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Controlled activation of lymphangiogenesis through functional biomaterials represents 

a promising approach to support wound healing after surgical procedures, yet remains 

a challenge. In a synthetic biological approach, we therefore set out to mimic the basal 

microenvironment of human primary dermal lymphatic endothelial cells (LECs) during 

lymphangiogenesis. As the extracellular matrix component hyaluronan (HA) regulates 

lymphangiogenesis, we designed a bifunctional surface in which adhesive peptide 

ligands and short HA oligosaccharides (sHA) tethered to nanoparticles are copresented 

to the basal side of LECs in a controlled, concentration-dependent manner. Exposure of 

LECs to sHA in solution to mimic luminal stimulation of the cells did not result in modi�ed 

metabolic activity. However, LECs grown on the bifunctional adhesive surfaces showed 

a biphasic change in metabolic activity, with increased metabolic activity being observed 

in response to increasing nanoparticle densities up to a maximum of 540 particles/μm2. 

Thus, interfaces that concomitantly present adhesive ligands and sHA can stimulate LEC 

metabolism and might be able to trigger lymphangiogenesis.

Keywords: hyaluronan, lymphangiogenesis, extracellular matrix mimetic, lymphendothelial cells, bioactive 

interface

INTRODUCTION

Lymphangiogenesis, the sprouting of new lymph vessels, is a vital process during embryogenesis, 
tumor growth, and wound healing (Martínez-Corral et  al., 2012). It correlates with signi�cant 
changes in the composition of the extracellular matrix (ECM) consisting mainly of proteins, 
glycosaminoglycans, and water. �e RGD motif an evolutionarily conserved three amino-acid 
sequence built up of arginine, glycine, and aspartate is present in various ECM proteins, e.g., 
�bronectin, vitronectin, and �brinogen (Mecham, 2011). �is sequence is recognized by a subset 
of the integrins in the cell membrane. Over the last years, several techniques have been developed 
to modify biomaterial surfaces with the RGD motif as a so-called adhesive ligand to investigate 
receptor-mediated cell interactions (Rahmany and van Dyke, 2013). Furthermore, lymphangiogen-
esis is connected to the ECM compound hyaluronan (HA). Especially di�erent natural occurring 
fragments show di�erent e�ects on cells (Schmaus et al., 2014; Yu et al., 2015). HA is composed of 
repeating disaccharide units of N-acetyl-d-glucosamine and d-glucuronic acid, and is synthesized 
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FIGURE 1 | (A) Scheme of the possible sites where interactions between hyaluronan (HA) and lymphatic capillaries take place. The HA receptor such as LYVE-1, 

CD44, or RHAMM is located on both the luminal and basal surfaces of the cells. (B) The orthogonal functionalized surface used in these experiments was 

passivated with polyethylene glycol, which was further modi�ed with cyclic RGD ligand (light blue tetrahedron). The nanostructures had a particle diameter of 

dp = 10 nm, and were functionalized with HA oligosaccharides [turquoise, radius of gyration rg = 7.1 nm (Kuehl et al., 2016)]. The hexagonal packed particles had 

variable interparticle spacings (s). (C) SEM pictures of the nanostructured surfaces with different interparticle distances. Scale bar corresponds to 100 nm.
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with a molecular weight of 103–104 kDa, which corresponds to 
2,000–25,000 disaccharide units and a total contour length of 
2–25 µm (Winter et al., 1975; Scott et al., 1991; Jackson, 2009). 
�rough enzymatic degradation and oxidative stress reactions, 
HA can be cleaved into various sizes, which di�er in their 
biological activity (as reviewed in Bohaumilitzky et  al., 2017). 
High molecular weight HA inhibits proliferation, migration, 
and has anti-angiogenic and anti-in�ammatory e�ects on blood 
endothelial cells (Mo et al., 2011; Atta et al., 2012; Ghazi et al., 
2012; Anderegg et al., 2014; Tolg et al., 2014). On the other hand, 
low molecular weight HA can stimulate proliferation, motility, 
and tube formation in endothelial cells and promotes in�am-
mation and angiogenesis (Stern et al., 2006; Mo et al., 2011; Du 
et al., 2013; Tolg et al., 2014). Interestingly, the cellular response 
to short, low molecular weight HA (sHA) is also concentration 
dependent. �us, the application of sHA with 4–20 repeating 
units on blood vessel cells stimulates proliferation in a concen-
tration range of 3–20 µg/mL showing a maximum response at 
10 µg/mL (Mo et al., 2011). �is biphasic e�ect on the prolif-
eration of primary human dermal lymphatic endothelial cells 
(LECs) was also found for sHA with 4–13 disaccharide units 
in solution, with maximal e�ect on proliferation observed at a 
concentration of 5 µg/mL (Bauer et al., 2018).

To date, sHA stimulation experiments usually rely on the 
administration of sHA in solution to adherent cells. �is 

experimental setup corresponds to the stimulation of sHA on 
the luminal side of the lymph vessel. In contrast, endothelial 
cells in vivo are also in direct contact to HA on their basal side. 
So far, it has been di�cult to study the e�ect of sHA speci�cally 
administered to the basal side of LECs in a de�ned manner 
in vitro, due to the lack of appropriate copresentation techniques 
for HA and adhesive ligands. To create a bifunctional surface 
di�erent immobilization strategies can be used. On the one 
hand, it is possible to immobilize the two molecules of interest 
statistically distributed on the surface. On the other hand, more 
de�ned methods are described using nanostructured surfaces 
which enable the creation of well-controlled patterns on the 
surface followed by the binding of the molecule of interest via 
strong chemical interactions. �is can be combined with either 
nanoparticles made from another metal and so another binding 
partner or a chemical immobilization strategy such as copper-
catalyzed click reaction (Schenk et al., 2014; Guasch et al., 2016). 
In a synthetic biological approach, we therefore set out to mimic 
the basal microenvironment of LECs during lymphangiogenesis. 
To this end we designed an ECM model in which adhesive ligands 
and sHA are copresented to the basal side of LECs in a controlled, 
concentration-dependent manner. Using this setup, we aimed in 
this study to investigate di�erences in the metabolic response of 
LECs a�er exposure to sHA on either their basal and luminal 
sides (Figure 1A).
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TABLE 1 | The change in the composition of styrene units (x) and vinylpyridin 

units (y) enables the preparation of nanostructured surfaces with different particle 

densities.

Particle density 

(particles/μm2)

X Y Concentration 

(mg/mL)

Speed 

(rpm)

Hexagonality 

(%)

29 5,348 713 2.0 3,000 48

47 5,348 713 2.0 4,000 50

123 1,056 671 3.0 3,000 63

540 1,056 671 8.0 4,000 68

2,714 154 33 5.0 4,000 60

The table summarizes the applied polymer structures with the corresponding particle 

density, concentration of the used gold solution, and the speed of the spin coater. Also, 

the calculated hexagonality of the particles is shown here.
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MATERIALS AND METHODS

Derivation of sHA
Short HA with a weight range from 10 to 20 kDa (25- to 50-mer) 
produced by a heat fragmentation of high molecular weight HA 
was obtained from Lifecore Biomedical. Enzymatically digested 
sHA with an average weight <10 kDa (25-mer) was produced 
from Healon 5 (Abbott Medical Optics), a highly puri�ed 
high molecular weight HA with an average weight of 4 MDa, 
as previously described (Bauer et  al., 2018). Brie�y, Healon 
5 was dissolved at 5  mg/mL in 0.3  M sodium phosphate, pH 
5.3, soni�ed, and subsequently enzymatically digested with  
200  U/mL bovine testes hyaluronidase (Sigma-Aldrich) for 
6 h at 37°C. �e resulting fragments were centrifuged through 
an Amicon ultracentrifugal �lter (Millipore) with a 10-kDa 
molecular weight cuto�. �e �ow through containing HA frag-
ments <25 disaccharide units in length (Schmaus et al., 2014) 
was used for further experiments.

Functionalization of sHA Species
Functionalization of HA with a thiol group was performed as 
previously described (Minsky et al., 2016). Brie�y, the HA was 
stirred with sodium cyanoborohydride (Sigma-Aldrich) and 
cysteamine hydrochloride (Sigma-Aldrich) for 5 days, then puri-
�ed by dialysis. �e product was recovered by freeze drying. �e 
characterization of the chemical modi�ed sHA is found in the 
Supplementary Material (Minsky et al., 2016).

Surface Preparation Using Block-

Copolymer-Micellar Nanolithography 

(BCMN)
Nanostructured surfaces were prepared according to general 
block copolymer micellar nanolithography protocols (Boehm, 
2008). Brie�y, poly[styrene(x)-block-(2-vinylpyridine)(y)] 
[PS(x)-b-P2VP(y)] (Polymer Source, Canada) was dissolved in 
ortho-xylene (Merck) to a �nal concentration of 2–8  mg/mL  
(Table  1) in a precleaned glass tube (�ermoFischer). A�er 
24  h stirring, tetrachloroaureate(III)trihydrate (HAuCl4  ×  3 
H2O, Sigma-Aldrich) was added and the solution was stirred for 
another 24 h.

�e glass surfaces (d = 22 mm, Menzelglaeser) were cleaned 
over night with a 3:1 mixture of freshly prepared Caro’s acid 

[H2SO4 (Sigma-Aldrich) and H2O2 (30%, AppliChem)], then 
rinsed with ddH2O and dried under a nitrogen stream. �e slides 
were �xed in a spin-coater (WS-400A-6NPP/LITE/8K, Laurell) 
under a slight vacuum and 20 µL of the micellular solution was 
quickly added. Each surface was spin coated for 30 s with a speed 
of 3,000–4,000 rpm (Table 1). �e gold salt was reduced and the 
polymer was removed by treatment with hydrogen plasma (W10, 
350 W, 0.4 mbar, 45 min; Plasma System 100-E, PVA TePla). �e 
hexagonality of the nanoparticles and the distance between them 
was analyzed using SEM (Ultra 55 SEM, Zeiss) as described previ-
ously (Boehm, 2008). Surfaces used in this study had nanoparticle 
densities of about 2,714, 540, 123, 47, and 29 particles/μm2 with a 
hexagonality of at least 48%.

Functionalization of Surfaces With  

Click-Polyethylene Glycol (PEG)
Nanostructured surfaces or Caro precleaned blank glass 
slides (d  =  22  mm) were activated using oxygen plasma 
(150 W, 0.4 mbar, 10 min; Plasma System 360M, PVA TePla). 
To functionalize the surface with click-PEG, a 1:100 mixture 
of alkyne-PEG3000-silane [(EtO)3Si-(CH2)3-NH-C(O)-NH-
PEG3000-NH-C(O)-(CH2)2-C≡CH] and PEG2000-silane 
[(EtO)3Si-(CH2)3-NH-C(O)-NH-PEG2000] was used. �erefore, 
a Schlenk �ask is �ushed with nitrogen and 30 mL dry toluene 
(Merck), 3 µL ddH20, 3 drop of triethyl amine (Sigma-Aldrich), 
and a spatula tip of the PEG mixture were added. �e synthesis 
of both PEG species is described elsewhere (Lohmuller et al., 
2011; Schenk et al., 2014). �e surfaces were inserted in the �ask 
in a custom-made glass slide holder. �e reaction solution was 
heated to 80°C over night. �e glass slides were rinsed twice 
with ethyl acetate (Carl Roth) and sonicated for 1  min, then 
rinsed with methanol (Carl Roth) and ddH2O, and dried under 
a stream of nitrogen.

In a second step, cyclic RGD with an azide function [c(RGDfE)-
KN3, PSL Peptide Specialty Laboratories GmbH] was clicked to 
the alkyne groups of the PEG using copper-catalyzed azide–alkyne 
cycloaddition. Surfaces were incubated with 75 µL TRIS-bu�er 
(100 mM, pH 8.5, Sigma-Aldrich) containing 100 mM ascorbic 
acid (Sigma-Aldrich), 150  µM cRGD-azide, and 1  mM copper 
sulfate (Sigma-Aldrich) upside down on para�lm in a humidify-
ing chamber for 2.5 h at room temperature. �e surfaces were 
washed three times with ddH2O for 10 min each and dried under 
a stream of nitrogen.

Cell Experiments
Human primary dermal LECs (order no. C12216, Batch 
3061003.3, PromoCell) were applied were seeded in 5 mL EGM-2 
MV medium (endothelial basal medium-2, Lonza) in a 25 cm2 
cell culture �ask (Greiner BioOne). �e media contain 0.1% epi-
dermal growth factor (hEGF), 0.1% vascular endothelial growth 
factor (VEGF), 0.1% R3-insulin-like growth factor (R3-IGF-1), 
0.1% ascorbic acid, 0.04% hydrocortisone, 0.4% human �broblast 
growth factor-beta (hFGF-β), 5.0% fetal bovine serum (FBS), 
and 0.1% Gentamicin/Amphotericin-B (GA, all EGM-2 MV 
Single Quots, Lonza). When the cells reached 80% con�uency, 
the monolayer was washed twice with warm PBS (Gibco) before 
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being incubated with trypsin-EDTA (Gibco) for 3 min. �e cells 
were centrifuged for 5 min at 0.2× g and reseeded into new �asks 
as required.

Soluble HA Species
�e functionalized glass slides were washed steril with steril PBS 
and added under sterile conditions to a 12-well plate (Greiner 
BioOne). Stock solutions of the HA-species (40  µg/mL in 
medium) were prepared and diluted in the ratios of 1:20, 1:8, 1:4, 
and 1:2 to a �nal volume of 500 µL per well. In total, 50,000 cells 
in 500 µL medium were added to each well. �is results in �nal 
HA concentrations of 1.0, 2.5, 5.0, and 20.0 µg/mL. �e cells were 
incubated at 37°C and 5% CO2.

Immobilized HA Species
To functionalize the gold nanoparticles on the surfaces a�er 
passivation, the surfaces were incubated upside down with 
75  µL of an end-thiolated HA species [1wt%/v% in PBS 
(pH  =  7.4)] on para�lm in a humidi�ed chamber for 1  h at 
room temperature. �e surfaces were rinsed twice with PBS 
and added to a 12-well plate under sterile conditions. In total, 
50,000 cells were seeded per well in 1 mL medium and incu-
bated at 37°C and 5% CO2.

Determination of the Relative Metabolic 

Activity
A�er seeding for 46  h, cell culture medium was removed and 
55 µL of the AlamarBlue kit (�ermoFischer) was added. A�er 
incubation for 2 h at 37°C and 5% CO2, �uorescence was meas-
ured with an excitation wavelength of 540 nm and an emission 
wavelength of 585 nm with a plate reader (In�nity M 200, Tecan). 
�e results were normalized to the mean value of the background 
(AlamarBluec, surfaces without applied HA). Experiments were 
carried out in triplicate.

A�er AlamarBlue measurements, the surfaces were washed 
twice with PBS and frozen at −80°C. CyQuant dye (400 × solution)  
and the cell lysis bu�er (20  ×  solution) of the CyQuant kit 
(�ermo�scher) were diluted with ddH2O, then 600 µL of the �nal 
solution were added to each surface and incubated for 5 min. �e 
�uorescence was then measured with an excitation wavelength 
of 480 nm and an emission wavelength of 520 nm with a plate 
reader (In�nity M 200, Tecan). �e results were normalized to 
the mean value of the background (CyQuantc, surfaces without 
applied HA).

�e relative metabolic activity was calculated by dividing the 
normalized result for the metabolic activity for each surface by 
the corresponding normalized result of the CyQuant assay using 
Excel for Mac 2011 (version 14.7.1, Microso�):

 

rel metabol.activity
AlamarBlue

CyQuant

AlamarBlue

CyQuant

− =
x

x

c

cc

⋅100.

 

�e data were plotted and a Kruskal–Wallis test followed 
by Dunn’s multiple comparison test was performed using 
GraphPad Prism6 (for Mac, version 6.0e, GraphPad So�ware 
Inc., USA).

RESULTS

Lymphatic endothelial cells cannot grow directly on surfaces 
functionalized with only sHA, as they also require adhesive 
interactions to bind to surfaces. Using gold-nanostructured 
glass surfaces with tuneable inter-particle distances produced by 
block–copolymer–micellar nanolithography (BCMN; Lohmuller  
et al., 2011), we therefore developed an interface in which adhe-
sive ligands and sHA are concomitantly presented in a precisely 
controlled manner (Figures 1B,C). �e area between the nano-
particles was covalently functionalized with an inert PEG-based 
coating (Blummel et al., 2007). We further developed this coat-
ing to include a speci�c adhesive peptide (Schenk et al., 2014). 
Speci�cally, the glass surface was passivated with a mixture of 
PEG2000-silane and alkyne-PEG3000-silane (click-PEG) to prevent 
unspeci�c interactions between cells or proteins with the surfaces. 
LEC adhesion was subsequently facilitated by the attachment of 
azide-functionalized adhesive peptides to the alkyne groups of 
the click-PEG via copper-catalyzed azide–alkyne cycloaddition 
(CuAAC). Primary human LECs adhered best on surfaces func-
tionalized with c(RGDfE) ligands (Kapp et al., 2017) and reason-
ably well on peptides with the amino-acid sequences GYIGSRY, 
SVVYGLR, GRGDSP, and REDV (Figure S2 in Supplementary 
Material). Adhesion comparable to cell culture plastic was 
achieved at a ratio of PEG2000-silane to alkyne-PEG3000-silane of 
1:100 (Figure S3 in Supplementary Material).

In the next step, sHA was bound to the gold nanoparticles 
using sHA thiolated at its reducing end, which readily self-
assembles on gold surfaces to form stable and bioactive adlayers 
(Minsky et al., 2016). On our surfaces, sHA only bound to the 
gold nanoparticles. �us, the density of sHA in our experimental 
setup could be modulated by varying the distance between the 
nanoparticles, and thus their density on the surfaces (Figure 1B). 
Due to the size of the nanoparticles (dp = 10 nm) compared with 
the radius of gyration of the HA species (rg = 7.1 nm; Kuehl et al., 
2016), we assumed that only one HA receptor is able to bind to 
one gold nanoparticle (Banerji et al., 2016). Before determining 
and comparing the in�uence of sHA on LECs using the di�erent 
surfaces, it was veri�ed that the cells were able to adhere to the 
surfaces in a comparable manner (see Supplementary Material).

In initial experiments, we employed a click-PEG coating, but 
on glass surfaces without any gold nanoparticles. LECs grown on 
this surface were then stimulated with sHA on the luminal side 
by the addition of sHA dissolved in the growth medium at a �nal 
concentration ranging from 0 to 20 µg/mL. �e impact of the 
sHA on the LECs was determined 48 h a�er seeding by measuring 
metabolic activity with the AlamarBlue assay which reacts to the 
reducing environment of viable cells and normalizing it to the 
number of cells on each surface as determined by the CyQuant 
assay. No e�ect in a concentration range of 0 to 20 µg/mL sHA 
was observed (Figure 2A).

Additionally, we compared sHA produced by enzymatic 
digestion with sHA created by heat treatment (Figures  2A,B). 
�e relative metabolic activity of the LECs was not in�uenced 
signi�cantly by the presence of either of the two sHA species in 
solution (Figures  2A,B). �is was also true in control experi-
ments carried out on cell culture plastic (see Supplementary 
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FIGURE 2 | Incubation of lymphatic endothelial cells (LECs) with HA oligosaccharides (sHA) in solution had no impact on the relative metabolic activity of the cells. 

The graphs show the metabolic activity of LECs normalized to the amount of DNA on c(RGDfE) functionalized click-PEG surfaces after exposure to (A) enzymatically 

digested sHA and (B) heat-fragmented sHA and their respective thiolated species (C,D). The Kruskal–Wallis test followed by the Dunn’s multiple comparison 

indicated no signi�cant difference between the control and the different concentrations of the hyaluronan species.

FIGURE 3 | Immobilized HA oligosaccharides (sHA) exerting a biphasic effect on the metabolism of lymphatic endothelial cells (LECs). Graphs show the relative 

metabolic activity of LECs normalized to the relative amount of DNA on the surface for (A) the immobilized, enzymatically digested sHA and (B) the immobilized, 

heat-fragmented sHA species. To analyze the signi�cance of the results, a Kruskal–Wallis test followed by the Dunn’s multiple comparison was carried out.
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Material) or in experiments employing thiolated sHA in solution 
(Figures 2C,D).

Next, the thiolated enzymatically digested and heat-fragmented 
sHA species were immobilized onto gold nanostructured glass 
slides at di�erent particle densities. Five di�erent nanoparticle 
densities (29, 47, 123, 540, 2,714 nanoparticles/μm2) were used 
in the experiments. Additionally, the surfaces were functional-
ized with click-PEG bearing c(RGDfE). �e relative metabolic 

activity was again determined 48 h a�er seeding. Under these 
conditions, a biphasic e�ect on LEC metabolism was observed. 
For both sHA species, metabolism increased with increasing 
nanoparticle density, with maximal stimulation being observed 
at 540  particles/μm2, then decreased in response to even 
higher densities (Figure 3). �e relative metabolic activity at a 
nanoparticle density of 540 nanoparticles/μm2 was signi�cantly 
increased for both sHA species (Kruskal–Wallis test followed by 
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the Dunn’s multiple comparison, p < 0.05). �e level of signi�-
cance was higher in the case of the sHA obtained through heat 
fragmentation compared with the enzymatically digested HA.

DISCUSSION

Here, we describe the development of adhesive surfaces that 
mimic speci�c aspects of the ECM of lymphatic capillaries, and 
enable the stimulation of LECs on either their luminal or basal 
side. Cyclic RGD was employed to facilitate cell attachment, 
which proved to be comparable to the adhesive surface provided 
by cell culture plastic. Due to the precise control of key parameters 
in our system, these surfaces provide a platform for systematically 
studying cellular responses to particular matrix conformations.

In this study, we have focused on using the multicomponent 
adhesive surfaces to analyze the relative metabolic activity of LEC 
cells in response to exposure to sHA. Normalization proved to be 
especially important when using the nanostructured surfaces, as 
di�erent numbers of cells initially attached to the interfaces due 
to increased steric hindrance for high HA densities. Normalizing 
the metabolic activity to the amount of DNA on the corresponding 
surface ensured the comparability of the determined metabolic 
activity for the di�erent surfaces.

No signi�cant di�erence in the relative metabolic activity of 
LECs exposed in solution to any of sHA species used in these 
studies was observed. �us, e�ects due to the sHA modi�cation as 
well as the cleavage mechanism on the metabolic activity of LECs 
can be excluded. We have previously reported a biphasic e�ect on 
the proliferation of primary human LEC upon incubation with 
sHA (4, 8, and 13 disaccharide units) in an LYVE-1-dependent 
manner (Bauer et al., 2018). In these experiments, we observed a 
maximal proliferation-promoting e�ect for 5.0 µg/mL of sHA in 
solution. �ese data indicate that the metabolic activity of LECs 
is not coupled to their proliferation status. Further experiments 
will investigate which cellular HA receptors mediate the e�ects of 
tethered sHA on metabolism.

For all of our experiments, the in�uence of both the heat-
fragmented sHA with an average weight of 20  kDa (roughly 
50-mer) and the enzymatically digested sHA with an average 
weight of <10  kDa (about 25-mer) led to the same results. As 
sHA in solution had no impact on LEC metabolism, we conclude 
that the increased relative metabolic activity for immobilized 
sHA (540  nanoparticles/μm2) represents a speci�c response of 
the cells to the immobilized sHA. A conceivable explanation can 
be found in clustering of the HA receptors, which is postulated 

to be necessary to create a strong interaction between HA and 
its receptors (Lawrance et  al., 2016). �e interparticle distance 
of 540  nanoparticles/μm2 might create an HA density, which 
stimulates the clustering and thereby the metabolic activity. Our 
previously published data also show the proliferative response of 
LECs to sHA takes place within a narrow concentration range, 
which can be re�ected in the speci�c response to immobilized 
HA (Bauer et al., 2018). Furthermore, the sHA used to stimulate 
the basal surface of the LECs was functionalized on its reduc-
ing end to immobilize it. As we saw, a speci�c response to this 
functionalized sHA, the stimulation of metabolism is not due to 
any interaction with the reducing end of the sHA molecule or the 
cleavage method used to prepare the sHA.

In summary, the speci�c increase in relative metabolic activ-
ity of primary human LEC cells in response to immobilized 
sHA species opens up new avenues to trigger and control 
lymphangiogenesis, for example, to stimulate wound healing 
a�er surgery.
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