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Abstract: The interaction between soil organic carbon (SOC) and clay minerals is a critical mechanism
for retaining SOC and protecting soil fertility and long-term agricultural sustainability. The SOC
composition and minerals speciation in clay fractions (<2 µm) within soil aggregates under straw
removed (T) and straw incorporation (TS) conditions were analyzed by X-ray diffraction, Fourier
transform infrared spectra and X-ray photoelectron spectroscopy. The TS treatment promoted
enrichment of clay in aggregates. The TS increased the contents of SOC (27.0–86.6%), poorly crystalline
Fe oxide (Feo), and activity of Fe oxides (Feo/Fed); whereas, it reduced the concentrations of free Fe
oxide (Fed) in the clay fractions within aggregates. Straw incorporation promoted the accumulation of
aromatic-C and carboxylic-C in the clay fraction within aggregates. The relative amount of hydroxy-
interlayered vermiculite, aliphatic-C, and alcohol-C in the clay fractions within the macroaggregates
was higher than that microaggregates, whereas the relative amounts of illite, kaolinite, Fe(III), and
aromatic-C had a reverse tendency. The hydroxy-interlayered vermiculite in clay fractions showed
positive correlation with the amounts of C–C(H) (r = 0.93) and C–O (r = 0.96 *, p < 0.05). The
concentration of Feo and Feo/Fed ratio was positively correlated with the amounts of C=C and
C(O)O content in clay within aggregates. Long-term straw incorporation induced transformation of
clay minerals and Fe oxide, which was selectively stabilized straw-derived organic compounds in
clay fractions within soil aggregates.

Keywords: clay minerals; soil organic carbon; clay fractions; aggregates; straw incorporation

1. Introduction

Stabilization of soil organic carbon (SOC) plays a key role in agricultural soil fertility
and mitigation of global warming [1–3]. Soil aggregates physically protect SOC against
mineralization, which decreases the availability of organic compounds for microorganisms,
extracellular enzymes, and oxidation processes [4,5]. However, the smaller sized soil
particles, such as clay fractions (<2 µm), can retain higher amounts of organic carbon as
compared with larger particles [6,7]. Stabilization of SOC results from the formation of
organo–mineral associations, especially the adsorption of SOC by clay mineral aggregates
and chemical reactions between SOC and surfaces of clay particles [6–8]. The SOC is
bonded to the mineral surface by hydrogen (H)-bonding, hydrophobic interactions, van der
Waals attraction, ligand exchange, and polyvalent cation bridging [9,10]. The stabilization
and decomposition rates of SOC are influenced by the Fe (oxyhydr)oxides as well as the
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type of phyllosilicates in soil [11]. More than 70% of the SOC inventory exists in close
association with minerals, which can protect organic carbon from microbial degradation in
agricultural soils [12–16].

The clay-sized fraction usually contains a mixture of phyllosilicate minerals in natural
soils. The phyllosilicate minerals have been recognized to have substantial effects on
stabilization of SOC due to the active surface properties (specific surface area, charge
density) [17]. The specific surface area (SSA) and cation exchange capacity (CEC) of
phyllosilicate minerals generally decrease in the order of smectite or vermiculite (2:1 type) >
illite (2:1 type) > kaolinite (1:1 type) [18,19]. Therefore, the phyllosilicates with contrasting
properties should have different abilities in stabilizing SOC [18,20]. The relative importance
of different clay minerals for stabilizing SOC remains an open question. The current
knowledge is based on limited and conflicting data, but it is generally accepted that the
SOC-stabilizing capacity of clay minerals decreases in the following order: allophane >
smectite > illite > kaolinite [21]. The previous reports also indicated that dissolved organic
matter (DOM) mineralization was higher in 1:1 phyllosilicate amended sand compared
with 2:1 phyllosilicate amended sand. DOM mineralization was similar for illite and
smectite-dominated soils [22]. Stability of SOC in soil was negatively correlated with
crystallite size of illite (r = −0.46, p < 0.01), suggesting that lower crystallite size of illite
leads to greater stability of clay-humus C [23]. However, to our knowledge, no systematic
investigation of stabilization of SOC through the interaction of organic carbon with soil
minerals in different aggregate-sized classes, recovered from the same soil, has been carried
out so far.

In addition to phyllosilicate minerals, the iron (Fe) (oxyhydr)oxides also play an im-
portant role in the stabilization of SOC in natural soils. It is well documented that Fe (oxy-
hydr)oxides contents correlate significantly with SOC contents and stabilization [15,24–26].
The sorption coefficients of DOC on crystalline Fe (oxyhydr)oxide, such as hematite and
goethite, were 0.85 and 2.6–4.0 mol C kg−1, respectively [27,28]. In addition to the simple
sorption, some research has highlighted the importance of organo–mineral complexes
for SOC sequestration [29]. Long-term application of organic amendments significantly
increased the poorly crystalline Fe minerals, such as ferrihydrite, may preferentially re-
tain aromatic organic compounds of SOC in soil aggregates and water-dispersible col-
loids [12,13,30]. Another study showed that aliphatic soil organic matter was stabilized
by association with Fe (oxyhydr)oxide [31]. Mechanisms of SOC stabilization by Fe (oxy-
hydr)oxide have been extensively investigated but remain controversial. Therefore, ex-
ploring the mechanisms underlying the formation of organo–Fe complexes from Fe (oxy-
hydr)oxides and organic compounds is needed.

Long-term straw incorporation might differentially affect the stability of organic
carbon present in a soil as a whole [32–35], and especially that present in the organo–
mineral fraction [35]. Our previous results showed that long-term straw incorporation
improved the stability of aggregates by influence SOC and Fe (oxyhydr)oxides in rice–rape
cropping systems [36,37]. However, the molecular structure of SOC, species of clay minerals,
and interactions between these components have not been examined extensively in clay
fractions within aggregates under long-term straw incorporation. Straw incorporation is
hypothesized to influence clay mineral composition, which may selectively stabilize straw-
derived organic compounds in clay fractions within soil aggregates. The objectives of the
present study were to determine the following: (1) the mineral composition and speciation
of Fe (oxyhydr)oxides in clay fractions within aggregates; (2) the contents and composition
of SOC in clay fractions within aggregates; (3) the interaction between mineral composition
and the SOC in clay fractions within macroaggregates (>250 µm) and microaggregates
(53–250 µm) influenced by long-term straw incorporation in a paddy soil.
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2. Materials and Methods
2.1. Experimental Design and Sampling

The long-term field experiment was started in 2007 in Dajing (latitude 29◦59′21′′ N,
longitude 115◦36′53′′ E), Wuxue, Hubei Province, China. The soil derived from quaternary
sediment and is classified as an Alfisol, based on the USDA Soil Taxonomy (Soil Survey
Staff, 2010), with a loam texture (40.0% sand, 42.7% silt, and 17.3% clay). The mean annual
precipitation, temperature, and evaporation are 1489 mm (mainly from July to September),
16.9 ◦C, and 1361 mm, respectively. The frost-free period is about 262 days, and the sunshine
radiation averages 12.2 MJ m−2 d−1, with an average annual sunshine duration of 1913 h.
The predominant clay minerals are kaolinite, illite, and 1.4 nm hydroxy interlayer hydroxyl
minerals. It has long been cultivated with winter rape (Brassica napus L.) and summer rice
(Oryza sativa L.), which represents one of the main cropping systems in China. The main soil
properties of the upper surface horizon (0–20 cm) of the experimental site were as follows:
soil pH (water: soil = 2.5:1), 5.23; organic carbon concentration, 19.8 g C kg−1; total nitrogen
(N) concentration, 1.92 g N kg−1; total potassium (K) concentration, 6.68 g K kg−1; alkaline
hydrolysable N concentration, 129.2 mg N kg−1; Olsen phosphorus (P) concentration,
21.7 mg P kg−1; ammonium acetate-extractable K concentration, 86.1 mg K kg−1. More
detailed information on the experiment site can be found in a previous publication [30].

The long-term tillage experiment consisted of four treatments with three replicates
each in a randomized complete block design. The plot size was 7× 6.5 m. We choose two of
them: (1) conventional tillage with straw removing (T); (2) conventional tillage with straw
incorporation (TS). The conventional tillage treatments consisted of moldboard plowing
(20–22 cm) in May and October followed by secondary seedbed preparation by disking
(7.5–10 cm) using a disk harrow. After harvesting, residues were chopped into 2–3 cm
pieces for rape and 6–7 cm pieces for rice. For the treatments without straw removing,
all crop residues were removed from the experiments. In the straw incorporation fields,
after the rice and rape harvests, 5250 kg ha−1 rice straw and 4500 kg ha−1 rape straw
were applied. All other field management practices were the same for all plots during
the experiment. The application of N fertilizer, phosphate fertilizer, and potash in rice
and rape was 150 and 210 kg ha−2 as urea (N 46%), 45 and 75 kg ha−2 as superphosphate
(P2O5 12%), and 150 and 150 kg ha−2 as potassium chloride (K2O 60%), respectively.
Detailed farming methods and the application rates of straw residues and fertilizer can be
found in a previous study [30].

Soil samples were collected immediately after the later rice harvest (October 2016). All
soil samples were randomly, manually collected from the 0–20 cm soil layer at 10 different
locations in 3 independent areas within each experimental plot by using a soil auger (5.0 cm
diameter). All samples from each plot were carefully mixed to form a composite, placed
in a plastic box, and immediately transported to the laboratory. Moist soils were gently
broken apart along the natural break points and passed through a 10 mm sieve. After
removing the visible organic residue and stones, the soil samples were air dried at room
temperature. One part was used for soil chemical analysis, while the other part was used
for the determination of aggregate size distribution.

2.2. Extraction of Clay Fractions within Aggregate-Sized Classes

There were 3 classes of aggregates obtained: >250 µm (macroaggregates), 53–250 µm
(microaggregates), and <53 µm (silt+clay) (Figure 1). Water-stable soil aggregates were
separated according to the wet-sieving method described by Elliott (1986) [38]. For detailed
experimental procedures, please refer to the previously published article [30].
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pletely dispersed by sonication (320 J mL−1) using an ultrasonic cell disruptor (VCX 800, 
Sonics, Missouri, Branson, US). For macro- and microaggregates, the sonicated suspen-
sions were passed through a 53 μm sieve to recover sand particles (>53 μm). Finally, clay- 
and silt-sized fractions within macroaggregates and microaggregates, and the silt-sized 
fraction, were separated by centrifugation. The sand, silt, and clay fractions of each aggre-
gate-sized class were oven-dried at 40 °C and weighed. Three replicates of each aggregate 
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Figure 1. Schema about the fractionation of soil aggregates and extraction of clay fractions (<2 µm)
within aggregates. Macroaggregates (Macro, >250 µm), microaggregates (Micro, 53–250 µm), and
silt+clay fractions (Silt+clay, <53 µm).

The clay fractions (<2 µm) within macroaggregate, microaggregate, and silt+clay size
fractions were recovered by sonication–centrifugation methods (Figure 1) [39]. Briefly,
a 5 g soil aggregates aliquot were combined with 50 mL of deionized water in 100 mL
centrifuge tubes and inverted 10 times by hand. The suspension of aggregates was then
completely dispersed by sonication (320 J mL−1) using an ultrasonic cell disruptor (VCX 800,
Sonics, Missouri, Branson, US). For macro- and microaggregates, the sonicated suspensions
were passed through a 53 µm sieve to recover sand particles (>53 µm). Finally, clay- and
silt-sized fractions within macroaggregates and microaggregates, and the silt-sized fraction,
were separated by centrifugation. The sand, silt, and clay fractions of each aggregate-sized
class were oven-dried at 40 ◦C and weighed. Three replicates of each aggregate were used
to separate the clay fractions.

2.3. The Organic Carbon and Iron Oxide Analysis

The organic carbon concentration in the clay fractions was determined with the
K2Cr2O7–FeSO4 oxidation method [40]. The free Fe (oxyhydr)oxide (Fed) and poorly
crystalline (oxyhydr)oxide (Feo) in the clay fractions were extracted by dithionite–citrate–
bicarbonate (DCB) and oxalate, respectively [41,42]. The Fe concentrations in the extracts
were determined using atomic absorption spectroscopy (AA240FS; Agilent, Santa Clara,
CA, USA).

2.4. X-ray Diffraction Analyses

To identify phyllosilicate minerals in the clay fractions of natural soils, X-ray diffraction
(XRD) was performed after removal of free Al- and Fe-oxides from the fractions by the
dithionite–citrate–bicarbonate extraction method [43]. The mineralogical compositions of
clay fraction (<2 µm) within macroaggregates and microaggregates were determined by
random powder and oriented samples. Prior to XRD analysis, the following treatments
were performed on tested samples: Mg-glycol saturation (Mg-gly) and K saturation (K). The
Mg and Mg-gly samples were examined at 25 ◦C. The K-saturated samples were examined
at 25 ◦C, then heated for 2 h at 110 ◦C, 350 ◦C, and 550 ◦C [44]. The random powders
on glass slides and the oriented samples were measured by an X-ray diffractometer (D8
Advance, Bruker, Rheinstetten, Germany) with Cu Kα radiation (λ = 1.5418 Å) generated
at 40 kV and 40 mA. Diffraction data were recorded in scanning mode and converted to
step patterns (with a step of 2◦ 2θ between 4 and 40◦ 2θ, using a 60 s counting time per
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step) [45]. The mineralogical compositions of the clay fractions in the XRD patterns were
analyzed using Jade software (Materials Data, Inc., Livermore, CA, USA).

Semi-quantitative estimations of the amounts of clay minerals were based on the XRD
results obtained using oriented specimens. The semi-quantitative method consisted of using
the Mg-gly saturated diffractograms and focusing on the areas of individual d (001) reflec-
tions of clay minerals, in relation to the sum of reflection areas in the diffractograms [46].

2.5. FTIR Analyses

Fourier transform infrared spectra for clay fractions within macroaggregates and
microaggregates were obtained for random powder specimens, dispersed in KBr pellets,
using a VERTEX70 FTIR spectrometer (Bruker, Hamburg, Germany). The pellets (1 mg
sample 100 mg−1 KBr) were prepared from bulk samples (<0.149 mm) that were previously
ground in an agate mortar, dried by heating at 105 ◦C for 24 h, and mixed with KBr powder.
Spectra were recorded as an average of 32 scans, with a wavelength resolution of 4 cm−1

in the range of 400–4000 cm−1. A semiquantitative analysis of organic carbon functional
groups was realized according to Zhu et al. (2016) and Szymański (2017), as follows [47,48].
The areas of the absorption bands in the FTIR spectra were integrated using the OMNIC
8.0 spectrometer software and were defined as intensities.

2.6. X-ray Photoelectron Spectrometer (XPS)

The major advantage of this spectroscopic method is that XPS provides a quantita-
tive analysis of the chemical composition of the outermost interface layer (0.5–10 nm) of
solids [49]. We found that the variation of organic C content among aggregates was consis-
tent for three replicate clay fractions. In contrast, there was no significant difference among
three replicate clay fractions within macroaggregates and microaggregates. Therefore, we
selected one of the three replicates for elements, C 1s, and Fe 2p analyses.

Pre-dried samples were pressure-mounted onto a conducting indium foil and in-
spected visually using the instrument’s microscope to identify suitable areas without large
mineral grains. Then, samples were excited with non-monochromated Al Kα radiation
(Eexc = 1486.6 eV) at an incident angle of 45◦ and an electron beam spot size of 800 µm
(~500 µm2). XPS analysis was performed with an Axis Ultra DLD device (Kratos Analytical,
Manchester, UK) using monochromatic Al Kα radiation (1486.6 eV, emission current 20 mA,
high voltage 12 kV) in the binding energy (BE) range of 1200–0 eV. The bulk element com-
position of clay fractions was revealed by scanning from 0 to 1100 eV using a pass energy
of 93.90 eV, channel width of 0.4 eV/step, and measurement time of 20 ms/step (exposition
time = 10 min); in high-resolution mode, clay fractions were scanned at the C 1s and Fe 2p
edge using a pass energy of 11.75 eV, channel width of 0.1 eV/step, and measurement time
of 100 ms/step (exposition time = 30 min). Substantial X-ray-induced alteration of clay
fractions that could cause false structural C assignments is expected only for exposure times
>30 min [50]. The vacuum during measurements was set at ~3 × 10−9 mbar. The rate of
contamination by adventitious C was estimated to be 0.1 atom%/h. Sample charge during
analysis led to peak shifts of 63 eV, which were corrected based on the maximum principal
C 1s sub-peak centered at 285 eV. Binding energies were determined with an accuracy of
±0.2 eV and calibrated by C 1s peak at 284.8 eV. The background from each spectrum
was subtracted using a Shirley-type background. The high-resolution XPS spectra were
analyzed and deconvoluted using XPSPEAK software (version 4.1, Hong Kong, China)
with a 30% Gaussian–Lorentzian value to optimize the spectra [51,52]. The curve-fitting
procedures implemented for high-resolution spectra of Fe 2p and C 1s used 60:40 [53] and
80:20 Gaussian–Lorentzian line shapes, respectively. Full width at half maximum values of
all C components were set as free parameters, which were optimized within a constrained
range (1.3–2.0 eV) in the peak fitting.

The binding energies of spectral shifts in the core level C 1s were assigned to different
chemical components of C as follows: (1) aromatic-C (C=C: 284.6 eV), (2) aliphatic-C (C–
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C(H): 285 eV), (3) ether or alcohol-C (C–O; 286. 2 eV), (4) ketonic or aldehyde-C (C=O;
287.9 eV), and (5) carboxylic-C (C(O)O; 289 eV) [13,54].

2.7. Statistical Analysis

Statistical analysis was performed using SPSS Statistics for Windows, version 18.0 (SPSS
Inc., Chicago, IL, USA). One-way analysis of variance was used to test the variability among
different aggregate size fractions; variability between different treatments was determined
by the t-test. Differences were considered significant when p < 0.05. Pearson’s correlation
coefficients were obtained to examine the relationship between SOC and Feo/Fed in clay
fractions. Figures and tables were made with Origin Pro 8.0 (OriginLab, Northampton, MA,
USA) and Microsoft Excel 2010 (Microsoft, Redmond, WA, USA), respectively.

3. Results
3.1. The Clay Contents in the Aggregates

The clay contents in the aggregates under the T and TS treatments were 10.8–37.2%
and 13.65–44.8%, respectively (Figure 2a). The highest clay contents occurred in macroag-
gregates, while the lowest clay contents were in microaggregates. TS treatment significantly
increased clay contents in macroaggregates and microaggregates by 19.4% and 26.9%,
respectively, compared with the T treatment (both p < 0.05). However, no significant
difference between T and TS treatments was observed in the silt+clay fraction. Conse-
quently, long-term straw incorporation was concluded to promote enrichment of clay in
macroaggregates and microaggregates.
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under the conventional tillage without straw (T) and conventional tillage with straw incorporation
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means ± SE, n = 3. Different capital and lowercase letters indicate significant differences between
different aggregate fractions for the same treatment and between different treatments for the same
aggregate fraction, respectively, at p < 0.05 according to Duncan’s multiple range test.

3.2. The Contents of Organic Carbon in the Clay Fractions

In both the T and TS treatments, SOC contents were highest in the clay fraction within
macroaggregates (44.6 and 83.3 g kg−1) and lowest in the clay fraction within microag-
gregates (32.1 and 40.8 g kg−1), respectively (Figure 2b). Compared with the T treatment,
the SOC in clay within the macroaggregates, microaggregates, and silt+clay fraction in
the TS treatment was significantly higher by 86.6%, 27.0%, and 82.0%, respectively (all
p < 0.05). The findings demonstrated that straw application enhanced the bonding of clay
to organic C, especially to macroaggregates.

3.3. Fed, Feo, and Feo/Fed Ratio in Clay Fractions within Aggregate-Sized Classes

Fed content was consistently higher in the clay fraction of microaggregates and the
silt+clay fraction than in macroaggregates (Figure 3a). Overall, the average Fed content
of clay fraction within the aggregate-sized classes in T ranged from 87.15 to 113.90 g kg−1.
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For TS, these values ranged from 60.97 to 76.49 g kg−1. The lowest Fed content of the clay
fraction was observed in the macroaggregates, with values of 87.15 and 60.97 g kg−1 under
the T and TS treatments, respectively. The highest Fed content of clay was observed in the
microaggregates and the silt+clay under the T and TS treatments, respectively. The Fed con-
tent was lower under the TS treatment than under the T treatment; it decreased by 30.04%,
37.45%, and 26.32% in macroaggregates, microaggregates, and silt+clay, respectively.
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macroaggregates and the lowest was found in the microaggregates (Figure 3c). Straw re-
turn significantly increased the Feo/Fed ratio of clay in all fractions (all p < 0.05). Mean-
while, the Feo/Fed ratio was found to be significantly positively correlated with SOC con-
centration (R2 = 0.76, p < 0.05) in the clay fractions within aggregates (Figure 4), which 

Figure 3. The Fed (a) and Feo (b) concentration and Feo/Fed ratio (c) in clay fractions within
aggregate-sized classes under the conventional tillage without straw (T) and conventional tillage with
straw incorporation (TS). Macroaggregates > 250 µm; microaggregates: 53–250 µm; silt+clay: <53 µm.
Values are means ± SE, n = 3. Different capital and lowercase letters indicate significant differences
between different aggregate fractions for the same treatment and between different treatments for the
same aggregate fraction, respectively, at p < 0.05 according to Duncan’s multiple range test.

Under the T treatment, the Feo content of clay fraction was highest in the silt+clay frac-
tions (26.07 g kg−1) and lowest in the macroaggregates (21.63 g kg−1) (Figure 3b). However,
under this treatment, the Feo contents of clay in the macroaggregates and silt+clay were
higher than the Feo content of clay in the microaggregates. Compared with the T treatment,
the TS treatment significantly increased the Feo content of clay in macroaggregates by
12.48% (p < 0.05). Additionally, the TS treatment significantly decreased the Feo content of
clay in the silt+clay fraction.

Under the T and TS treatments, the highest Feo/Fed ratio of clay was found in the
macroaggregates and the lowest was found in the microaggregates (Figure 3c). Straw return
significantly increased the Feo/Fed ratio of clay in all fractions (all p < 0.05). Meanwhile, the
Feo/Fed ratio was found to be significantly positively correlated with SOC concentration
(R2 = 0.76, p < 0.05) in the clay fractions within aggregates (Figure 4), which suggests that
application of straw could efficiently activate the function of Fe oxides, thus preserving SOC.
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3.4. Mineral Composition of Clay Fractions within Aggregate-Sized Classes

Clay fractions within the aggregate-sized class samples obtained using random pow-
der samples contained quartz, illite (2:1 layer type), kaolinite (1:1 layer type), feldspar,
chlorite (2:1:1 layer type), vermiculite, and Fe-bearing minerals (Figure 5). XRD reflection
peaks of 0.417 nm and 0.269 nm indicated the presence of goethite and hematite existed
in the soil aggregates. The soil macroaggregates and microaggregates had similar mineral
composition, indicating that the macroaggregates may have developed from microaggre-
gates. Compared with the T treatment, the TS treatment decreased the peak intensity
at 0.417 nm and 0.269 nm, indicating that long-term straw incorporation decreased the
concentration of crystalline Fe(hydr)oxides.
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Figure 5. X-ray diffraction spectra of minerals for clay fractions within macroaggregates (>250 µm)
and microaggregates (53–250 µm) using a powder specimen slide of soil under the conventional tillage
without straw (T) and conventional tillage with straw incorporation (TS). Q—quartz; Go—goethite;
K—kaolinite; I—illite; H—hematite; V— vermiculite; HIV—hydroxy-interlayered vermiculite.

The XRD patterns of the clay minerals in the clay size fractions within the aggregate-
sized classes were similar under the T and TS treatments (Figure 6). The XRD patterns
of the K-saturated clay indicated that illite (d-spacing of 1.0 nm, 0.5 nm, and 0.33 nm),
kaolinite (d-spacing of 0.72 nm and 0.357 nm), and quartz (d-spacing of 0.43 nm) were
present. The XRD reflection peaks of 1.0 nm, 0.5 nm, and 0.33 nm remained unchanged
when the sample was subjected to heating treatments at 110 ◦C and 550 ◦C, indicating the
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presence of illite. The disappearance of reflections at 0.72 nm and 0.357 nm after this sample
had been subjected to heating treatment at 550 ◦C indicated the presence of kaolinite. The
0.72 nm peak was asymmetrical, with a tail in the low-angle region, indicating the possible
presence of interstratification with a 2:1 mineral. A reflection at 1.4 nm was identified
in the Mg-saturated X-ray patterns of the clay minerals in the clay size fraction within
the aggregate-sized classes. This reflection was collapsed to 1.0 nm after K-saturation,
indicating the presence of vermiculite (V). A small, broad diffraction reflection between 1.4
and 1.0 nm was detected in the Mg-saturated sample, but collapsed at 1.0 nm after it had
been heated at 550 ◦C, indicating the presence of traces of hydroxy-interlayered vermiculite
in the clay size fraction within the aggregate-sized classes.

Agronomy 2022, 12, x FOR PEER REVIEW 9 of 19 
 

 

the K-saturated clay indicated that illite (d-spacing of 1.0 nm, 0.5 nm, and 0.33 nm), kao-
linite (d-spacing of 0.72 nm and 0.357 nm), and quartz (d-spacing of 0.43 nm) were present. 
The XRD reflection peaks of 1.0 nm, 0.5 nm, and 0.33 nm remained unchanged when the 
sample was subjected to heating treatments at 110 °C and 550 °C, indicating the presence 
of illite. The disappearance of reflections at 0.72 nm and 0.357 nm after this sample had 
been subjected to heating treatment at 550 °C indicated the presence of kaolinite. The 0.72 
nm peak was asymmetrical, with a tail in the low-angle region, indicating the possible 
presence of interstratification with a 2:1 mineral. A reflection at 1.4 nm was identified in 
the Mg-saturated X-ray patterns of the clay minerals in the clay size fraction within the 
aggregate-sized classes. This reflection was collapsed to 1.0 nm after K-saturation, indi-
cating the presence of vermiculite (V). A small, broad diffraction reflection between 1.4 
and 1.0 nm was detected in the Mg-saturated sample, but collapsed at 1.0 nm after it had 
been heated at 550 °C, indicating the presence of traces of hydroxy-interlayered vermicu-
lite in the clay size fraction within the aggregate-sized classes. 

5 10 15 20 25 5 10 15 20 25

5 10 15 20 25 5 10 15 20 25

2θ (°)

a

0.
33

 n
m

 (I
)

0.
36

 n
m

 (K
)

0.
43

 n
m

 (Q
)

0.
48

 n
m

 (V
, H

IV
)

0.
50

 n
m

 (I
)

0.
72

 n
m

 (K
)

1.
0 

nm
 (I

)
1.

4 
nm

 (V
,H

IV
)

2θ (°)

b

0.
33

 n
m

 (I
)

0.
36

 n
m

 (K
)

0.
43

 n
m

 (Q
)

0.
48

 (V
, H

IV
)

0.
50

 n
m

 (I
)

0.
72

 n
m

 (K
)

1.
0 

nm
 (I

)

1.
4 

(V
,H

IV
)

2θ (°)

c

1.
0 

nm
 (I

)

1.
4 

nm
 (V

,H
IV

)

0.
33

 n
m

 (I
)

0.
36

 n
m

 (K
)

0.
43

 n
m

 (Q
)

0.
48

 (V
, H

IV
)

0.
50

 n
m

 (I
)

0.
72

 n
m

 (K
)

K-350 ℃
K-550 ℃

K-110 ℃

K-25 ℃

Mg-gly

K-350 ℃

K-550 ℃

K-110 ℃

K-25 ℃

Mg-gly

K-350 ℃
K-550 ℃

K-110 ℃
K-25 ℃

Mg-gly

K-350 ℃

K-550 ℃

K-110 ℃
K-25 ℃

Mg-gly

d

2θ (°)

1.
42

 (V
,H

IV
)

1.
0 

nm
 (I

)

0.
33

 n
m

 (I
)

0.
36

 n
m

 (K
)

0.
43

 n
m

 (Q
)

0.
48

 (V
, H

IV
)

0.
50

 n
m

 (I
)

0.
72

 n
m

 (K
)

 
Figure 6. X-ray diffraction spectra of minerals for clay fractions within macroaggregates (>250 μm) 
and microaggregates (53–250 μm) using an oriented specimen slide of soil under the conventional 
tillage without straw (T) and conventional tillage with straw incorporation (TS). V—vermiculite; I—
illite; K—kaolinite; Q—quartz; HIV—hydroxy-interlayered vermiculite; (a) T, macroaggregates; (b) 
T, microaggregates; (c) TS, macroaggregates; (d) TS, microaggregates. 

To illustrate the differences among clay size fractions within the aggregate-sized clas-
ses, the results of semi-quantitative analyses of clay minerals are shown in Table 1. The 
major clay minerals in the clay size fraction within the aggregate-sized class samples were 
kaolinite (53.6–57.5%), illite (9.97–14.6%), vermiculite (4.10–21.6%), and hydroxy-interlay-
ered vermiculite (10.4–30.6%). The relative amount of hydroxy-interlayered vermiculite 
in the clay size fraction of the macroaggregate samples was higher than that in the mi-
croaggregates, whereas the relative amounts of illite and kaolinite had a reverse tendency. 
Furthermore, compared with the T treatment, the TS treatment increased the relative 
amounts of kaolinite and vermiculite; conversely, it decreased the relative amount of illite 
in all aggregates.  

  

Figure 6. X-ray diffraction spectra of minerals for clay fractions within macroaggregates (>250 µm)
and microaggregates (53–250 µm) using an oriented specimen slide of soil under the conventional
tillage without straw (T) and conventional tillage with straw incorporation (TS). V—vermiculite;
I—illite; K—kaolinite; Q—quartz; HIV—hydroxy-interlayered vermiculite; (a) T, macroaggregates;
(b) T, microaggregates; (c) TS, macroaggregates; (d) TS, microaggregates.

To illustrate the differences among clay size fractions within the aggregate-sized
classes, the results of semi-quantitative analyses of clay minerals are shown in Table 1.
The major clay minerals in the clay size fraction within the aggregate-sized class samples
were kaolinite (53.6–57.5%), illite (9.97–14.6%), vermiculite (4.10–21.6%), and hydroxy-
interlayered vermiculite (10.4–30.6%). The relative amount of hydroxy-interlayered ver-
miculite in the clay size fraction of the macroaggregate samples was higher than that in
the microaggregates, whereas the relative amounts of illite and kaolinite had a reverse
tendency. Furthermore, compared with the T treatment, the TS treatment increased the
relative amounts of kaolinite and vermiculite; conversely, it decreased the relative amount
of illite in all aggregates.
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Table 1. Quantitative estimation (%) of minerals in the clay size fraction.

Treatments Sizes (µm) HIV Vermiculite Illite Kaolinite

T
Macroaggregates

>250 30.6 4.1 11.8 53.6

Microaggregates
53–250 13.7 17.2 14.6 54.6

TS
Macroaggregates

>250 13.3 21.6 10.0 55.2

Microaggregates
53–250 10.4 19.3 12.8 57.5

T—straw removed; TS—straw incorporation; HIV—hydroxy-interlayered vermiculite.

3.5. High-Resolution XPS Spectrum of Fe in Clay Fractions within Aggregates

XPS analysis was performed to establish the absolute binding energy of Fe 2p at the
surface of clay fractions within aggregates, and the results are presented in Figure 7. It is
commonly accepted that the respective Fe 2p3/2 peak positions of Fe(III) and Fe(II) are at
712.3 and 710.7 eV, whereas the respective Fe 2p1/2 peaks of Fe(III) and Fe(II) are at 726.1
eV and 723.7 eV. Furthermore, the satellite peak position of Fe(III) was 714.6 eV [55,56].
The Fe 2p3/2 peak intensity of Fe(III) at 712.3 eV was higher in clay fractions within
microaggregates than in fractions within macroaggregates, whereas the Fe 2p3/2 peak
intensity of Fe(II) at 710.7 eV showed the reverse order. Compared with microaggregates,
the abundance of Fe-reducing bacteria is reportedly higher in macroaggregates [57,58], and
a portion of Fe(III) oxides can be reduced to dissoluble Fe(II) by Fe-reducing bacteria [59].
Moreover, compared with the T treatment, the TS treatment decreased Fe 2p1/2 peak
intensities of Fe(II) at 723.7 eV in both macroaggregates and microaggregates.
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Figure 7. High-resolution XPS spectrum of Fe for clay fractions within macroaggregates (>250 µm)
and microaggregates (53–250 µm) of soil under the conventional tillage without straw (T) and
conventional tillage with straw incorporation (TS). (a) T, macroaggregates; (b) T, microaggregates;
(c) TS, macroaggregates; (d) TS, microaggregates.

3.6. SOC Species in Clay Fractions within Aggregates by FTIR and XPS Spectroscopy

The FTIR spectra of clay fractions within aggregates were relatively similar (Figure 8).
The strong band at 3600–3200 cm−1 was attributed to hydrogen-bonded OH groups in
phenol [60–62]. The bands at around 2923 and 2853 cm−1 were assigned to the stretching of
aliphatic CH3 and CH2, respectively [61,63]. The broad band between 1650 and 1550 cm−1

reflected aromatic C=C vibrations (1637 cm−1) [60,64]. The band at 1400 cm−1 was assigned
to C=O stretching of protonated carboxylic acid [65]. Absorption bands at 1090 cm−1 were
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assumed to correspond with polysaccharides and polysaccharide-like substances [61,66].
Some of the absorption around 1032 cm−1 likely reflected Si-O-Si stretching (that resulted
from incomplete dissolution of silicate minerals in the HF treatment) [63,67].
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Figure 8. Fourier transform infrared (FTIR) spectra of clay within macroaggregates (>250 µm) and
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In clay fractions within aggregates, polysaccharides-C was the major organic compo-
nent, accounting for above 27% of total SOC, followed by phenolics-C about 9% (Table 2).
Alkanes-C, aromatic-C, carboxylic-C, and polysaccharides-C contents in aggregates asso-
ciated clays were consistently higher in macroaggregates than microaggregates, whereas
that of phenolics-C and silicate minerals showed an opposite order. Compared with T, TS
treatment showed a minute decreased in the relative intensities of alkanes-C by 18.09%
and 7.45% in clay fractions within macroaggregates and microaggregates, respectively. In
contrast, TS treatment increased the relative intensities of aromatic-C and polysaccharides-
C clay fractions within macro- and microaggregates, as compared with T. Meanwhile, TS
treatment increased the relative intensities of carboxylic-C by 19.9% in clay fractions within
macroaggregates, whereas this decreased by 41.0% in clay fractions within microaggregates.

Table 2. Percentage of total peak intensities at selected wavenumbers from FTIR spectra.

Treatments Size (µm)

Fraction of Total Peak Intensities at Selected Wavenumbers, cm−1 (%)

Phenolics-
C

3619 cm−1

Alkanes-
C

2923+2853 cm−1

Aromatic-
C

1637 cm−1

Carboxylic-
C

1400 cm−1

Polysaccharides-C
1090 cm−1

Silicate
Minerals

1032 cm−1

T
Macroaggregates

>250 8.82 5.14 3.65 1.51 28.72 52.16

Microaggregates
53–250 8.99 4.16 2.94 1.22 27.97 54.72

TS
Macroaggregates

>250 8.71 4.21 3.94 1.81 28.91 52.43

Microaggregates
53 –250 8.87 3.85 3.24 0.72 28.11 55.22

T—straw removed; TS—straw incorporation.

Compared with the T treatment, the TS treatment increased the amounts of aromatic-
C and carboxylic-C, while it decreased the aliphatic-C and ether or alcohol-C in clay
fractions within the two aggregates by XPS technique (Figure 9). The amounts of aromatic-
C were higher in the clay fractions within microaggregates than in the clay fractions within
macroaggregates, whereas the amounts of aliphatic-C and ether or alcohol-C exhibited the
reverse trend.
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The XPS C 1s peak-fitting results demonstrated that aliphatic-C (C–C/H) (15.5–30.8%)
and aromatic-C (C=C) (23.8–39.5%) were dominant in clay fractions within macroaggre-
gates and microaggregates under the T treatment, respectively (Table 3). Aromatic-C (C=C)
was the major organic compounds under the TS treatment; these had abundances of 31.7%
and 39.5% in the clay fractions within macroaggregates and microaggregates, respectively.
Aliphatic-C (C–C/H) and alcohol-C (C–O) were consistently higher in clay fractions within
macroaggregates than in fractions within microaggregates. However, aromatic-C (C=C)
showed a reverse trend under the T and TS treatments. Compared with the T treatment,
TS treatment increased the relative amounts of aromatic-C (C=C) by 33.3% and 55.0% and
carboxylic-C (C(O)O) by 107.0% and 18.6% in clay fraction within macroaggregates and mi-
croaggregates, respectively. In clay fraction within macroaggregates and microaggregates,
TS treatment decreased aliphatic-C (C–C/H) by 40.6% and 33.0% and alcohol-C (C–O) by
41.5% and 20.5%, respectively, compared with the T treatment.

Table 3. The relative percentages (%) of different organic functional groups at clay fractions using
X-ray photoelectron spectroscopy (XPS).

Treatments Size (µm) C=C C–C/C–H C–O C=O/C(O)N C(O)O

T
Macroaggregates

>250 23.8 30.8 26.0 11.5 8.01

Microaggregates
53–250 25.5 23.2 18.9 22.3 10.1

TS
Macroaggregates

>250 31.7 18.2 15.2 18.3 16.6

Microaggregates
53–250 39.5 15.5 15.0 18.0 12.0

T—straw removed; TS—straw incorporation.

3.7. Relation between the Relative Percentages of Clay Minerals, Fe (oxyhydr)oxides, and Different
Organic Functional Groups

The hydroxy-interlayered vermiculite in clay fractions showed positive correlation
with the amounts C–C(H) (r = 0.93) and C–O (r = 0.96 *, p < 0.05) (Figure 10), implying
that the hydroxy-interlayered vermiculite preferentially binds aliphatic and alcohol organic
compounds to form organo–mineral complexes. In addition, the kaolinite was significantly
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(r = 0.98 *, p < 0.05) positively correlated with the amounts of C=C in clay within aggregates.
The concentration of Feo and Feo/Fed ratio was positively correlated with the amounts of
C=C and C(O)O content in clay within aggregates.
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Figure 10. Pearson correlation coefficients between the relative percentages of clay minerals, Fe
(oxyhydr)oxides and different organic functional groups in clay fractions within aggregates. n = 4,
* Correlation is significant at p < 0.05.

4. Discussion

Macroaggregates were enriched in hydroxy-interlayered vermiculite (Table 1), sug-
gesting that their formation is promoted by the reactivity of this mineral phases. This
may be explained by high CEC and high a SSA of hydroxy-interlayered vermiculite [68].
In addition, several authors also have shown that SSA and surface charge properties of
soil mineral phases control mineral–organic interactions [17,22]. We found that the SOC
contents was higher in the clay fraction within macroaggregates than that in microaggre-
gates (Figure 2b). Due to the negatively charged external surface of hydroxy-interlayered
vermiculite and of organic matter can be mutually bound with polyvalent cations, which
permits the formation of organo–mineral complexes. Meanwhile, hydroxy-interlayered
vermiculite in clay fractions showed positive correlation with the amounts C–C(H) and
C–O (Figure 10), implying that the hydroxy-interlayered vermiculite preferentially binds
aliphatic and alcohol organic compounds to form organo–mineral complexes. In the inter-
layer space of 2:1 clay minerals, polar organic functional groups are usually present in form
of water bridging complexes with nearby metal cations [69,70]. Intercalation of organic
compounds into the interlayer space of swelling clay minerals has been previously reported
in pedological environments by some researchers [6], interlayer clay–organic complexes
have been most often found between 2:1 clays mineral and organic carbon compounds in
sediments [71,72], or between swelling component of mixed-layer clays and organic carbon
in soils [73]. Therefore, the results of this study indicate that clay mineral governed the
distribution of the organic component in organic–mineral complexes.

The near-surface of clay fractions within microaggregates contained more Fe(III) than
the near-surface of clay fractions within macroaggregates. The Fe 2p3/2 peak position of
Fe(III) peak intensity at 712.3 eV was higher in clay fractions within microaggregates than
in those within macroaggregates, whereas the Fe 2p3/2 peak position of Fe(II) at 710.7 eV
showed the reverse order (Figure 7). This is potentially due to adsorption of Fe(III) on neg-
ative charge sites of clay, causing the flocculation of fine particles into microaggregates [74].
Furthermore, macroaggregates exhibit greater potential for anoxic environments for Fe-
reducing microbes [57,58]. When anoxic conditions are achieved, anaerobic respiration
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with available electron acceptors is initiated, leading to the biologically mediated reduction
of Fe(III)-oxide mineral sand the formation of soluble Fe(II) [59].

The reduction of Fe(III) (oxyhydr)oxides is lowest in microaggregates due to the pres-
ence of aromatic-C interacting with Fe-oxides through strong coordination complexation
and aromatic-ring-based interactions [75,76]. When compared with the macroaggregates,
a higher amount of aromatic-C existed in clay fractions within the microaggregates (Table 3);
the formation of Fe(III)–aromatic complexes may have restricted the reduction of Fe(III) to
Fe(II). The accumulation of Fe(III) ions in the clay fraction within microaggregates may also
have changed the soil surface properties and thus influenced SOC stabilization processes.
Fe(III) polymerization could trap large amounts of organic matter, thus stabilizing the
organic matter (especially dissolved organic C) against microbial mineralization [77–79].
More aromatic-C contents were found to be stabilized by higher Fe(III) in clay fractions
within microaggregates, presumably through the formation of Fe(III)–aromatic complexes.
Organic matter release is positively correlated with the extent of Fe(III) reduction [80].
Additionally, the reaction of Fe(III) with organic C may promote flocculation or coating
phenomena, resulting in the stabilization of organic C in fine silt and clay [81].

The long-term straw incorporation significantly increased the Feo/Fed ratio in the
clay fraction within aggregates (Figure 3c), indicating that organic material input could
increase the Fe mineral availability [24,82]. One possible reason is that Fe in Fe oxides is
likely to serve as an alternative electron acceptor for microbial respiration, resulting in the
reductive dissolution of solid Fe phases under the fluctuating redox conditions that occur
in paddy soils when straw is incorporated [83,84]. Subsequently, the oxidative precipitation
of Fe(II) with dissolved organic compounds upon drainage of the paddy fields promoted
the formation of organo–Fe complexes, which not only initialized a short-range-ordered Fe
minerals but also protected organic matter from microbial degradation [85,86]. Long-term
straw incorporation significantly improved the growth and activity of soil microorganisms
in the rice–wheat cropping system [87], and thus accelerated the transformation of soil
minerals and promoted the formation of short-range-ordered Fe minerals [88–90], which
in turn may enhance the organo–mineral associations [82,91]. Furthermore, it has been
reported that straw is decomposed by microorganisms to produce low molecular weight
acids [92], which drives the transformation of minerals from well-ordered crystalline phase
to short-range-ordered Fe minerals phases to form organo–Fe mineral complexes that
prevent recrystallization [76]. It follows that straw incorporation induced transformation
of Fe-bearing minerals in clay fractions.

The concentration of Feo/Fed ratio was positively correlated with the SOC content
in the clay within aggregates (Figure 4), implying that the application of straw may facil-
itate the association of SOC with Fe oxides and eventually increase the content of SOC.
Amorphous and poorly crystalline minerals may have greater capacity to stabilize SOC
than crystalline minerals [89,93], by providing extensive surface area and complexation
capacity for organic biomolecules to form metastable and intermediate complexes [94].
Organic substance coupled with the repeated redox cycles transforms Fe oxide minerals
and increases their surface reactivity, which contributes to paddy soil SOC sequestra-
tion potential [82,91]. Meanwhile, Feo and Feo/Fed ratio was positively correlated with
the abundance of aromatic-C (C=C) and carboxylic-C (C(O)O) in clay within aggregates
(Figure 10), suggesting that the higher contents of poorly crystalline Fe minerals and Fe
mineral availability promoted the selective adsorption of aromatic-C and carboxylic-C com-
pounds in clay. Our results also confirmed the findings by Huang et al. (2018) and Kramer
et al. (2012), who found that aromatic-C and carbonyl-C content increased with increasing
short-range-order mineral content, and the ability of aromatic and carbonyl-rich functional
groups to bind to certain soil minerals [88,95]. These aromatic structures, which are most
resistant to biodegradation, were found to be occluded preferentially onto reactive, poorly
crystalline Fe-oxides; this might be a major mechanism for long-term SOC sequestration
in soil [12].
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5. Conclusions

Long-term straw incorporation can promote clay enrichment in both macroaggregates
and microaggregates. Straw incorporation increased SOC contents in clay fractions within
aggregates by 27.0–86.6%. Clay concentration determined the distribution of SOC in the soil
aggregates. Straw incorporation increased the concentration of poorly crystalline Fe oxide
and activity of Fe oxide in clay fractions. Under straw incorporation, the relative amounts
of aromatic-C (C=C) and carboxylic-C (C(O)O) in clay fractions within the aggregate-sized
classes were increased. The hydroxy-interlayered vermiculite promoted the accumulation
of aliphatic-C and alcohol-C in macroaggregates, whereas poorly crystalline Fe oxide and
Fe mineral availability promoted the selective adsorption of aromatic-C and carboxylic-C
compounds by the formation of organo–mineral complexes under straw incorporation.
These findings should facilitate better understanding of the effects of clay mineral on
SOC stabilization in clay fractions within macroaggregates and microaggregates under
long-term straw incorporation.
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