary animal model of MS. It consists in inducing
autoimmunity in mice after injecting peptides from myelin
emulsified in adjuvant (Robinson et al., 2014). This model has
also been applied to the study of the role of Th cells in MS. In
the studies of adoptive transfer of EAE, researchers have proved
that myelin-reactive Th1 or Th17 cells can trigger the disease in
receptor mice; however, the histopathological results produced
by the CD4+T cell populations are different from each other.
In animals that received Th1 cells, the response of macrophages
was more prominent, while Th17-cell mice showed a higher
neutrophil infiltration (Kroenke et al., 2008; Fletcher et al., 2010).
These differences are significant because, although neutrophils
and macrophages are phagocytic cells, only macrophages are
antigen-presenting cells. Then, they can activate cells of adaptive

immunity, which promotes a chronic inflammatory response.
Additionally, the findings previously described suggest that Th1
and Th17 cells have a prominent role in the development of
lesions in MS given that both effector populations can cause
inflammation in the CNS and demyelinating lesions; still, their
effector mechanisms are different from each other.

It has been observed that encephalitogenic T cells in mice have
multiple critical molecules that provide them the capability to
induce inflammation in the CNS. For example, those Th1 cells
that have been observed to have a high expression in integrin
4 (VLA4, a VCAM1 ligand present in endothelial cells) are
encephalitogenic while those that have a reduced expression of
VLA4 are not (Baron et al., 1993). As for the frequency of
Tregs in MS, it has been observed that there are no significant
differences in the number of these cells in peripheral blood or
cerebrospinal fluid (CSF) in MS patients when compared against
healthy controls. Nevertheless, the functional capability of Tregs
is affected in MS patients (Fritzsching et al., 2011; Hsieh and
Yang, 2013).

On the other hand, recent studies have proven that the
elimination of Treg cells before EAE induction increases the
acuteness of the disease (McGeachy et al., 2005; O’Connor and
Anderton, 2008). This suggests that Tregs can suppress the
expansion of autoreactive effector cells.

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative
disease characterized by progressive degeneration of motor
neurons in the cortex, brainstem, and spinal cord (National
Institute of Neurological Disorders and Stroke, 2017). The
term “amyotrophic” refers to muscular atrophy, and “lateral
sclerosis” is related to the scarred aspect of the spinal cord
(Malaspina et al., 2014). ALS is clinically characterized by
paralysis, swallowing impairment and respiratory failure. Several
forms of ALS have over 150 different mutations in SOD1 that
include the entire genomic sequence, as well as the protein
structure of SOD1 antioxidant system (Hooten et al., 2015).
SOD1 is responsible for the conversion of O•−

2 into H2O2

and O2, although SOD1 mutants enhance the production of
Nox2-dependent ROS, inducing injury and death of motor
neurons (Li et al., 2011). Oxidized or misfolded SOD1 has been
shown to cause mitochondrial dysfunction, which contributes
to the pathogenesis of spontaneous ALS (D’Amico et al., 2013).
Motoneuron injury depends on the communication between
motoneurons, surrounding glia and the immune system, which
is enhanced in the oxidative stress state (Hooten et al., 2015).

The pathogenesis of ALS consists of 2 stages: the first one is
an early neuroprotective stage in which the immune system is
protective and restorative. In this stage, there is a predominance
of M2-like macrophages and microglia, as well as a Th2 and
Treg responses (Tiemessen et al., 2007; Beers et al., 2011).
Interestingly, when Tregs are transferred into the ALS mouse
(G93A mSOD1 transgenic mouse), the neuroprotective phase
and survival were prolonged122. The progression of the disease is
characterized by an increase in themotoneuron injury rate. Then,
in the second phase, the macrophage and microglia’s phenotype
switches into M1. On the other hand, there is an infiltration
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of proinflammatory Th1 cells with the concomitant secretion
of pro-inflammatory cytokines, such as IL-1, IL-6, TNF-α, and
IFN-γ (Tiemessen et al., 2007; Beers et al., 2008). As we have
previously mentioned, pro-inflammatory cytokines such as IL-6
can inhibit the phosphorylation of FoxP3, thereby reducing the
suppressive function of Tregs. On the other hand, IL-1β promotes
the conversion of Treg cells into IL-17-producing cells. The
rapid progression of ALS is the result of the oxidative and pro-
inflammatory milieu that positive feedbacks the differentiation
and proliferation of Th1 and Th17 cells.

CONCLUSION

The chronic state of oxidative stress induces cell damage
and progressive neurodegeneration since the regulation of the
inflammatory response is lost. This occurs because reactive
species can act as signaling molecules. During the chronic
state of oxidative stress, those reactive species promote the
sustained activation of the signaling pathways, these lead to the
expression of factors that in turn promote the deregulation of the
inflammatory response.

In of the progressive neurodegeneration processes, in which
there is a state of chronic oxidative stress, the increase in ROS
induces an increase in proliferation and proinflammatory activity
in astrocytes andmicroglia. Moreover, different studies show that
redox balance is a key factor in processes such as activation,
proliferation, and differentiation of T cells. Therefore, a state of

oxidative stress promotes polarization toward proinflammatory
phenotypes as Th17 while Treg activity is inhibited.

The modulation of the cell redox state is proposed
as a therapeutic strategy with which the activation and
differentiation of CD4+T cell subpopulations could
be regulated. Furthermore, Treg cell transfer together
with an antioxidant treatment must be considered a
promising strategy in the treatment of neurodegenerative
diseases.
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