
Effect of co-operative fuzzy c-means clustering on
estimates of three parameters AVA inversion

Rajesh R Nair∗ and Suresh Ch Kandpal

Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721 302, India.
∗e-mail: rajeshnair.iitkgp@gmail.com

We determine the degree of variation of model fitness, to a true model based on amplitude variation
with angle (AVA) methodology for a synthetic gas hydrate model, using co-operative fuzzy c-means
clustering, constrained to a rock physics model. When a homogeneous starting model is used, with
only traditional least squares optimization scheme for inversion, the variance of the parameters is
found to be comparatively high. In this co-operative methodology, the output from the least squares
inversion is fed as an input to the fuzzy scheme. Tests with co-operative inversion using fuzzy
c-means with damped least squares technique and constraints derived from empirical relationship
based on rock properties model show improved stability, model fitness and variance for all the three
parameters in comparison with the standard inversion alone.

1. Introduction

The estimation of elastic parameters like P-wave
velocity (Vp), S-wave velocity (Vs) and density (ρ)
across an interface can be found under optimal
circumstances, using AVA (amplitude variation
with angle) information (Aki and Richards 2002).
The AVA is mainly governed by Zoeppritz equation
(Zoeppritz 1919). The angle-dependent reflection
coefficient at an interface separating two semi-
infinite isotropic elastic media in concise matrix
form is demonstrated by Aki and Richards (2002).
Many approximations to Zoeppritz equation have
been made by several authors (Wang 1999; Aki
and Richards 2002). These approximations are
focussed to give an understanding of how these
amplitudes are related to various physical para-
meters. They are valid for small angle of incidence
and low impedance contrast. To exploit the full
information contained in the AVA data, we need
to use the exact equations. Demirbag et al (1993)
demonstrate that the exact densities are quite com-
plicated to determine as the equation represents
relative density and the convergence of Vs (shear
wave velocity) is also not so good with respect

to Vp (compressional velocity) for small offsets.
So, we have these three parameters Vp, Vs and ρ
and either one or two parameters (e.g., Vs and ρ)
always have large degree of variation in model
fitness. Wang (1999) demonstrate new approxi-
mations to the Zoeppritz equations and their use
in AVO analysis. The angles of incident, reflected
and transmitted rays synchronous at the bound-
ary are related according to Snell’s law. The reflec-
tion coefficient at any given angle of incidence is
completely determined by the P-wave, S-wave velo-
cities and density of each medium. Therefore, the
major task in AVA analysis is to restore rela-
tive amplitudes (AVA processing) in seismic pre-
stack records before extraction and interpretation
of the amplitude information. In exploration geo-
physics, we rarely deal with simple isolated inter-
faces. However, we must begin our understanding
of offset-dependent reflectivity with the partition-
ing of energy at such an interface (Ostrander 1984;
Castagna et al 1993).

We therefore test the present scheme of co-
operative least squares and fuzzy c-means
clustering on a synthetic hydrate model to investi-
gate improvement in the estimation of density,
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and improvement of the model fitness and sta-
bility compared to that for a three parameters
AVA inversion. We approach a nonlinear multi-
parameter inversion technique with fuzzy clus-
tering combined with a least squares inversion
representing a co-operative methodology. This
inversion scheme applies to cases for which there is
well log information along with the seismic data,
for instance in applications to quantify the gas
hydrate and free gas accumulation.

2. AVA method and fuzzy c-mean
technique

We perform a nonlinear AVA inversion for estima-
tion of Vp, Vs and ρ and ‘ε’ (error function). The
nonlinear problem can be stated as follows:

Rpp = f
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The basic assumptions made are that the Earth has
approximately horizontal layers at each common
depth point, and that each layer is described by
the three parameters Vp, Vs and ρ (Zoeppritz 1919;
Aki and Richards 2002).

The parameter vector to be optimized comprises
nVs values, followed by nVp values and nρ values
where n is the number of layers (we took n = 35
equal to the total depth of layers and thus defined
the pseudo layers in terms of constant thickness)
such as:

P = [VS1 . . . VSn, VP1 . . . VPn, ρ1 . . . ρn]. (2)

From a given starting model Pstart, the zero-offset
Vs, Vp and density reflectivity at an interface i can
be calculated as:
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We then computed the reflection coefficient Rpp(θ)
for each angle and at each layer boundary. A syn-
thetic offset seismic gather can be calculated by
convolving the reflection coefficients Rpp(θ) with

predetermined wavelets. These synthetic data are
compared with the observed data to form a misfit
function. We then perturb each parameter of the
solution vector in turn to form a new earth model,
and generate new synthetic data, which are com-
pared with the observation again. The process is
repeated until the root mean square error (RMSE)
function between the observed and the synthetic
data is minimized. Constable et al (1990) show
that by parametrizing the model in terms of its first
or second derivatives with depth, the minimum
norm solution yields the smoothest possible model.
The above procedure can be described within an
optimization framework: find a global minimum of
a multivariable objective function. Once the global
minimum is found, the corresponding model para-
meters are the resultant earth model. To reduce the
non-uniqueness problem, the inversion algorithm
is constrained by bounding the solution within a
range of physical solutions. A simple illustration of
this process is given in figure 1.

We use an L2-norm error function for the objec-
tive function expressed as:

F3 =
m∑

j=1

n∑
i=1

‖Sij
obs − Sij

mod ‖2, (4)

where Sij
obs is the observed seismic amplitude at

time index i and angle index j, Sij
mod is the synthetic

seismic amplitude at time index i and angle index
j, n is the number of samples in a seismic trace,
and m is the number of angles.

To calculate the objective function, we need to
model synthetic seismic responses. We use a convo-
lution modelling technique, to generate synthetic
data. The convolution technique, assumes plane-
wave propagation across the boundaries of hori-
zontally homogeneous layers, and takes no account
of the effects of geometrical divergence, inelastic
absorption, wavelet dispersion, transmission losses,
mode conversions and multiple reflections. So the
seismic data must be pre-processed to eliminate
these effects and to restore plane wave ampli-
tudes of primary P-wave reflections. Note that,
one can use the reflectivity technique by Kennett
et al (1988) and complex slowness to include the
effect of reverberation, attenuation and dispersion.
The seismic source wavelet is a Ricker wavelet
generally used in seismic modelling (Hoversten
et al 2006). Before inversion, seismic amplitudes
are normalized to the amplitudes of the synthetic
gather.

In AVA analysis, we use observations in term
of receivers kept at the Earth’s surface to recon-
struct the spatial distribution of an underlying
geophysical parameter: reflection coefficient. Using
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Figure 1. Workflow for nonlinear AVA inversion.

the simple least squares optimization for a multi-
parameter situation may not be the right choice,
to deal with the non-uniqueness and instabilities.
To be effective, the available datasets should be
linked during the model generation process, for
example, by a co-operative inversion. It is under-
stood that the cluster analysis realises the infor-
mation exchange between the individual models
and data, but it cannot completely overcome the
problems of inversion in several cases (Paasche and
Tronicke 2007). We examine here, whether one
can resolve the density parameter estimation using
fuzzy c-means at least to a first order.

Fuzzy c-means (FCM) is a data clustering tech-
nique wherein each data point belongs to cluster
to some degree that is specified by a member-
ship grade. FCM play a roll of partitioning arbi-
trary n vectors into c fuzzy groups, also it finds
a cluster center for each group such that it itera-
tively minimize objective function (Hoeppner et al
1999), that represents the distance from any given
data point to a cluster center weighted by the data
point’s membership grade. Well-known fact about
FCM indicates that FCM employs fuzzy partition-
ing such that a data point can belong to seve-
ral groups with the degree of membership grades
between zero and one. The optimum number of
clusters c is computed by minimizing the normali-
zed classification entropy (NCE) (Lines et al 1988;
Paasche et al 2006).

The normalized classification entropy introduced
by Bezdek (1981) can be interpreted as a measure
of cluster validity.

The classification entropy averages the quantity:

hk = −
c∑

i=1

uij loga(uik) (5)

and is defined by the function:

H(U ; c) = −
q∑

k=1

c∑
i=1

uik loga(uik)/q, (6)

where a > 1, U is the fuzzy membership matrix
consisting of the fuzzy membership values corre-
sponding to each cluster, q is the number of obser-
vations within the dataset X = {x1, x2, . . . , xq}
and c is the number of fuzzy classes. The value
of H ranges between zero and loga c. H measures
the ambiguity associated with a fuzzy partition.
Naturally smaller the value of H, better is the
cluster identification; zero being the ideal case.
However, Bezdek (1981) argued that the endpoints
of the range of H (i.e., at c = 1, H = 0, c = q,
H = 1) do not give an accurate estimate of the
disorganizations present within the clusters. So he
introduced the concept of normalized classification
entropy (NCE) defined as:

NCE = H(U ; c)
/[

1 −
(

c

q

)]
. (7)

Fuzzy c-means (FCM) is based on minimizing the
objective function (Bezdek 1981):

Jm =
N∑

i=1

C∑
j=1

um
ij‖xi − cj‖2, 1 ≤ m < ∞, (8)

where m is any real number greater than 1, uij

is the degree of membership of xi in the cluster
j, xi is the ith component of the measured data
(which is made by adding random noise, such that
S/N = 4, to the synthetically generated data ‘S0’)
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using the equation S0 = S0 + (rand(size(S0)))/4,
cj is the d-dimension center of the cluster, and
‖ ∗ ‖ is any norm (whether L1, L2, etc.) expressing
the similarity between any measured data and the
center.

Fuzzy partitioning is carried out through an iter-
ative optimization of the objective function, shown
above, with the update of membership uij, the clus-
ter centers cj (Jang et al 1997) by:

uij =
1∑c

k=1[‖xi − cj‖/‖xi − ck‖]2/(m−1)
,

cj =
∑N

i=1 um
ij · xi∑N

i=1 um
ij

. (9)

This iteration, will stop when

max
ij

{|u(k+1)
ij − u

(k)
ij |} < ε,

where ε is a termination criterion, between zero
and one, whereas k are the iteration steps. This
procedure converges to a local minimum or a saddle
point of Jm.

The algorithm is composed of the following
steps:

1. Initialize U = [uij ] matrix,U (0)

2. Calculate the center vectors
C(k) = [cj ] with U (k)

3. Update U (k), U (k+1)

4. If ‖U (k+1) − U (k)‖< ε, then STOP;
otherwise return to Step 2.

3. FCM cluster analysis with damped
least squares technique

A union of conventional dataset inversion algo-
rithm with FCM technique provides the sole theme
of co-operative cluster inversion. To ensure infor-
mation exchange between different geophysical
datasets and models during the inversion process,
at each iteration FCM cluster analysis is applied.
First of all we define the n different geophysical
datasets (Vp, Vs and ρ), set the initial number of
clusters to Cmin = 2 and guess a reasonable number
of clusters Cmax. Subsequently, equally discretized
initial parameter models are generated using uni-
form squared grid cells for all datasets. Then FCM
cluster analysis is performed on these n individual
models. Following this, membership information is
used to calculate new model parameters for a clus-
ter centre value weighted with the degree of mem-
bership of model cell to the c clusters at each model

cell. Now conventional regularized least squares
single input data inversion is performed using new
parameter models as input models. The RMSEs
are computed from the corresponding forward cal-
culations and the model updates for all the models.
These updated models are then used in the follow-
ing iteration, and we repeat this central inversion
loop until the data misfits cannot be improved by
further iterations. Here we define a tolerance value
and give a condition that if the estimated value is
greater than or equal to the tolerance value, then
invoke the damped least squares technique, and
update the initial model.

In the damped least squares technique, we
minimize the residual that is defined as the sum
of squares of the differences between the ideali-
zed model response and observed data. Input
data vector is given as ‘d = Gm’, where G is
the linear operator and m is the unknown para-
meter vector velocity and density. We define
F = {‖d − Gm‖2} + (α2‖Am‖)2 where the first
term represents the data misfit and the second term
is the regularization term. The classical solution of
the correction vector for an over-determined sys-
tem using damped least squares method is given
as δp = (GT G + λI)−1GT z, where G is the linear
operator and GT is the transpose of G and I is the
identity matrix of the order of GT G, while λ is the
damping factor which is used to prevent the solu-
tion from diverging to remove the ill conditionality
of the matrix inversion problem.

As the optimum value of c is usually not known
a priori, we have to repeat the procedure using
several reasonable values for c. The final model
with the optimum c is selected from these possible
solutions by visually analyzing the calculated NCE
and RMSE values. We seek the model with mini-
mum complexity which concurrently minimizes the
NCE values and the RMSEs. Figure 2 shows the
flowchart showing the sequence of FCM clustering
adapted for AVA Inversion. We have used least
squares inverted output as the starting model
for Vp and Vs, while using the fuzzy clustering
scheme.

4. Synthetic data

The input model for our synthetic example con-
sists of five heterogeneous layer boundaries with
acoustic impedance contrasts. The chosen model is
typical for gas hydrates in a sedimentary setting,
where the parameters tend to cluster within certain
ideologies. The Vs, Vp and density profiles corres-
pond to published elastic properties of sediments
containing hydrates (Dvorkin et al 1999). Aki and
Richards equation (Florence et al 2004; Hoversten
et al 2006) is used to compute the reflectivity
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Figure 2. Flow chart showing the sequence of steps in the present scheme of fuzzy c-mean clustering adapted for AVA
inversion.

Figure 3. Forward modelled synthetic seismic data used for fuzzy c-means clustering.

profile for angles of 1–40◦ corresponding to the
angle range of the field data. Here we want to
demonstrate the applicability and performance
of the present inversion approach ‘fuzzy c-means
clustering’, by linking the three parameters com-
pressional velocity, shear velocity and density with

a least squares AVA inversion. A synthetic offset
seismic gather can be calculated by convolving the
reflection coefficients Rpp(θ) with predetermined
Ricker wavelet. The synthetic data are added with
a random noise component of 25% with respect to
signal to make it a true data situation. Figure 3
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Figure 4. Results of standard inversion with optimization using least squares minimization scheme: Green line indicates
true model, red line indicates inverted model and dashed line indicates the initial guess model. The initial guess models
(three dotted lines), grey indicates the well log guided one and other two arbitrary guess model (sky blue and violet dotted
lines) again used for fuzzy c-means inversion on either side of well log guided guess model. Least squares inversion with sky
blue and violet dotted lines (initial guess model) are shown with same colours.

shows the forward modelled synthetic data, used as
an input for the inversion scheme. These synthetic
data are compared with the observed data to form
a misfit function for the inversion scheme.

5. Results of the standard inversion
with least squares optimization

The nonlinear inversion does not find the exact
parameter values but the results are satisfactory.
When adding noise to the data (S/N = 4), the
unconstrained nonlinear inversion is not destabi-
lized as the linear inversion. We conclude from the
synthetic modelling that the nonlinear inversion is
more robust than the linear inversion. The non-
linear inversion is little affected by the noise level
in the data. Figure 4(a–c) shows the initial guess
model (three dotted lines), grey indicates the well
log guided one and other two arbitrary guess model
(sky blue and violet dotted lines) again used for
fuzzy c-means inversion on either side of well log
guided guess model. Least squares inversion with
initial guess model (shown as sky blue and violet
dotted lines) is shown with same colours. The mis-
fit of Vp, Vs and density and layer boundary fit-
ness is higher based on least square inversion alone,
with better fit obtained for the well log constrained
initial guess in contrast with arbitrary lower and
higher guess used in the inversion scheme.

6. Results based on fuzzy c-means
clustering approach

We test the nonlinear inversion algorithm on a gas
hydrate model, first by simple inversion based on
least squares optimization scheme with homoge-
nous layering as a starting model, and then by

Figure 5. Computed Vp, Vs and density data (red line)
based on rock properties model (Hoversten et al 2006) in
comparision with log (blue line) obtained corresponding
data. The relationship between Vp, Vs with that of density
is used to provide a starting model for density alone in the
present scheme.

means of fuzzy c-means applied using the co-
operative fuzzy c-means clustering inversion.

The output from the least squares inversion
is quite off from the true model. Therefore to
avoid more searching, the empirical relationship
derived from figure 5 (Hoversten et al 2006) is
used as a constraint for the starting model for all
three parameters. The parameters include critical
porosity 0.38, OIL API 28.5, brine salinity 0.07,
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Figure 6. (a–c) Fuzzy c-means inversion after least squares inverted results are given as input model. The blue line
indicates inversion using fuzzy c-means optimization scheme, red standard inversion with least squares optimization scheme
and green line indicates the true model. Fuzzy inversion fitness is shown as pink and grey colour curves of two other least
square inputs for higher and lower values respectively with respect to figure 4(a–c). (d) Indicates the minimum clusters for
a lowest normalized classification entropy. (e) RMSE shows the parameters are obtained, when the error goes to minimum.
(f) NCE values again indicates that results are obtained when the NCE values also goes to minimum.

gas gravity 0.59, temperature 65◦C, grain shear
modulus 22.5, grain Poissons ratio 0.34, grain den-
sity 2567 kg/m3, number of contacts/grain 13.5.
Figure 6(a–c) shows the fuzzy inversion shown as
pink and grey colours of two other least square
inputs for higher and lower values respectively with
respect to figure 4(a–c). The acceptable fitness
percentage is not achieved in all cases (with three
initial guess models) with least squares inversion
alone. While fuzzy c-means gives best fitness for
well log guided initial model and its least squares
input, the fuzzy c-means fitness is not largely
affected even if we use arbitrary guess model within
some defined limits from the well log guided model.
This shows the ability of the clustering algorithm
in retrieving model parameters.

7. Discussion

AVA inversion with least squares alone shows that
the P-wave, S-wave and density does somewhat
acceptable fitness, but not ideal for computa-
tions to estimate gas hydrate, free gas volume,
etc., and shows lateral shift in layer boundaries.
As said in the paper already, cluster analysis
realizes the information exchange between the

individual models/data, but it cannot overcome
problems of the inversion itself. The cluster analy-
sis will primarily make the individual layers more
flat. Fuzzy cluster algorithm results in membership
values/functions. For example, for our dataset, say
the specific model point falls into cluster x or y or
z, but not partially into several clusters as might
be said by a fuzzy scheme. This process results in
crisp models. In the case here, it is just the sort-
ing of every model point into the cluster for which
it has the highest membership to a particular clus-
ter with no regard whether the membership is sig-
nificantly or only a little bit higher than to another
cluster.

When a co-operative inversion procedure is
adopted, first with the starting model as a homoge-
nous model, then we found that the co-operative
fuzzy c-means gives a better fit to the model than
the simple inversion with least squares, and fur-
ther with least squares inverted output as a start-
ing model, the convergence is better, with NCE
and RMSE values going on to minimum. NCE
reflects the degree of continuity and disorgani-
zation in the clustered data after classification.
Since the minima of these functions, indicate the
optimum number of classes where there exists a
balance between continuity and structure, these
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Table 1. Collated table comparing the uncertainty in the inversion
schemes for the three parameters.

Percentage error in

Initial guess Vp Vs ρ

Least squares (lq) alone

Lower value 21.38 16.20 3.53

Median value (well log 14.45 14.71 3.83
constraint)

Higher value 25.13 19.28 3.63

Fuzzy c-means with least squares (lq) as input

Lower value derived lq 5.57 3.31 1.83

Well log value derived lq 1.74 2.04 0.68

Higher value derived lq 7.00 4.62 1.17

results are useful as a guide to the choice of the
number of classes. The results in figure 6 based on
fuzzy c-means are close to the results of the true
model. Faruk et al (2004) have reviewed the joint
inversion of transient pressure and dc resistivity
measurements acquired with in situ permanent
sensors, shows that the co-operative inversion of in
situ transient pressure and dc resistivity measure-
ments reduce non-uniqueness in the estimation of
resistivity and permeability governed by dynamic
fluid flow phenomenon. Clearly, it makes sense to
invert combinations of geophysical datasets in an
attempt to gain additional subsurface information.
The question then arises whether to invert the data
jointly or sequentially (Treitel and Lines 2001).
When one uses the joint inversion, in such a way
that the output from one scheme is used as input
to the other scheme, then the model will be better
refined (Treitel and Lines 2001). In addition, joint
inversions assume that physical properties co-vary,
which is not always the case – arguing, in some
instances, for the sequential inversion approach.
We used here a similar scheme in inversion using
fuzzy c-means with least squares output is given as
input to the fuzzy clustering for inversion again.
We agree that our scheme works much better when
layer boundaries are well defined.

The velocity models resulting from the single
inversion and co-operative inversions are shown
in figures 4 and 6, respectively. When analyzing
the complete results, overall variability as well
as the averaged velocity values of each layer, are
indeed comparable to the corresponding charac-
teristics of the input model used. This is shown
here in figure 4, with poor model fit for single
inversion and a better model fit for co-operative
inversion as shown in figure 6, when the starting
model is the least squares inverted model. How-
ever, as the smoothness constraints influence the
inversion process, the original clustered character
of the velocity relation is not exactly reconstructed.

According to Occam’s razor principle, we have
chosen the four cluster solution that is the sim-
plest model explaining both datasets – minimum
RMSEs and satisfying our statistical criterion –
minimum NCE value. Since the whole analysis is
done with signal-to-noise ratio 4, it is found that
results are little affected by the noise level in the
data. We need not apply a misfit cut off (with mul-
tiple minima’s absent), since the RMSE as shown
in figure 6(e) indicates a single minimum, so our
solutions are acceptable. Fuzzy c-means provided
a best fit for the least squares input with well log
guided guess model as shown in figure 4(a–c) and
retrieved model parameters figure 6(a–c). Normali-
zed classification entropy as shown in figure 6(f) is
a kind of quality measure for the cluster analysis
and again the simple analogy of RMSE as shown in
figure 6(e), is yet another quality measure for the
success of an inversion.

The collated table above is obtained after inver-
sion results shown in figure 4(a–c) and figure 6(a–c)
is used to compare the uncertainty in the least
square inversion and fuzzy c-means. Least squares
inversion alone shows that generally Vp with an
error of 14–25%, Vs shows 14–20% error and den-
sity (ρ) of 3% only. Well log constrained least
square inversion is better and most acceptable in
comparison with the lower and higher guess values.
Fuzzy c-means inversion shows the best acceptable
percentage error 0.68–1.74% for Vp, Vs and den-
sity (ρ). Fuzzy c-means with least square inversion
obtained better acceptable fitness for all the three
initial guess values. A judicious combination of ini-
tial guess based on well log, with two cost func-
tions and two optimization schemes (with output of
one optimization fed as input to the second inver-
sion scheme) with added fuzzy c-means capability
of partitioning model parameters based on cluster-
ing with membership upgradation scheme resulted
in deriving model parameters with acceptable level
of fitness. This co-operative strategy emphasise
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the peculiarities of the inversion deriving better
acceptable fitness.

8. Conclusions

We have reassessed the nature of model fitness and
stability issue for AVA based scheme in inverting
compressional, shear velocity and density. We used
a co-operative fuzzy c-means cluster analysis com-
bined with least squares scheme; reinforce the local
character of the least squares technique by find-
ing a local minimum of the error function and
the well data allows constraining the solution to
a region of the model space where the global
minimum of the error function is located. Our
results demonstrate a successful methodology to
resolve the three parameters well. We conclude
from the synthetic modelling that the co-operative
fuzzy c-means nonlinear inversion is more robust
than the conventional single optimization scheme
algorithms for inversion. The simplicity and flexi-
ble approach of the scheme suggests the possi-
bility for 2D and 3D problems for hydrocarbon
exploration based on AVA. In our present case, we
have shown co-operative inversion is better than
standard inversion alone and when used in com-
bination with standard inversion with some basic
guess model from well log, it have given accept-
able fitness. Although with a combined strategy, an
acceptable fitness is obtained in the present case,
our impression is that, its maximum benefit is not
reached in all 1D problems, since it is a structure-
based procedure and here structure exists only
along one direction, in 2D or 3D problems this is
more critical and there is more to do for a cluster
analysis.
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