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INTRODUCTION

During the last 30 yr, with every push to understand
entire ecosystems rather than isolated components,
ecosystem models have become a popular tool (Watt
1975, Halfon 1979, Walters et al. 1997, Sainsbury et al.
2000). However, complex general models have often
acquired a poor reputation (Jørgensen et al. 1992), pri-
marily because of 2 factors. First, these models are
often so large and complex that they may not be cost-
efficient, with the majority of the modelling resources
spent in development and maintenance rather than
on their application (Watt 1975). Second, complexity
introduced for the sake of completeness accomplishes
nothing if the resulting model is actually of poor qual-
ity (O’Neill 1975, Silvert 1981, DeCoursey 1992). While
modern computing power makes ecosystem models
attractive, as computational restraints are lifted (Beck

1999), this does not solve the problems of uncertain
model specification, parameterisation and system un-
derstanding, or the effects of model structure and
detail on model performance (Silvert 1981, Jørgensen
1994). These areas of modelling still require much
attention and the need becomes more urgent with
increasing pressure on scientists and managers for
‘whole system’ approaches, predictions and policies.

ECOSYSTEM MODELS

Terminology associated with ecosystem models is
confusing, in that ecosystem models can refer to every-
thing from total system models (dealing with biotic
components from multiple tropic levels as well as
abiotic components and forcing) to models that focus
solely on fisheries (the ‘top end’ of the web) or water
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quality (the ‘bottom end’ of the web).
Here we use the term ecosystem
model to refer to total system models
rather than those multispecies mod-
els tied to one end of the food web or
the other.

Within the last few decades,
increasing computer power and a
shift in the focus of scientific and
political thought has lead to a rapid
growth in the number of multispecies
and ecosystem models in existence
(Silvert 1981, Breckling & Müller
1994). The majority of published and
applied multispecies models tend to
concentrate around fishes or nutri-
ents and in both cases, the history of
model development can be ‘charac-
terised by the growing intricacy of
their internal structure’ (Fransz et al.
1991). There have been a number of
attempts at producing trophic ‘whole
ecosystem’ models for the marine
environment, including the cove
model of Patten et al. (1975), the
multispecies model of Andersen &
Ursin (1977), the fjord model of Bax
& Eliassen (1990), the ECOPATH
with ECOSIM model (Christensen et
al. 2000); the European regional
seas ecosytem (ERSEM I [Baretta
et al. 1995] and II [Baretta-Bekker &
Baretta 1997] models; the integrated
generic bay ecosystem [IGBEM])
model and Bay Model 2 (BM2) (Ful-
ton 2001). Nevertheless, compared
with the widespread use of water
quality and fisheries multispecies
models, the use of ecosystem models
remains limited. As a result, there is
still a lot of scope for the develop-
ment of a thorough understanding of
the implications of model structure
on performance for these kinds of
models.

The various types of multispecies
and ecosystem models each have
associated advantages and problems
(Table 1), but there is a list of features
and potential drawbacks common to
them all. In general, such models
improve our understanding of sys-
tems by reflecting the 2-way nature
of system dynamics. Human impact
on one part of a system can spread to
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other parts of the system, but system feedbacks and
interrelations can also mean that an impact can have
unexpected consequences even for those groups
directly affected by anthropogenic activities (Hollowed
et al. 2000, Fulton 2001, Mace 2001). There are also a
number of potential problems common to multispecies
and ecosystem models: (1) they inevitably require
more information than single-species models (which
incur associated costs); (2) they are more likely to
suffer from issues about optimal complexity (i.e. what
groups and processes should be included); (3) opera-
tional objectives and monitoring indices can be hard to
define for the real systems to be modelled; (4) it can be
difficult to define appropriate indices to summarise
model output; (5) there are often alternative hypothe-
ses about system structure and function (Silvert 1981,
Jørgensen 1994, Mace 2001). These features are par-
ticularly important when dealing with ecosystem mod-
els. However, as multispecies and ecosystem models
are the only models with the potential to answer the
environmental questions that single-species and pure
hydrodynamic models cannot (Hollowed et al. 2000,
Mace 2001), the advantages of intelligent and attentive
application of such models can outweigh their poten-
tial pitfalls.

One of the main criticisms aimed at ecosystem mod-
els is that their potentially immense complexity can
make predictions highly uncertain (Duplisea 2000). If
the model output is to be used directly to determine
management actions (as in a fisheries stock assessment
model), such a characteristic is clearly undesirable
(Butterworth 1989). In contrast, when such models are
used as a guide to possible impacts and to explore
implications of alternative broad policies, this property
is no longer such a problem. This is particularly true if
the robustness of the conclusions is tested against a
range of models incorporating different structural and
parametric assumptions, representing a range of plau-
sible alternatives about how the particular system may
work. This approach permits identification of effects
and policies that are robust across levels of complexity,
uncertainty and underlying system and model assump-
tions (Reichert & Omlin 1997, Duplisea 2000, Fulton
2001). A related use for more complex ecosystem mod-
els is as a test bed for simpler models that may be used
in assessment of the system, or part of it. Applying sim-
pler assessment models to ‘data’ generated from com-
plex ecosystem models is a useful way of checking the
robustness of the assessment models, and of identify-
ing the circumstances in which it may be appropriate
to use them for more ‘tactical’ management advice.

Using these approaches, ecosystem models have the
potential to identify issues and causes beyond the
bounds possible in single-species models, or even
multi-species models in some cases. Management

strategies implemented to achieve a certain goal may
have the opposite effect if multispecies or ecosystem
considerations are not included. For example, a simple
predator-prey model, where seals are the predators
and fishes the only type of prey, might suggest that
culling seals will increase fish abundance for a given
prey species. However, a more complex multispecies
model might show the opposite effect if seals suppress
other predators (or competitors) of that fish species
(Punt & Leslie 1995, Yodzis 2001a). Beyond even these
multispecies considerations, without the inclusion of
the links between the upper and lower ends of the food
web and the forces driving them, erroneous conclu-
sions may be drawn about environmental and anthro-
pogenic impacts, as alternative explanations and
scenarios are overlooked (Steele 1998, Fulton 2001,
Yodzis 2001b). For example, a decline in the biomass of
a herbivorous fish may indicate overfishing, but it may
equally indicate degradation of their main food re-
serves as a result of eutrophication (Fulton 2001).

Unfortunately, although the need to integrate com-
prehensive biological, physical and chemical models is
recognised, reconciling and reducing the dimensions
of complexity required in each of the areas is a large
but poorly understood task (Nihoul & Delhez 1998,
Mace 2001). Much of the handling of model com-
plexity has been dealt with by drawing on experience
from prior modelling efforts (Murray & Parslow 1997,
1999a). As a result, the systematic understanding of
the effects of model structure and detail on the perfor-
mance of ecosystem models is still at an early stage.
Like so many branches of mathematical modelling
(Brooks & Tobias 1996), there have been few studies
of the effect of model structure on the behaviour of
marine ecosystem models. As a result, this review
draws on studies of model complexity in ecology, water
quality and fisheries management in addition to work
on ecosystem models.

Model complexity in ecology: a general history

Trophic aggregation

Optimal levels of model complexity, or appropriate
degrees of trophic aggregation, remain a major prob-
lem in describing ecological systems. Thus, the study
of the general properties of aggregation, and its limita-
tions as a tool for use in model development and appli-
cation, has received some attention in theoretical sys-
tems over the last 40 yr. A number of researchers have
considered the effects of aggregation from a theoreti-
cal standpoint and have produced some useful guide-
lines (Zeigler 1976, O’Neill 1979, O’Neill & Rust 1979,
Cale & Odell 1980, Gardner et al. 1982, Cale et al.
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1983, Iwasa et al. 1987, Bartell et al. 1988, Rastetter et
al. 1992, Fulton 2001). The 2 most important guidelines
are: (1) do not aggregate serially linked groups (preda-
tor and prey) (Gardner et al. 1982, Fulton 2001); (2) do
not aggregate species, age classes or functional groups
with rate constants more than 2- to 3-fold (Wiegert
1977, O’Neill & Rust 1979, Cale & Odell 1980, Gardner
et al. 1982, Fulton 2001). Ignoring either of these
guidelines is likely to result in a significant decline in
model performance. Within the context of ecosystem
models, this means that aggregating species to the
level of functional groups is acceptable, but further
aggregation will lead to a model that performs poorly
(Fulton 2001).

Construction rules

Most studies considering the complexity of ecologi-
cal models have created (subjective) rules to ensure
that the most efficient model is employed (e.g. Innis &
Rexstad 1983). The most thorough of these was per-
formed by Halfon (1983a,b) who used Bosserman’s
(1980) complexity measure (–c ) to consider the effect
of additional links between existing state variables
(Halfon 1983a) and Hasse diagrams to investigate the
structural properties of a number of different models
(Halfon 1983b). Another notable, but more theoretical,
approach was put forward by Iwasa et al. (1987). They
gave formal mathematical rules to determine whether
aggregation of model variables was possible without
loss of information. While these predominantly ab-
stract theoretical and model development studies
presented some examples, they did not apply their
methods to investigate the effects of complexity.

Initial indications: optimal performance at
intermediate model complexity

Investigations of the effect of model structure on per-
formance have usually occurred in less theoretical set-
tings. One of the best analyses of the issues of model
complexity and aggregation, and its impacts on sub-
sequent management performance, was undertaken
in the area of single-species fisheries assessment and
management. Ludwig & Walters (1981, 1985) demon-
strated that for estimating the true optimal fishing pol-
icy a small and highly aggregated model can perform
better than a more complex and realistic one with the
same fundamental structure, even if the data were
generated using the more complex model. This has
been attributed to the parametric sensitivity of more
detailed models, and its potential to propagate errors
(Iwasa et al. 1987).

Within the more general ecological and ecosystem
modelling literature, attempts to determine optimal com-
plexity by explicitly comparing different models with
each other or with data are scarce. Costanza & Maxwell
(1994) began to span the divide between development
and application when they examined the relationship
between resolution and the predictive capacity of mod-
els. At the other extreme, Kremer & Kremer (1982) and
Hurtt & Armstrong (1996) both gave examples of a
search for optimal complexity through practical appli-
cations (they simplified or extended an existing model
and discussed whether or not there was an improvement
in performance).

Overall, however, there have been only a few
attempts to assess model performance with systematic
changes to model complexity. One of the earliest con-
siderations was the work by Wiegert (1975, 1977), who
compared 5 models with differing trophic structure,
levels of aggregation, spatial heterogeneity and for-
mulation assumptions. The results suggested that the
simplest of the models performed as well as the most
complex, with a dip in performance for models with
intermediate levels of aggregation and simplification.
This pattern of results was due to inadequate handling
of spatial heterogeneity and time lags in the models
with intermediate levels of complexity, whereas the
simplest model did not require time delays, thus avoid-
ing that problem (Wiegert 1975). The modelling issues
associated with varying degrees of model complexity
in this study are strongly tied to the system being mod-
elled and the modelling methods and assumptions
employed. This may be why the relationship between
complexity and performance observed by Wiegert
(1975, 1977) has not been reported in any other study
considering the effects of model complexity.

The next major study to consider the effects of model
complexity (Costanza & Sklar 1985) compared the pre-
dictive ability (judged against field data) of 87 existing
(mainly multispecies) models of freshwater or shallow-
water bodies using 3 indices (articulation, accuracy
and effectiveness). Their work also found a non-linear
relationship between model performance and com-
plexity. The results were summarised in a plot showing
that the relationship between maximum effectiveness
(explanatory power) and articulation (the amount of
detail in conjunction with the physical and biological
scope of the model) has a humped form (Fig. 1). This
finding supported anecdotal accounts from experi-
enced modellers, particularly those involved in the
International Biological Program of the early 1970s
(e.g. Botkin 1977), and the conclusions from Håkan-
son’s (1995) work on predictive multispecies models for
lakes and coastal areas.

Håkanson (1995) tried to compare empirical and
dynamic models by first considering the r2 values of a
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number of stepwise multiple-regression models and
then by examining the standard deviation of a number
of additive and multiplicative models. Once again it
was shown that there was a humped relationship
between an indicator of performance
and the number of variables included,
although in this case the peak of the
plot was closer to the smaller model
sizes (Fig. 2). Extending this work,
Håkanson (1997) examined the predic-
tive capabilities of a range of empirical
and dynamic models of the transport of
radiocesium in lakes. A humped rela-
tionship between predictive power
and model size was again identified.

The findings of Håkanson (1995) and
those of Costanza & Sklar (1985) pro-
vide evidence for the long-held be-
lief that predictive power increases
quickly with the elaboration of simple
models, but the trend is eventually re-
versed as accumulating errors and
process and parameter uncertainty
negate any potential benefits of in-
creased detail (Jester et al. 1977).
Håkanson (1997) provided an addi-
tional explanation for the decline in

performance with increased detail.
When it comes to using models in a
prognostic sense, large models can be
prescriptive rather than predictive
(Håkanson 1997) — all the extra detail
can hardwire the responses rather than
introduce flexibility. Further, Håkanson
(1997) pointed out that the predictive
power of a model is not determined
by its strongest component, but by its
weakest.

Implications of data with low 
signal-to-noise ratio

A different approach (a likelihood
ratio test) was used by Yearsley &
Lettenmaier (1987) to discriminate be-
tween 3 linear compartment models
with varying levels of complexity (pro-
duced by aggregating compartments).
The model comparison was made on
the basis of data generated from a non-
linear model of the global carbon cycle.
They found that with realistic levels

of measurement error even the most
highly aggregated models are valid

(a likelihood ratio test could not discriminate between
the most aggregated compartment model and the non-
linear model used to generate the data). Similar find-
ings have also been reported for limnological models

6

Fig. 2. Plot of predictive power (I or r2)/accumulated error (V or SD) against the
number of x-variables (n) for predictive lake models redrawn from Fig. 6a
in Håkanson (1995). I: information value, V: accumulated uncertainty (relative
standard deviation = SD/MV, where SD is the standard deviation and 

MV is the mean value)

Fig. 1. Plot of articulation (measure of model complexity that has a logistic form
and a scaling factor which weights the addition of a component more heavily
than extra timesteps, which are in turn more heavily weighted than increased
spatial resolution) against effectiveness (measure of model performance based
on explanatory power) for a number of existing aquatic models redrawn from
Fig. 2 in Costanza & Sklar (1985). Effectiveness frontier: upper boundary line of 
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(van Tongeren 1995) and models of radionuclide trans-
port in soils (Elert et al. 1999). This finding, that uncer-
tainties in input data have a greater impact on the
results than the model employed, are supported by the
information theory concept of a model as a communi-
cation channel converting input data to output data. As
the signal-to-noise ratio of ecological and environmen-
tal data is typically low, there is no reason to expect
that a large model spanning many noisy measure-
ments will be any better than a model which deals with
fewer, more precise, measurements (Silvert 1981).

Marine ecosystem models: ‘deep-shallow’ model
comparison

Several researchers have considered how the form of
parts of models of marine systems (such as grazing and
mortality) affect their dynamics (Steele & Henderson
1992, Edwards & Brindley 1999, Murray & Parslow
1999b, Gao et al. 2000), but only a few have considered
how the structure of entire models influences their
behaviour (Hoch & Garreau 1998, Nihoul 1998a,
Nihoul & Djenidi 1998, Yool 1998, Tett & Wilson 2000,
Murray 2001, Fulton et al. in press). The work of
Hoch & Garreau (1998) and Nihoul’s body of research
(Nihoul 1998a,b, Nihoul & Delhex 1998, Nihoul &
Djenidi 1998), although primarily concerned with com-
plexity from a hydrodynamic standpoint, should be of
interest to all ecosystem modellers. Their findings
highlight that ecosystem models are not only ham-
pered by the same issues of internal complexity as any
model, but they must also find a balance (or trade-off)
between their various physical, chemical, geological
and biological features (Hoch & Garreau 1998, Nihoul
1998a).

While many of these studies have compared models
by evaluating performance against field observations,
a more systematic and theoretical approach exists.
Within the field of single-species fisheries modelling,
1 methodology underlying the management strategy
evaluation approach is well-established as a means of
judging the performance of simpler models. The pro-
cedure tests the performance of simpler (‘shallow’)
models against a more complex (‘deep’) model that
captures some of the possible complexities of the real
situation. Given the low signal-to-noise ratio of ecolog-
ical data and the implications for model performance
and interpretation, the use of the deep-shallow model
comparison is very attractive. The advantage is that it
allows the modeller to begin with a model that, in some
sense, is known to work, and then to strip it back to
identify the level of detail that is effective and most
efficient. Moreover, it provides a baseline of perfect
knowledge (i.e. the data generated by the deep model

as opposed to that gathered from the field), and there-
fore enables separation of the effects of model com-
plexity due to model structure from those due to data
uncertainty. Both sides of the problem must eventually
be addressed, but keeping the two separate will clarify
interpretation of any results. Yool (1998), Fulton (2001)
and Murray (2001) applied the deep-shallow model
methodology in a more general marine ecology set-
ting. Yool (1998) decomposed the Fasham (1993)
plankton model and then reconstructed it stepwise in
order to determine if a best minimum model existed.
Murray (2001) compared a simplified version of the
Port Phillip Bay integrated model with the original.
Lastly, Fulton (2001) compared a number of ecosystem
models of varying degrees of detail and complexity.
Each of these studies found that some degree of sim-
plification (of structure, trophic coverage or physical
scope) is possible without degrading the model, but
over-simplifying leads to a substantial decline in model
performance, particularly for the purposes of predict-
ing the effects of changing conditions. This work has
provided some useful insights into 2 main areas of
model construction, and these are discussed in more
detail below.

While explicit investigations of model complexity are
rare, there may be some very useful insights that could
be drawn from a compilation of the findings of sensi-
tivity analyses. Unfortunately, due to the scale of such
a task, a meta-analysis of this kind is beyond the scope
of this review.

Model scope as a component of complexity

The scope of a model is largely defined by the bio-
logical web it describes, the nutrients that are repre-
sented explicitly, its spatial resolution, and the tem-
poral spacing of output (the model equivalent of
sampling frequency in the field). Along with the par-
ticulars of model formulation (discussed in a later sub-
section), model scope is potentially one of the most
important aspects of model complexity. Computational
demands and the logistical requirements associated
with collecting sufficient information to parameterise
and validate ecosystem models are one of their biggest
drawbacks (Silvert 1981, Sugihara et al. 1984, Lee &
Fishwick 1998). Simplifying the biological or physical
scope can make a model much easier to construct,
summarise and interpret. The problem is that remov-
ing too much detail can leave a model that is simple to
parameterise and quick to run, but that has limited
prognostic use (Tett & Wilson 2000, Fulton 2001, Mur-
ray 2001). The challenge is to define an optimum scope
that minimises complexity, but which facilitates valid
and robust predictions.
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Trophic complexity

The trophic complexity of a model is concerned with
2 aspects of model structure, the number of trophic
levels explicitly represented in the model and how
these levels are divided into species or functional
groups as defined by size classes, feeding linkages,
shared predators and life-history strategies (Murray &
Parslow 1997, Pahl-Wostl 1997). Multispecies models
concerned primarily with water quality or harvested
species may not include all trophic levels, but assume
that groups at one end of the web do not significantly
influence the behaviour at the other end. In ecosystem
models that may be used to consider many alternative
anthropogenic scenarios, or the indirect effects of pro-
cesses such as fishing, the representation of a greater
number of trophic levels is probably required. Unfortu-
nately, the problem of optimum complexity in trophic
structure remains an issue, as every additional group
included increases modelling and data requirements.
Species-level detail could mean the complete collapse
of many biogeochemical ecosystem models and, for
many systems, is beyond what is possible based on
empirical data. Nonetheless, without the flexibility
inherent in a trophic web rather than a chain, realistic
dynamics, especially under changing conditions, may
be very difficult to capture (Baretta et al. 1995, Pahl-
Wostl 1997). Thus, the systematic consideration of the
effects of trophic complexity on model behaviour is an
important concern.

While randomly constructed food-web models have
been investigated by many researchers (Gardner &
Ashby 1970, May 1973, Siljak 1974, 1976, Waide &
Webster 1976, Pimm & Lawton 1978), within the con-
text of ecosystem models, consideration of realistically
structured webs is more enlightening (Bosserman
1982).

Changes in the behaviour of models with realistic
web structure when the web is simplified by aggrega-
tion or omission of groups indicates clearly that trophic
structure can be over-simplified (Sugihara et al. 1984,
Christensen 1992, Optiz 1996, Pahl-Wostl 1997, Yool
1998, Fulton 2001). The simplified webs, especially
those reduced to less than 25% of the size of the origi-
nal model web, are not able to represent enough of the
processes and interactions in the system to faithfully
reproduce system dynamics, particularly when the
strength of environmental or anthropogenic pressures
change (Fulton 2001).

As with the general relationship between model
performance and structural detail (Figs. 1 & 2), there
appears to be a nonlinear relationship between trophic
complexity and behaviour. This relationship can be of
2 forms. It can be humped, like the overall relationship
(Bosserman 1982, Gardner et al. 1982, Fulton 2001) or

it can be in the form of a threshold-triggered step-
function (Tett & Wilson 2000, Fulton 2001). The second
of these relationships is less common and is tied
to groups with critical ecological roles, which must
be explicitly represented to capture correct system
dynamics.

Connectance (MacArthur 1955), the ratio of the
number of strong:weak interactions in the web
(McCann 2000) and redundant groups (Yachi & Loreau
1999) have all been proposed as explanations of
change in model dynamics with change in trophic
complexity. However, the work by Yool (1998),
Edwards (2001) and Fulton et al. 2001) suggests that
none of these alone can explain the patterns of per-
formance observed and that the identity of the
components and links can be the most important deter-
minants of performance. Thus, as with any other kind
of model, it is far more important that crucial system
characteristics are captured rather than rote applica-
tion of a set of modelling rules.

Simple rules are not always guaranteed to work,
but they are useful as a general guide. The finding
that trophic complexity can be simplified to a point
where models are no longer useful is probably the
strongest and most useful guideline for model devel-
opment. One way in which this is exemplified is the
effect of trophic aggregation on model behaviour.
Aggregating species into functional groups can be
successful, provided the species have rate constants
that differ by less than 3-fold, and have similar or
common predators and prey. Pooling functional
groups is less successful than omitting the least
important groups entirely (Fulton 2001). This result is
commensurate with the general guidelines of earlier
work on the effects of model aggregation (Wiegert
1977, O’Neill & Rust 1979, Cale & Odell 1980, Gard-
ner et al. 1982).

Nutrients included explicitly in models

Tett & Wilson (2000) advised that ecosystem models
should be biogeochemical, as they must conserve 1 or
more elements so that the potential growth of groups
can be capped. The success of ECOSIM models (Wal-
ters 1998) suggests that conservation of biomass may
also be sufficient.

In biogeochemical models, it is common to use the
most limiting macronutrient (carbon, nitrogen or phos-
phorus) as the model currency and assume that the
conversion of the other nutrients conforms to the Red-
field ratio (Murray & Parslow 1997). However, this
approach does not allow the model to adjust to spa-
tial and temporal differences in nutrient availability
(Baretta et al. 1995). This inability should not present a
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significant problem and will not (in general) lead to
large model divergences if the system state is meso-
trophic to eutrophic. This is because the other nutrients
should remain in excess, even if not exactly in Redfield
ratios. However, when a system is in an oligotrophic
state, the dependence of the model on a single macro-
nutrient currency can be a problem (Fulton 2001).
Under these conditions the identity of the limiting
nutrient may well change and the preferential rem-
ineralisation of nitrogen and phosphorus will cause
significant departures from the Redfield ratio, with
potentially catastrophic implications for production
estimates and the dynamics of transmission up the food
web. The successful application of models such as
ECOPATH with ECOSIM to the open oceans (Chris-
tensen et al. 2000) suggests that models employing the
conservation of biomass may not suffer as much from
this problem. However, environmental influences are
not usually present in such models, and if they are they
are usually in the form of prescribed forcing functions
(Hollowed et al. 2000). If environmental conditions
became a more integrated part of these models, then
the problems observed in biogeochemical models may
also appear in models like ECOSIM.

Physical scope

Another important aspect of model scope that can
affect model behaviour is the physical scope of the
model, and in particular its spatial resolution. Many
multispecies and ecosystem models (e.g. mass bal-
ance aggregate-system models such as ECOSIM) do
not include any explicit spatial representation. How-
ever, space is a vital system resource in its own right
in many marine systems and, as such, the way in
which it is represented can have a significant impact
on model dynamics and predictions (Murray 2001,
Fulton 2001). Many of the model stability issues
identified in ecological and ecosystem models in
the past (May 1974, Pimm 1982, Cohen & Newman
1988, Christensen et al. 2000) disappear with the
introduction of explicit spatial (and thus environ-
mental and/or ecological) heterogeneity (Johnson
1997, Johnson & Seinen 2002, Fulton 2001). This as-
sertion does not apply only to biogeochemical eco-
system models (such as those employed by Fulton
2001), but extends to other types of multispecies and
aggregate system models (like ECOSIM). There are
many examples of these models being explicitly
(through the development of ECOSPACE, Walters
et al. 1999) or implicitly (by separating individual
model groups into inshore and offshore components;
V. Christensen pers. com.) expanded to incorporate
spatial partitioning. This is not to say that ecosystem

models must be tied to general circulation models.
Such a move would be computationally prohibitive
and probably of little assistance. The box-model
approach to transport processes is useful as it neg-
lects small-scale gradients but still allows for regional
differences and spatial self-structuring which, in turn,
lead to the formation of distinct communities and eco-
logical zones (Baretta et al. 1995, Fulton 2001). Even
when using box-models, large numbers of cells may
not be necessary if they are defined such that they
resolve hydrographic discontinuities, which have
important ecological implications (Nihoul & Djenidi
1998). For example, Fulton et al. (2001) found that an
8-box model was a good compromise between the
computational intensity associated with a 59-box
version and the trophic self-simplification and degra-
dation in performance associated with 3- and 1-box
versions of the same model. This is another facet of
model structure in which intermediate complexity is
optimal.

Model formulation

The main concern of the majority of model studies
considering the effect of model structure is model for-
mulation. The way in which a model is implemented
can have a large impact upon its performance and use-
fulness (Silvert 1981). The key areas of model formula-
tion which have received some attention for marine
system models concern process detail (particularly
with regard to grazing functions and mortality terms)
and the role of empirical submodels and forcing.

Process detail

Whereas physical oceanographers have a set of basic
hydrodynamic equations there is no such set of equa-
tions in ecological modelling (Tett & Wilson 2000). The
problem is compounded in ecosystem models, as the
modeller must integrate a variety of processes and
interactions with differing characteristic temporal and
spatial scales (Barthel & Goñi 1995). Consequently,
ecosystem models run the very real risk of incorporat-
ing too much detail to be comprehensible, or over-
compensating in the other direction and not including
enough to be realistic. Given this risk, and the increas-
ing number of ecosystem models, there has been sur-
prisingly little published on the effects of formulation
detail on the dynamics of ecosystem models. More-
over, despite the contention that studies comparing
results across a range of models incorporating alterna-
tive assumptions show the greatest promise for guid-
ing management decisions, there have been few
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studies comparing different forms of ecosystem models
(Fulton 2001).

Specific aspects of the effect of process detail will be
discussed in the following subsections, but some perti-
nent observations about overall detail arise. The work
by Håkanson (1997) and Fulton (2001) indicates that
highly detailed, often physiologically based, process
detail is not a pre-requisite for a successful multi-
species or ecosystem model. Fulton (2001) compared
the outputs and predictions of 2 ecosystem models that
covered the same web and processes, but with differ-
ing levels of process detail. The Integrated Generic
Bay Ecosystem Model (IGBEM) is highly physiologi-
cally detailed, while Bay Model 2 (BM2) uses the same
functional groups, but much simpler assimilative equa-
tions. BM2 does have some weaknesses related to its
simplified form, for example the assumption that nutri-
ents are always in Redfield ratios causes it to perform
poorly in oligotrophic conditions (where this assump-
tion is often violated) (Fulton 2001). Despite some
weaknesses, the overall performance of BM2 with
regard to understanding system dynamics and qualita-
tive responses to changing conditions is as good or
better than the highly complex IGBEM, emphasing
that physiological detail is not necessarily required and
that simpler formulations can work. This is a boon
given that BM2 requires <50% of the number of
parameters and is 30 to 60% less computationally
demanding than its more complex counterpart (Fulton
2001). The amount of process detail required is only as
great as that needed to successfully capture crucial
system dynamics. Håkanson’s (1997) result that sim-
pler models had better predictive power than more
complex versions reinforce this assertion.

The work of Tett & Wilson (2000) on multispecies
models helps to define limits to simplifying key
underlying processes. They found that models which
sacrifice large amounts of either biogeochemical or of
ecological detail in favour of the other cannot ade-
quately describe the dynamics of the plankton. Tett
& Wilson (2000) concluded that to realistically cap-
ture the dynamics of marine plankton the models
must be biogeochemical and include trophic webs,
not simple trophic chains. These minimum require-
ments provide realistic restrictions and alternative
pathways which stabilise the models and lead to
realistic simulations of seasonal changes and other
observed phenomena.

The research of Murray & Parslow (1999a) and Mur-
ray (2001) arrived at a similar conclusion. They advo-
cated the use of simpler models as aids in the develop-
ment of more sophisticated models. For example, the
analysis of the simpler model indicated that explicit
representation of zooplankton was necessary in multi-
species plankton models and that model closure had

to be carefully considered (see later subsection ‘Model
closure’). Ultimately however, Murray (2001) stated
that the extra spatial and formulation detail included
in the larger model was required for fully informed
system management and to allow scientists and
managers to understand and consider a number of
alternative scenarios.

Studies comparing the performance or predictions of
different types of model are useful for judging how
robust general findings are to the underlying assump-
tions of the models (Fulton 2001). However, they are
also an excellent source of information on the effects
of process detail on model dynamics. Duplisea &
Bravington (1999) found that the results from a length-
cohort model (a multispecies forecast [MSFOR] model)
and a size-spectrum mass-transfer model both led to
the same conclusions regarding fisheries management
strategies. Thus, for the particular question of interest,
the explicit process detail of the MSFOR did not confer
any advantage over the far simpler size-spectrum
model. In general, size-spectrum models are a suc-
cessful methodology, at least for pelagic aquatic eco-
systems (Silvert 1996). However, in the context of
the evaluation of management strategies, Duplisea &
Bravington (1999) recommend a few modifications,
such as allowing some disaggregation into functional
trophic groups and including more realistic grazing
terms. The popularity of ECOSIM suggests that it may
also be a successful methodology. This is supported by
the finding of Fulton (2001) that, with a few exceptions,
ECOSIM gave the same qualitative predictions as the
biogeochemical ecosystem models IGBEM and BM2.
The differences observed stem mostly from the lack of
spatial detail in ECOSIM, or parts of the trophic web
that are poorly known. The main differences between
the biogeochemical models and ECOSIM that are a
direct result of model formulation are that the biogeo-
chemical models are not as buffered against changes
in fisheries as ECOSIM, but are more buffered against
changes in nutrient loading. This is a reflection of the
more realistic behaviour of the low to middle trophic
groups in the biogeochemical models, whereas the
higher trophic groups react more sensibly in ECOSIM
(Fulton 2001). This is not surprising given their respec-
tive development histories and structure, but does
caution against the assumption that a formulation that
works at 1 level will work at every level.

Grazing terms

General ecological research, as well as the results of
more directed marine modelling, has shown that the
form of grazing terms used can have important effects
on overall model behaviour (May 1976, Hassell &
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Comins 1978, Begon & Mortimer 1986, Steele & Hen-
derson 1992, Gao et al. 2000, Tett & Wilson 2000,
Fulton et al. in press). Evaluation of the effects of the
functional response used in plankton models, built
around relatively simple food chains, indicated that
they do not have as great an impact as other parts of
the model (Steele & Henderson 1992, Murray & Pars-
low 1999b). In contrast, consideration of the effect of
the grazing terms used in a total system model, with a
complex trophic web (BM2) by Fulton et al. (in press)
indicates that they can have a substantial impact on
model behaviour. Fulton et al. (in press) concluded
that, while there are biologically and mathematically
sound arguments for the inclusion of sophisticated and
dynamic functional responses, the extra parameterisa-
tion is not necessarily justified because the Holling
‘Type II’ response predicts the same general patterns
of behaviour, and thus the same conclusions about sys-
tem dynamics. Notably, linear responses (such as the
Holling ‘Type I’) do not allow for realistic dynamics
over the range of conditions of most interest in system
management scenarios. Tett & Wilson (2000) reach a
similar conclusion for plankton models, whereas Gao
et al. (2000) conclude that the optimal functional form
will depend on the specific study and that more obser-
vations and understanding of real marine systems are
required before the matter can be clarified. The latter
may well be true, but for models incorporating a realis-
tic food web, simple non-linear grazing terms may
suffice due to the many other stabilising features
inherent in the web (Tett & Wilson 2000).

Model closure

The other main aspect of model formulation that has
received explicit attention is the form of model closure
(Steele & Henderson 1992, Edwards & Brindley 1999,
Murray & Parslow 1999b, Fulton et al. in press). Model
closure refers to the form of the mortality term applied
to the topmost group(s) explicitly included in the
model. Linear and quadratic mortality terms are the
most common means of dealing with model closure,
and these reflect the cases when the effect of predators
not included in the model are assumed to either be
constant (linear mortality) or to change (quadratic mor-
tality) with the population of their prey (the top most
modelled group[s]). The specific form used can have a
substantial impact on model behaviour (Murray &
Parslow 1999b).

Steady-state analysis of simple food-chain plankton
models indicates that model closure can be the most
important determinant of model behaviour (Steele &
Henderson 1992, Edwards & Brindley 1999, Murray &
Parslow 1999b). In contrast, its effect on a total sys-

tem model (with a complex trophic web), shows it is
much less important than other aspects of model
structure (Fulton et al. in press). However, even in
the case of the total system model the need for the
representation of higher predators (either explicitly or
implicitly via quadratic mortality terms) is recognised.
Unfortunately, conflicting conclusions regarding the
dynamics of the highest predators (sharks, mammals
and birds) when there are large changes in condi-
tions and differential stability of the various forms of
closure across a range of conditions, mean that fur-
ther work on this topic is necessary (Fulton et al. in
press).

Further research is also required to settle debate
over the legitimacy of the use of quadratic closure. The
speed of its response implies that it may represent
predators who switch between prey species. In real
systems, prey switching by predators has not been as
readily identified as fine-scale spatial organisation
(e.g. schooling) (Walters & Kitchell 2001). Thus, propo-
nents of the foraging arena functional response, which
is based on the assumption that trophic interactions at
these fine spatial scales can limit interaction rates,
argue that quadratic closure is an artificial solution to
issues of model stability and that use of an appropriate
functional response (e.g. foraging arenas) is the real
solution (C. Walters pers. comm.). However, the issue
remains unresolved because the effect of spatial
organisation in marine systems on interaction rates is
not well elucidated empirically. Consequently, future
studies that clarify the forms of functional responses in
natural systems will also make important contributions
to solving the issue of model closure. Until such time as
empirical work determines the true form of functional
responses in natural systems, it seems likely that, as
a general guideline, the use of quadratic closure is
acceptable regardless of the size of the implemented
web (Fulton et al. in press).

Forcing functions and empirical submodels

The last facet of model formulation to have received
some attention is the value and usage of empirical for-
mulations. Empirical formulations (or empirical models
as they are sometimes known) are functions that
describe observed patterns or relationships in data, but
without capturing real-process dynamics. These for-
mulations have both advantages and disadvantages.
They can be developed without much understanding
of the phenomenon of interest, they are simple be-
cause they do not include complex causality, and they
can be developed rapidly (DeCoursey 1992). All these
features make empirical models attractive, and within
their range of applicability they can often provide
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better predictive power than dynamic models (Håkan-
son 1997). Their limiting feature is that many domains
of interest can be outside the range of applicability.
This, along with the arbitrary nature of these models
and the associated risk of adopting a misleading
approach or false assumptions, can mean they are less
than ideal (DeCoursey 1992).

Within the realm of marine ecosystem models, the
model development choices are more complex than
empirical versus purely process models because
empirical models can play a role within dynamic-
process models. Given that the understanding of some
components of marine ecosystems are poor (e.g. the
processes and forces shaping the behaviour of the
benthic infauna), the use of empirical submodels for
the least known parts of the system is an attractive
alternative. The inappropriate use of simple forcing
functions can lead to very poor model performance,
while the use of a structured empirical submodel can
work very well (Fulton 2001). Alternatively, the use of
an empirical representation of an important process
can prevent degradation of model performance. This is
especially true if the causal mechanisms for the pro-
cess are poorly known, or if explicit inclusion of the
details of the mechanism is beyond the scope of the
model or the capability of the available data or compu-
tational resources. For example, the empirically based
bacteria-denitrification submodel employed in BM2
is a vast improvement over another process-based at-
tempt at modelling bacteria and denitrification (Fulton
2001), both of which components are still poorly known
in many respects.

Model performance under changing conditions

Use of ecosystem models to gain insight into a sys-
tem and to indicate (at least) qualitative trends associ-
ated with a change in ‘forcing’ conditions is one of their
most useful roles. It is also at this point that assump-
tions underlying the model formulation can have their
greatest impacts. Thus, confirmatory comparison of
models is strongly advocated. A comparison of 3 eco-
system models (ECOSIM, BM2 and IGBEM) by Fulton
(2001) indicated that overall model structure and for-
mulation can provide the same general predictions
under changing conditions, but still predict some
potentially important differences in specific cases. For
example, applying a fisheries management strategy
developed purely to maximise economic gains to all
3 models produced predictions that coincided for the
majority of the biological components in all the models
and there was agreement between at least 2 of the
models for all the components except detritus. How-
ever, the 3 models all gave different results for detritus

(ECOSIM predicted no change, BM2 predicted a
decline and IGBEM an increase). Given the role of
detritus as a long-term storage of nutrients in enclosed
bays like that modelled, such a range of outcomes is a
crucial result. This illustrates how conclusions drawn
from different models can be very different for particu-
lar components of a system, even when the models
generally agree overall.

The effects of implemented process detail and model
scope are usually most apparent under changing con-
ditions such as changing nutrient loads or fishing pres-
sures. A change in conditions or pressures on a system
may be beyond the range of applicability of an empiri-
cal model or may expose a flaw in a chosen formulation
(Fulton 2001, Murray 2001). During an investigation
of the effect of model structure on the behaviour of
ecosystem models, Fulton (2001) repeatedly found that
formulations of varying complexity can have very sim-
ilar dynamics or show only small divergences under
baseline conditions, but show much larger differences
under altered nutrient loads or fishing pressures. For
example, the problems associated with restricted spa-
tial resolution, or highly simplified trophic structures,
or grazing and mortality terms that do not include some
form of limitation, all lead to poor performance under
changing conditions. Thus, performance under chang-
ing conditions is an important measure of how robust
model behaviour is to the level of complexity employed
in a particular aspect of model structure or scope.

Unfortunately, model failure need not be expressed
in such an obvious way as instability or aberrant
behaviour. A model that incorrectly specifies some
process (like feeding or mortality) or has a scope that is
too restricted may still appear to have acceptable
behaviour in relation to its state under current condi-
tions, but the predicted behaviour under altered condi-
tions may be incorrect. For example, compared with
the 59-box version, the lack of spatial structure in the
1-box model evaluated in Murray (2001) caused it to
overestimate the nutrient loads that Port Phillip Bay
could tolerate by 30%. This is a large problem if this
version of the model is used to guide management of
nutrient loading and water quality in this bay.

DISCUSSION AND CONCLUSIONS

The multitude of links and processes that make up a
real ecosystem mean that the ultimate effects of
anthropogenic actions will probably be much wider
than expected and, because of inevitable non-lineari-
ties, may even lead to counterintuitive outcomes.
Ecosystem models are a prime candidate as a tool to
aid in the understanding of these potential outcomes.
This does not mean that they do not have potential
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drawbacks associated with their own size and com-
plexity, but careful consideration of these problems
and the intelligent application of the models can avoid
or minimise many of these problems. However, greater
understanding of the effects of model structure and
scope on model performance are necessary. This is
particularly the case if we are to avoid the situation
where frustration resulting from poorly structured
ecosystem models, or the inappropriate use of existing
ecosystem models, leads us to reject the modelling
approach altogether.

Studies of the effect of model structure that have
already taken place indicate that there is a humped
form to the relationship between model detail and per-
formance (Costanza & Sklar 1985, Håkanson 1995,
1997, Fulton 2001). Too much complexity leads to too
much uncertainty and problems with interpretation of
the model’s dynamics and predictions, while too little
detail results in models that cannot produce realistic
behaviours. These studies have also identified some
important guidelines which can usefully extend or
augment those proposed in earlier works on ecological
models (Wiegert 1977, O’Neill & Rust 1979, Cale &
Odell 1980, Gardner et al. 1982, Halfon 1983a,b, Innis
& Rexstad 1983, Iwasa et al. 1987): (1) Explicit physio-
logical detail of every trophic group is not always
necessary. However, the use of explicit physiological
detail can be important in certain circumstances (such
as oligotrophic conditions when simple assumptions
about nutrient uptake and the ratio of limiting nutri-
ents are violated). (2) If an important process or linkage
(e.g. to an external web) is poorly known, or is not
explicitly represented in the model, then an empirical
representation should be included in its place. This can
avoid introducing uncertainty without risking the
degradation of performance associated with neglect-
ing a crucial aspect of a system. (3) Some level of spa-
tial resolution is likely to be necessary for adequate
performance of the model. A 1-box model is unlikely to
be sufficient, as space is itself an important and self-
organising system resource. This is particularly true in
systems where benthic groups are important. More-
over, there must be enough spatial resolution in the
model to capture the major physical characteristics of
the system. Trophic self-simplification of the tropic
web (the loss of 1 or more components from the web)
is often a good indicator that spatial representation
is overly restricted. (4) The inclusion of a complete
trophic web at the level of species is neither necessary
nor desirable, but the way in which the web is handled
is critical. The use of functional groups (defined based
on size and shared predators and prey) is a successful
means of representing the system web realistically
(particularly if some age or size structure is included
for the highest groups). Aggregation beyond the level

of functional groups is ill-advised, and omission of the
least important groups is a better strategy if further
simplification is necessary. Moreover, simplifying a
model web (which represents the food web of an entire
system aggregated to the level of functional groups) to
less than 20 to 25% of its original size is rarely benefi-
cial, as representing the distinctions between large
and small or mobile and sedentary groups may be cru-
cial. (5) Quadratic closure of the topmost parts of the
trophic web is a successful method of closing the web,
regardless of its size, but there is some debate about
whether this solution is ecologically justified. The
explicit inclusion of the highest predators may only be
necessary when they are of direct interest. (6) The form
of the grazing functions used must be given careful
consideration so that they contain enough flexibility
without introducing extraneous detail. Holling Type I
responses are unlikely to be sufficient (especially
under changing conditions), but the more complex
Holling type functions (e.g. Type II) may be accept-
able. More sophisticated responses, incorporating
more behavioural dynamics (e.g. balancing predator
avoidance with the need to forage) may be required in
some circumstances, but the value of their inclusion
should be checked.

The issue of the effect of model complexity on model
behaviour and performance is far from being a closed
chapter, especially with regard to ecosystem models.
Within the context of trophic complexity and ECOSIM,
Walters stresses that ‘... this [exploration of the effects]
is a really crucial issue that has not yet been systemat-
ically explored by any of the science groups involved
in ECOSIM modeling’ (C. Walters pers. comm.). How-
ever, this point is not restricted to trophic complexity or
ECOSIM, but pertains to all facets of model structure
and the many methodologies and ecosystem models
currently in use. The work covered in this review is
a useful start, but there is still much ground to be
covered.
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