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ABSTRACT 1 

SCOPE: To establish the role of cocoa theobromine on gut microbiota composition and 2 

fermentation products after cocoa consumption in rats. 3 

METHODS AND RESULTS: Lewis rats were fed either a standard diet (RF diet), a diet 4 

containing 10% cocoa (CC diet) or a diet including 0.25% theobromine (TB diet) for 15 days. 5 

Gut microbiota (fluorescence in situ hybridization coupled to flow cytometry and 6 

metagenomics analysis), SCFA and IgA-coated bacteria were analyzed in fecal samples. 7 

CC and TB diets induced lower counts of E. coli whereas TB diet led to lower counts of 8 

Bifidobacterium spp., Streptococcus spp. and Clostridium histolyticum-C. perfingens group 9 

compared to RF diet. Metagenomics analysis also revealed a different microbiota pattern 10 

among the studied groups. The SCFA content was higher after both CC and TB diets, which 11 

was mainly due to enhanced butyric acid production. Furthermore, both diets decreased the 12 

proportion of IgA-coated bacteria. 13 

CONCLUSION: Cocoa’s theobromine plays a relevant role in some effects related to cocoa 14 

intake, such as the lower proportion of IgA-coated bacteria. Moreover, theobromine modifies 15 

gut microbiota although other cocoa compounds could also act on intestinal bacteria, 16 

attenuating or enhancing the theobromine effects. 17 

18 
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1. Introduction  19 

Although cocoa powder was initially used for medical purposes by Mesoamerican 20 

civilizations [1], it is only recently that cocoa has come to be considered a valuable product 21 

with healthy properties [2]. Among these beneficial effects, it has been reported that cocoa-22 

enriched diets modulate the immune system and the gut microbiota [3]. In particular, a cocoa-23 

enriched diet is able to attenuate secretory IgA (S-IgA) in several intestinal compartments [4–24 

6] and also the IgA-coated bacteria proportion in the gut [5]. Moreover, a diet containing 10% 25 

cocoa for 6 weeks modifies the intestinal microbiota composition in rats by decreasing the 26 

proportion of the Bacteroides spp., the Staphylococcus spp., and the Clostridium histolyticum 27 

subgroup [5], and thus causing a different short-chain fatty acid (SCFA) production [7]. 28 

Similarly, a cocoa diet modulates the intestinal microbiota in orally sensitized rats, as 29 

determined by a metagenomics analysis [8]. 30 

Cocoa powder contains macronutrients, fiber, minerals, polyphenols (flavonoids, mainly 31 

flavanols) and methylxanthines [9]. The most abundant xanthine found in cocoa is 32 

theobromine, followed by caffeine. In fact, cocoa is the richest natural source of theobromine 33 

[10, 11]. While the effects of flavonoids present in cocoa have been thoroughly studied, less 34 

attention has been paid to the presence of theobromine in cocoa. Even so, a few studies have 35 

related its content to a variety of properties attributed to cocoa powder [10, 12]. As 36 

theobromine is able to reach the gut [13, 14], we hypothesized that this methylxanthine could 37 

contribute to the effects of cocoa intake on gut microbiota. Therefore, the purpose of the 38 

present work was to establish the role of cocoa theobromine in the composition of gut 39 

microbiota and fermentation products after cocoa consumption in rats. 40 

41 
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2. Material and methods 42 

2.1. Animals and diets 43 

Lewis rats (3 week old) obtained from Janvier Labs (Saint-Berthevin Cedex, France) were 44 

housed in cages (2-3 animals/cage on days 0-8, and individually on days 8-15) under 45 

controlled temperature and humidity in a 12:12 h light:dark cycle. The rats were randomly 46 

distributed into three dietary groups (n=7 per group): the reference (RF) group ingested a 47 

standard diet AIN-93M (Teklad, Madison, USA), the cocoa (CC) group ingested a standard 48 

diet with 10% of natural Forastero cocoa (Idilia Foods S.L., Barcelona, Spain) containing 49 

2.5% theobromine, and the theobromine (TB) group ingested a standard diet including 0.25 % 50 

of theobromine (Sigma-Aldrich, Madrid, Spain), i.e. the content of theobromine present in the 51 

CC diet. The two experimental diets were elaborated on the basis of the AIN-93M formula by 52 

subtracting the amount of carbohydrates, proteins, lipids and insoluble fiber provided by the 53 

corresponding supplements. The resulting diets were isoenergetic and contained the same 54 

proportion of macronutrients and insoluble fiber as the RF diet (Table 1). Animals were 55 

provided with feed and water ad libitum for 2 weeks. Animal procedures were approved by 56 

the Ethical Committee for Animal Experimentation of the University of Barcelona (ref. 5988). 57 

 58 

2.2. Fecal samples collection and pre-analytical procedures 59 

Fresh feces were collected at days 0, 8 and 15 and processed according to the specific 60 

variables to be analyzed. Some fresh fecal samples were used to determine fecal pH, using a 61 

surface electrode (Crison Instruments, S.A., Barcelona, Spain). The rest of the fecal samples 62 

were directly frozen either at -20 ºC until the metagenomics analysis, the bacterial 63 

characterization by fluorescence in situ hybridization, and the IgA-coated bacteria 64 

quantification, or at -80 ºC until SCFA analysis. For these determinations, fecal homogenates 65 

were later obtained following procedures previously described [5]. 66 
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 67 

2.3. Quantification of fecal microbiota by fluorescence in situ hybridization (FISH) 68 

coupled to flow cytometry (FCM)  69 

Quantification of representative groups of gut microbiota was carried out in feces from day 15 70 

by FISH coupled to FCM (FISH–FCM), as described by Massot-Cladera et al. [15]. Briefly, 71 

fixed fecal suspensions were incubated with Cy5-labeled probes targeting specific diagnostic 72 

regions of 16S rRNA from different gut bacterial groups (Bacteroidaceae-Prevotellaceae 73 

group, Bac303; Bifidobacterium spp., Bif164; Clostridium histolyticum-C. perfringens group, 74 

Chis150; Escherichia coli, Ec1531; Clostridium coccoides-Eubacterium rectale group, 75 

Erec482; Lactobacillus-Enterococcus group, Lab158, Staphylococcus spp., Staphy; 76 

Streptococcus spp., Strept) (Supplementary Table 1). In the case of Lactobacillus, samples 77 

were permeabilized with lysozyme (Serva, Heidelberg, Germany) prior to the hybridization 78 

process [16]. All samples were hybridized at the specific probe hybridization temperature, as 79 

described [15], and kept in the dark at 4 ºC overnight until FCM analysis.  80 

To determine the total bacteria number, the samples were mixed with propidium iodide (PI, 81 

1 mg/mL; Sigma-Aldrich, Madrid, Spain) prior to FCM analysis [5].  82 

 83 

2.4. Determination of the proportion of bacteria coated with IgA 84 

Quantification of IgA-coated bacteria was carried out as previously described [15]. 85 

 86 

2.5. Flow cytometry analysis 87 

For FISH and IgA-coated bacteria quantification, FCM analysis was performed using a 88 

FacsAria SORP sorter (BD, San José, CA, USA) as previously described [5]. Commercial 89 

Flow CheckTM Fluorospheres (Beckman Coulter, Inc. FL, USA) were used to determine total 90 

counts combined with PI. Analysis was performed using Flowjo v7.6.5 software (Tree Star, 91 
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Inc.). Microbiota composition results are expressed as the log10 of specific probe labeled 92 

bacteria counts/g of feces in each sample. Moreover, the Firmicutes to Bacteroidetes (F/B) 93 

ratio was calculated taking into account the analyzed bacterial groups belonging to the 94 

Firmicutes phylum (those hybridized by Chis150, Erec482, Lab158, Staphy and Strept 95 

probes) and those belonging to the Bacteroidetes phylum (those hybridized by the Bac303 96 

probe). IgA-coated bacteria results are expressed as the percentage of bacteria coated with 97 

IgA with respect to the total bacteria. 98 

 99 

2.6. Lactic acid and SCFA analysis 100 

After thawing fecal samples, homogenates were centrifuged to remove any particulate matter. 101 

Supernatants were filtered using Millex® filters (0.22 µm, Merck Millipore, Darmstadt, 102 

Germany). Supernatant (200 µL) was added to 50 µL of the internal standard (2-ethylbutyric 103 

100 mM in isopropanol) in a Chromacol VALK vial (Thermo Scientific, Langerwehe, 104 

Germany) with a Fisher brand adaptor (Fisher Scientific, Loughborough, UK). Each sample 105 

was injected into a 1050 series HPLC System (HP, Crawley, West Sussex, UK) equipped 106 

with UV detection. The column used was an ion-exclusion REZEX-ROA organic acid 107 

column (Phenomenex, Macclesfield, UK) and a SecurityGuard pre-cartridge (Phenomenex) 108 

maintained at 85 °C in a 7981 model oven (Jones Chromatography, Lakewood, USA). 109 

Sulfuric acid (2.6 mM) was used as the eluent, and the flow rate was 0.5 mL/min. Peaks were 110 

integrated using Agilent ChemStation software (Agilent Technologies, Oxford, UK). 111 

Quantification of the samples was obtained through calibration curves of lactic, acetic, 112 

propionic, butyric and formic acids (12.5-100 mM). Results were expressed as mM (for total 113 

SCFA) and relative increases of the total and individual SCFA with respect to those values 114 

found in the RF group. 115 

 116 
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2.7. Metagenomics analysis 117 

DNA was extracted from two randomly selected samples from each group using a FastDNA® 118 

SPIN Kit (MP Biomedicals, Solon, OH, USA) following the manufacturer’s protocol. 119 

Amplicons of 16S rDNA were purified and diluted in equal concentrations prior to 120 

sequencing in Ion Torrent platforms by the Genetic Diagnostic Bioarray facilities (Bioarray, 121 

Alicante, Spain), as previously described [8]. Briefly, a massive sequencing using the QIIME 122 

software package v1.8.0. and USEARCH v7.0.1090 was carried out and the obtained 123 

sequences were assigned into operational taxonomic units (OTUs; sequences that share ≥ 97% 124 

similarity) using the UCLUST algorithm and Greengenes reference database (v13_8). Results 125 

are expressed as absolute and relative abundance of phyla and number of detected species. 126 

The bacterial species found among the experimental conditions, in common or not, were also 127 

considered and represented through a Venn diagram.  128 

 129 

2.8. Statistical analysis 130 

The normality of continuous variables was assessed by normal probability plots and the 131 

Shapiro–Wilk test, and the variance equality by Levene’s test. Non-normally distributed 132 

variables were analyzed by non-parametric tests, specifically Kruskal–Wallis and Mann–133 

Whitney U tests. Normally distributed variables were analyzed by one-way ANOVA followed 134 

by Bonferroni post hoc significance test. Student T-test was used to analyze the 135 

metagenomics study. P ≤ 0.05 was considered statistically significant. Statistical analysis was 136 

performed using the software package SPSS 22.0 (IBM Statistical Package for the Social 137 

Sciences, version 22.0, Chicago, IL, USA). 138 

139 
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3. Results  140 

3.1. Body weight and food intake 141 

Although the initial body weight was similar among the groups, a statistically slower body 142 

weight gain was observed during the study for both the CC and TB groups (Figure 1A). The 143 

measurement of the food intake revealed that, even though there was not lower food intake 144 

when considering the relative amount per body weight (in all cases it was about 12 g/100g of 145 

BW), lower absolute food intake per rat in both CC and TB groups than in RF group was 146 

found from the first day of diet (Figure 1B).  147 

 148 

3.2. Gut bacterial populations by FISH–FCM 149 

After 15 days of dietary intervention, significant differences in the gut microbiota 150 

composition were observed (Figure 2). Concerning total bacteria counts, the CC diet caused 151 

the elimination of higher number of bacteria per day than the RF diet. This increase could be 152 

associated with the stool amount per day, which was higher in CC rats (3.07 g ± 0.11 g) than 153 

that from RF rats (1.78 g ± 0.10 g) (P<0.05). Nevertheless, the total bacteria counts relative to 154 

fecal weight from CC fed rats were similar to those in the RF group, whereas the TB group 155 

showed lower counts than the other groups (P=0.021 and P=0.055 compared to the RF and 156 

CC groups, respectively). 157 

Regarding particular bacterial groups, both the CC and TB groups presented lower counts of 158 

E. coli than the RF group, with the counts being even lower in the CC group than in the TB 159 

one. The TB diet also led to significantly lower counts of Bifidobacterium spp., Streptococcus 160 

spp. and Clostridium histolyticum-C. perfringens than the RF group. The decrease in the 161 

Clostridium group, together with a reduction in the Bacteroidaceae-Prevotellaceae group, 162 

was also significant compared to the CC group. As a result, the Firmicutes counts were lower 163 
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in feces from the TB group than those from RF rats (P=0.005). Even so, the F/B ratio was not 164 

significantly modified in the feces of the studied groups.  165 

 166 

3.3. Quantitative metagenomics analysis of gut bacterial populations 167 

After the FISH-FCM analysis of microbiota, a metagenomics approach was carried out in 168 

representative feces, in order to get an idea about the most modified species. The 169 

metagenomics analysis allowed the relative abundance of the OTUs to be obtained (Figure 170 

3).  171 

The CC group showed a higher proportion of the Firmicutes and a lower proportion of 172 

Bacteroidetes phylum members than the RF group, which was associated with a significantly 173 

higher F/B ratio than the RF and TB groups. The TB group displayed no changes in 174 

Firmicutes and Bacteroidetes phyla but showed a higher proportion of the Tenericutes 175 

phylum than the RF and CC groups. A further analysis also revealed changes in the relative 176 

abundance of some species (Table 2). Regarding Bacteroidetes phylum, the proportion of the 177 

Bacterioidales order and particularly of the Bacteroides genus, e.g. B. acidifaciens, decreased 178 

with CC intake, whereas the percentage of the Prevotella genus increased, which was not 179 

observed in the TB group. Moreover, in the Cyanobacteria phylum, CC diet led to a higher 180 

proportion of the Streptophyta order. With regard to the Firmicutes phylum, CC diet led to a 181 

higher proportion of the SHA-98 and Clostridiales order, Butyrivibrio genus 182 

(Lachnospiraceae family) and Ruminococcaceae family, and a lower proportion of other 183 

Clostridiales (Peptococcaceae family and Anaerotruncus sp.) species. On the other hand, the 184 

TB group showed an increase in the proportion of the Erysipelotrichaceae family (Firmicutes 185 

phylum), Ralstonia sp. (Proteobacteria phylum) and one bacterium of the Mollicutes class 186 

(Tenericutes phylum) (Table 2). 187 

 188 
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3.4. Qualitative metagenomics analysis of gut bacterial populations 189 

A total of 71, 80 and 73 different species were detected by metagenomics analysis in feces 190 

from the RF, CC and TB groups, respectively (Supplementary Figure 1A). To determine the 191 

relation among bacterial species present in each group, a Venn diagram was created 192 

(Supplementary Figure 1B). From all the fecal-detected species, 68 were common to all 193 

three studied groups. CC intake led to 11 new species; of these, four species were also found 194 

in the TB group (species belonging to Bacteroidetes, Firmicutes and Proteobacteria phyla) 195 

and seven were exclusively detected in the CC group (including species belonging to the 196 

Actinobacteria, Cyanobacteria, Firmicutes and Proteobacteria phyla) (Table 3). Only 197 

“Candidatus Arthromitus” (Firmicutes phylum, Clostridia class) was found exclusively in the 198 

TB group. Two species were only detected in the RF group, which belonged to the 199 

Paraprevotellacea family (Bacteroidetes phylum) and Coprobacillus genus (Table 3). In 200 

addition Ruminicoccus flavefaciens (Firmicutes phylum) disappeared in the theobromine-fed 201 

animals.  202 

 203 

3.5 Fecal pH, lactic acid and SCFA 204 

The TB diet led to higher pH values than those found after the RF and CC diets (Figure 4A). 205 

Fecal concentrations of lactic acid were not significantly affected by the experimental diets 206 

(4.26 ± 1.54 mM in RF group; 1.96 ± 0.41 mM in CC group; 2.69±0.73 mM in TB group).  207 

Figure 4B shows the fold-increase of the total and the individual fecal SCFA analyzed 208 

(acetic, propionic, butyric and formic acids) in the CC and TB groups compared to the RF 209 

group. The intake of CC and TB led to the detection of significantly higher amounts of total 210 

SCFA (sum of acetic, propionic, butyric and formic acid) compared to the RF diet (37.8 ± 211 

3.85 mM and 35.9 ± 5.98 mM vs 14.5 ± 8.31 mM, respectively). Both CC and TB diets 212 
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increased by more than seven times the content of butyric acid compared to the RF diet. The 213 

CC diet also led to an increase in acetic acid concentration. 214 

 215 

3.6 Percentage of fecal bacteria coated with IgA 216 

The percentage of IgA-coated bacteria was determined before and at 8 and 15 days of the 217 

nutritional intervention (Figure 5). The CC group and, to a lesser extent, the TB group 218 

showed lower percentages of fecal IgA-coated bacteria compared to the RF group at days 8 219 

and 15. 220 

 221 

4. Discussion  222 

Cocoa-enriched diets have demonstrated their influence on the gut microbiota and the 223 

intestinal immune system, which could be partially attributed to the cocoa’s polyphenol and 224 

fiber content [4, 5, 7, 17]. As far as we are concerned, no data about the effect of theobromine 225 

on gut microbiota and immunity have been published before. In the present study, we have 226 

established the role of theobromine in the effects of cocoa on gut microbiota composition, 227 

SCFA, bacteria coated with IgA and on body weight increase.  228 

In vitro, in vivo and clinical studies demonstrate that cocoa is able to modulate the growth of 229 

gut microbiota [5, 7, 15, 18]. Previous studies in rats show that the intake of cocoa-enriched 230 

diets for at least three weeks modifies the intestinal microbiota pattern [5, 7, 15]. In the 231 

present study, the ingestion of the cocoa diet for two weeks was not able to significantly 232 

modify most of the bacterial groups analyzed by FISH–FCM, probably because of the shorter 233 

length of this nutritional intervention. However, some changes were observed when 234 

theobromine was ingested alone, indicating that theobromine by itself is able to directly or 235 

indirectly modify gut microbial populations. The metagenomics analysis, even though it was 236 
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carried out in a small number of samples, allows to have an idea of particular genera and/or 237 

species from gut microbiota modified by CC and TB diets and thus, by using both techniques 238 

in a complementary manner, we obtained a wider approach of the gut microbiota changes. 239 

According our FISH–FCM results, theobromine seems to exert an inhibitory effect on gut 240 

microbiota, mainly on bacteria belonging to the Firmicutes phylum (Clostridium histolyticum-241 

C. perfringens group and Streptococcus spp.), Bifidobacterium spp. and E.coli. The effect of 242 

TB partially agrees with previously reported effects of a cocoa diet [5, 7] on Clostridium spp. 243 

and Streptococcus spp. In addition, according to the metagenomics analysis, the decrease in 244 

Firmicutes could be associated with the disappearance of Ruminococcus flavefaciens, a 245 

cellulolytic bacterium found to be increased by a flavonoid-enriched diet [19, 20]. The 246 

disappearance of R. flavefaciens after the TB diet, although it contained the same cellulose 247 

amount as the RF and CC diets, may reflect a particular effect of theobromine on this species 248 

that could be counteracted by the flavonoid content in the cocoa diet. Conversely, 249 

theobromine alone seems to be able to increase other bacteria from the same family 250 

(Erysipelotrichaceae). This family is decreased by a diet rich in flavonoids [21], which would 251 

explain the current changes observed only in the TB group. Furthermore, from the two 252 

samples analyzed in the TB group, it can be suggested that theobromine ingested alone 253 

induced the presence of “Candidatus Arthomitus”, another member of the Firmicutes phylum. 254 

This is a segmented filamentous bacterium able to induce adaptive immune responses in the 255 

gut [22], and it can adhere to the epithelial cells in the ileum and Peyer’s patches, contributing 256 

to the prevention of the colonization of the enteropathogenic E.coli O103, Salmonella, and 257 

others [23, 24]. 258 

The cocoa diet, including theobromine, seems to induce the growth of bacteria belonging to 259 

Firmicutes, according to the metagenomics analysis. This increase could be associated with a 260 
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higher relative abundance of one species from the Lachnospiraceae (Butyrivibrio genus) and 261 

another from the Ruminococcaceae families, all of them belonging to the Clostridia class. 262 

Moreover, the cocoa diet seems to lead to the appearance of new species belonging to the 263 

Clostridia class (Dehalobacteriaceae spp., Roseburia faecis and SHA-98 spp), which is in 264 

line with the increase of Lachnospiraceae, Clostridiales, and Ruminococcaceae found in pigs 265 

fed a grape seed extract [25], and therefore, it could be related to an effect of the cocoa’s 266 

polyphenol content.  267 

In the results of total Bacteroidetes phylum by FISH–FCM and metagenomics analyses, 268 

discrepancies were observed, which could be due to the low representation of bacterial 269 

members of this phylum in the first analysis and/or the low sample size in the second one. 270 

Nevertheless, the metagenomics analysis allowed us to suggest changes inside this phylum. 271 

For example, one species from the Paraprevotellaceae family disappeared with both diets, 272 

and the cocoa diet decreased in particular the number of species belonging to the 273 

Bacteroidales order (Bacteroides sp. and Bacteroides acidifaciens). The B. acidifaciens has 274 

been described to be the predominant bacteria responsible for promoting IgA production in 275 

the large intestine [26]. This agrees with our current results regarding IgA-coated bacteria and 276 

with previous studies showing lower intestinal IgA with a cocoa diet [5, 17, 27]. On the other 277 

hand, CC diet increased the relative abundance of Prevotella sp., which could be due to its 278 

polyphenol content since higher numbers in the Prevotella group have been associated with 279 

the daily consumption of red wine polyphenols [28]. 280 

One important finding of our study is that theobromine (both in the CC and TB groups) 281 

lowered the counts of E. coli. This agrees with the reported inhibitory effects of theobromine 282 

on Gram-negative bacteria [29], suggesting an inhibitory effect on the growth of potential gut 283 

pathogens. This inhibition was enhanced with the CC diet, suggesting the role of polyphenols 284 
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in this effect [30]. In the same phylum, Ralstonia sp. seems to appear due to the CC and TB 285 

diets. Ralstonia sp. was formerly included in the Pseudomonas genera, which includes species 286 

able to degrade methylxanthines [31, 32]. Therefore, its presence may reflect the adaptation of 287 

gut microbiota to diets rich in methylxanthines. 288 

The impact of theobromine on gut microbiota was also patent in the Tenericutes phylum, 289 

which increased almost fourfold with theobromine ingested alone. This was associated with a 290 

higher number of bacteria belonging to the RF39 order (Mollicutes class). A study reported a 291 

similar effect with the ingestion of cocoa for 4 weeks [8]. The absence of effects on 292 

Tenericutes with the CC diet suggests that other cocoa compounds delayed the theobromine 293 

effect on this phylum.  294 

With regard to Actinobacteria, a prebiotic effect of cocoa polyphenols in humans [33] and of 295 

cocoa fiber in rats [7] by increasing the counts of Bifidobacterium group has been reported. 296 

As TB diet, but not CC diet, decreased the proportion of Bifidobacterium spp., it can be 297 

suggested that theobromine is counteracting the prebiotic effects of cocoa fiber. However, the 298 

metagenomics results suggested no changes in the relative abundance of Actinobacteria 299 

species, either in the TB or CC diet, although it seems that CC diet leads the appearance of 300 

one species of the Actinomycetales order. In line with these results, blueberries increased the 301 

relative abundance of Actinomycetales order in rats, which allows us to suggest the role of 302 

polyphenols in such an effect [34]. Finally, the appearance of one species of the Streptophyta 303 

order (Cyanobacteria phylum) with the ingestion of cocoa, in agreement with the reported 304 

effect of a CC diet for 4 weeks [8], must be related to the cocoa’s polyphenol or fiber content. 305 

Nevertheless, the role of such bacteria in the intestinal microbiota remains to be elucidated. 306 

Overall, this study reveals the impact of theobromine on gut microbiota. The effects were 307 

different depending on whether theobromine was ingested alone or when forming part of 308 
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cocoa, although few common characteristics were found. Some changes observed exclusively 309 

in the TB group would have been due to the action of this methylxanthine, which were 310 

counteracted by other cocoa compounds, such as fiber and polyphenols. Other changes in the 311 

TB group agree with previous results reported with a longer CC diet, suggesting that these 312 

other compounds included in the CC diet could delay the TB effect. The modifications 313 

exclusively found in the CC group must be related to the cocoa’s fiber or polyphenol content.  314 

The effect of theobromine on gut microbiota has also been reflected by the changes observed 315 

in SCFA in both theobromine-containing diets. The enhanced generation of SCFA was 316 

mainly due to the butyric acid. Butyrate is considered the main energy source for colonocytes, 317 

and is also important for the regulation of gene expression, the intestinal barrier and the 318 

immune system, among others [35, 36]. However, whereas butyric acid increased with both 319 

diets, the increase in the proportion of acetic acid was only observed after cocoa ingestion. 320 

This disagreement could be due to the fermentation of different substrates with both 321 

interventions. After cocoa intake, SCFA would come directly from polyphenol and/or fiber 322 

fermentation [7], whereas for the TB diet, changes in the generation of SCFA would be 323 

indirectly due to the inhibition of some bacterial populations and thus contribute to enhancing 324 

the amount of substrate available for other bacteria. The differential patterns in the SCFA 325 

generated support the idea that the ingestion of theobromine alone or as part of cocoa has a 326 

different impact on gut microbiota. Furthermore, the unexpected higher fecal pH when 327 

theobromine was ingested alone deserves further studies focusing on microbial metabolites 328 

which could explain the observed fecal pH changes.   329 

The current results evidence that theobromine (both in the TB and CC diets) contributes to the 330 

lower proportion of bacteria coated with IgA found after the cocoa diet, in line with previous 331 

results [5, 7, 15]. As rats fed the CC diet even showed a lower proportion of IgA-coated 332 
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bacteria, the combination of cocoa polyphenols with theobromine in the CC diet could have 333 

an additive or a synergistic effect on reducing their proportion. On the other hand, the effect 334 

of cocoa fiber must be discarded because it was associated with an increase in the percentage 335 

of IgA-coated bacteria [7]. 336 

Results regarding body weight suggest that theobromine present in cocoa was the main reason 337 

for a slower body weight increase produced by the 10% cocoa diet.  In fact, there was a lower 338 

food intake per animal already in the first day of diet, which could affect the body weight 339 

increase and it can also influence gut microbiota. On the other hand, body growth could be 340 

affected by TB influence on metabolism. In this sense, it has been demonstrated that caffeine 341 

has a stimulatory effect on thermogenesis [37] and has been associated with bone mass loss 342 

[38].  343 

In conclusion, here we demonstrate that cocoa theobromine plays a relevant role in some 344 

effects related to cocoa intake, such as lower body weight increase and the proportion of IgA-345 

coated bacteria. In addition, theobromine modifies gut microbiota, although other cocoa 346 

compounds –such as cocoa polyphenols or fiber– also act on the intestinal bacteria, 347 

attenuating or enhancing the theobromine effects, that overall leads to the global effect of 348 

cocoa on microbiota which differs from that of each particular cocoa component. 349 
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FIGURE LEGENDS 

 

Figure 1. Body weight (A) and food intake (B) throughout the study. The amount of food 

intake showed in each day was calculated considering the amount fed in each interval divided 

into the number of days in each period. Values are expressed as mean ± SEM (n=7). RF, 

reference group; CC, group fed diet containing 10% cocoa; TB, group fed diet containing 

0.25 % theobromine. Statistical differences between groups and days of study are shown with 

different letters. 
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Figure 2: Total bacteria counts, total Firmicutes counts, Firmicutes/Bacteroidetes ratio, and 

bacteria counts detected with selected probes indicated in the top determined by FISH–FCM 

from fecal samples. RF, reference group; CC, group fed diet containing 10% cocoa; TB, 

group fed diet containing 0.25 % theobromine. A: Actinobacteria, B: Bacteroidetes; F: 

Firmicutes, P: Proteobacteria. Total bacteria counts are expressed as bacteria/day and 

bacteria/g feces. Bacterial groups and phylum counts are given as means of log10 bacteria/g 

feces ± SEM (n=7). * P<0.05 vs RF group; # P<0.05 vs CC group. 
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Figure 3. Abundance of phyla found in feces by metagenomics analysis. 

Firmicutes/Bacteroidetes ratio and relative abundance (%) of each phylum with respect to the 

total bacterial DNA for each experimental group. RF, reference group; CC, group fed diet 

containing 10% cocoa; TB, group fed diet containing 0.25 % theobromine. Values are given 

as means ± SEM (n=2). * P<0.05 vs RF group; # P<0.05 vs CC group. 
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Figure 4. A) Fecal pH. B) Fold change of the total and the individual SCFA analyzed 

compared to the RF diet which was considered as 1. Values are expressed as mean ± SEM 

(n=7). RF, reference group; CC, group fed diet containing 10% cocoa; TB, group fed diet 

containing 0.25 % theobromine. * P<0.05 vs RF group; # P<0.05 vs CC group.  
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Figure 5. Fecal IgA-coated bacteria throughout the study. Values are expressed as percentage 

of IgA-coated bacteria (mean ± SEM, n=7). RF, reference group; CC, group fed diet 

containing 10% cocoa; TB, group fed diet containing 0.25% theobromine. * P<0.05 vs RF 

group; # P<0.05 vs CC group. 
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Table 1. Composition of diets used in the study  

Components Diets (g/kg)
a
 

 RF CC TB 

Carbohydrates 721.9 709.5 720.1 

Proteins 140.8 141.3 140.4 

Lipids 38.7 38.5 38.6 

Insoluble fiber 50.0 51.2 49.9 

Soluble fiber - 8.9 - 

Micronutrients 48.6 44.1 48.5 

Theobromine - 2.5 2.5 

Phenolic compounds - 4.0 - 

Total 1000.0 1000.0 1000.0 

a RF, reference diet; CC, diet containing 10% cocoa; TB, diet containing 0.25% 

theobromine. 
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Table 2: Summary of the results found after analysis of OTU relative abundance in samples belonging to the three studied groups. RF, reference group; CC, 

group fed diet containing 10% cocoa; TB, group fed diet containing 0.25% theobromine. Arrows indicate significant changes (P<0.05) for each pairwise 

comparison. 

 

phylum class order family 
genera 

(species) 
CC vs RF TB vs RF TB vs CC 

Bacteroidetes Bacteroidia Bacteroidales 

 ↓ ↓  

Bacteroidaceae 

Bacteroides ↓   

Bacteroides 

acidifaciens 
↓   

Prevotellaceae Prevotella ↑  ↓ 

Cyanobaceria Chloroplast Streptophyta   ↑  ↓ 

Firmicutes 
Clostridia 

Clostridiales 

  ↑  ↓ 

Lachnospiraceae Butyrivibrio ↑  ↓ 

Peptococcaceae rc4-4 ↓   

Ruminococcaceae 
 ↑   

Anaerotruncus ↓   

SHA-98   ↑  ↓ 

Erysipelotrichi Erysipelotrichales Erysipelotrichaceae   ↑  

Preoteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Ralstonia  ↑  

Tenericutes Mollicutes RF39    ↑ ↑ 
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Table 3: Bacteria detected in one or two of the studied groups. Grey color indicates bacteria presence. RF, reference group; CC, group fed diet containing 10% 

cocoa; TB, group fed diet containing 0.25% theobromine. 

 

 

Phylum Class Order Family Genus Specie RF CC TB 

Bacteroidetes Bacteroidia Bacteroidales Paraprevotellaceae   

 Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Coprobacillus   

 Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus flavefaciens     

 Actinobacteria Actinobacteria Actinomycetales Other Other Other 
 

  

 Cyanobacteria Chloroplast Streptophyta   

 Firmicutes Clostridia Clostridiales Dehalobacteriaceae   

 Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia faecis 

 

  

 Firmicutes Clostridia SHA-98   

 Proteobacteria Gammaproteobacteria Aeromonadales Aeromonadaceae Other Other 
 

  

 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomona   

 Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella  Other 
 

    

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella      

Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus Other 
 

    

Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Ralstonia     

Firmicutes Clostridia Clostridiales Clostridiaceae “Candidatus Arthromitus”         
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Supplementary Figure 1. Diversity of bacterial species found in feces by metagenomics 

analysis. A) Richness of bacterial species; B) Venn diagram of differentially detected species. 

The diagram shows the absolute number of detected species that belonged to each of the 

individual nutritional interventions, the detected species common to each pair of groups and 

the detected species in common to all the three nutritional interventions (in the center of the 

representation). RF, reference group; CC, group fed diet containing 10% cocoa; TB, group fed 

diet containing 0.25 % theobromine. 
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Supplementary Table 1: Bacteria specific probes for the FISH analyses.  

 

 

 

 

 

 

 

 

Y= (C/T), R= (A/G) 

[1] Manz, W., Amann, R., Ludwig, W., Vancanneyt, M., et al., Application of a suite of 16S rRNA-specific oligonucleotide probes designed to 

investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 1996, 142, 1097–1106. 

[2] Langendijk, P.S., Schut, F., Jansen, G.J., Raangs, G.C., et al., Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with 

genus-specific 16S rRNA-targeted probes and its application in fecal samples. Applied and Environmental Microbiology 1995, 61, 3069–

3075. 

[3] Harmsen, H.J., Gibson, G.R., Elfferich, P., Raangs, G.C., et al., Comparison of viable cell counts and fluorescence in situ hybridization 

using specific rRNA-based probes for the quantification of human fecal bacteria. 2000, 183, 125–129. 

[4] Poulsen, L.K., Lan, F., Kristensen, C.S., Hobolth, P., et al., Spatial distribution of Escherichia coli in the mouse large intestine inferred from 

rRNA in situ hybridization. Infection and Immunity 1994, 62, 5191–5194. 

[5] Lay, C., Sutren, M., Rochet, V., Saunier, K., et al., Design and validation of 16S rRNA probes to enumerate members of the Clostridium 

leptum subgroup in human faecal microbiota. Environmental Microbiology 2005, 7, 933–946. 

[6] Harmsen, H.J.M., Elfferich, P., Schut, F., Welling, G.W., A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal 

samples by fluorescent in situ hybridization. Microbial Ecology in Health and Disease 1999, 11, 3–12. 

[7] Trebesius K, Leitritz L, Adler K, Schubert S, Autenrieth IB, H.J., Culture independent and rapid identification of bacterial pathogens in 

necrotising fasciitis and streptococcal toxic shock syndrome by fluorescence in situ hybridisation. Med Microbiol Immunol 2000, 188, 

169–175.

Bacterial group Probe Sequence (5'-3') References 

Bacteroidaceae-Prevotellaceae Bac303 CCAATGTGGGGGACCTT  [1] 
Bifidobacterium spp. Bif164 CATCCGGCATTACCACCC  [2] 
Clostridium histolyticum-C. Perfringens Chis150 TTATGCGGTATTAATCTYCCTTT [3] 
Escherichia coli Ec1531 CACCGTAGTGCCTCGTCATCA [4] 
Clostridium coccoides-Eubacterium rectale Erec482 GCTTCTTAGTCARGTACCG [5] 
Lactobacillus-Enterococcus Lab158 GGTATTAGCAYCTGTTTCCA [6] 
Staphylococcus spp. Staphy TCCTCCATATCTCTGCGC  [7] 
Streptococcus spp. Strept CACTCTCCCCTTCTGCAC  [7] 
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Supplementary Table 2: Bacteria detected in one or two of the studied groups. Grey color indicates bacteria presence. RF, reference group; CC, group fed 

diet containing 10% cocoa; TB, group fed diet containing 0.25% theobromine. 

 

 

Phylum Class Order Family Genus Specie RF CC TB 

Bacteroidetes Bacteroidia Bacteroidales Paraprevotellaceae 

 

  

 Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Coprobacillus 

 

  

 Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus flavefaciens     

 Actinobacteria Actinobacteria Actinomycetales Other Other Other 

 

  

 Cyanobacteria Chloroplast Streptophyta 

 

  

 Firmicutes Clostridia Clostridiales Dehalobacteriaceae 

 

  

 Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia faecis 

 

  

 Firmicutes Clostridia SHA-98 

 

  

 Proteobacteria Gammaproteobacteria Aeromonadales Aeromonadaceae Other Other 

 

  

 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomona 

 

  

 Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella  Other 

 

    

Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella  

 

    

Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus Other 

 

    

Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Ralstonia 

 

    

Firmicutes Clostridia Clostridiales Clostridiaceae Candidatus Arthromitus         

 

 

 


