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Effect of confinement on DNA dynamics in microfluidic devices
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The dynamics of dissolved long-chain macromolecules are different in highly confined
environments than in bulk solution. A computational method is presented here for detailed
prediction of these dynamics, and applied to the behaviorbf100um DNA in micron-scale
channels. The method is comprised of a self-consistent coarse-grained Langevin description of the
polymer dynamics and a numerical solution of the flow generated by the motion of polymer
segments. Diffusivity and longest relaxation time show a broad crossover from free-solution to
confined behavior centered about the pdint 10S,, whereH is the channel width an@, is the
free-solution chain radius of gyration. In large channels, the diffusivity is similar to that of a sphere
diffusing along the centerline of a pore. For highly confined chaiH$S(<1), Rouse-type
molecular weight scaling is observed for both translational diffusivity and longest relaxation time.
In the highly confined region, the scaling of equilibrium length and relaxation time ki, are

in good agreement with scaling theories. In agreement with the results of Harden alil Bloys.
Chem.96, 4046(1992], we find that the diffusivity of highly confined chains does not follow the
scaling relation predicted by Brochard and de GenhksChem. Phys67, 52 (1977)]; that
relationship does not account for the interaction between chain and walR0@3 American
Institute of Physics.[DOI: 10.1063/1.1575200

I. INTRODUCTION mer segment dynamics. More precisely, the mobility of an
individual segment decreases while hydrodynamic interac-

Thg behavior of a dissolved polymer chain na confine ions between segments are screened, leading to Rouse rather
space is central to many natural and technological processes. = sim scaling of the diffusivity for small channéf.

and has taken on renewed importance because of new aci.(i;fl . e o .
. . ) . . e resulting dependence of diffusivity on channel width has
developing technologies for single molecule manipulation

and analysis of DNA-" For instance, in certain implemen- been predicted from scaling arguments by Brochard and de

6 . :
tations of exonucleolytic sequence analysis it is desirable tge;negdand from se!f-cobnS|sterc1jt mear& E%d th(;ory Zr.]d the
link an individual long DNA strand to a surface.g., a bead Kirkwood approximation by Harden an |Both studies

without manual interventiofi’ The ability to engineer such Predict power law behavior of the diffusivity in terms of
tasks will be greatly improved by predictive computational Shannel width, but the predicted exponents are different. The
tools for polymer chains in microfiuidic geometries. In this "€Sults of those two studies will be discussed below in more

work, we present a general method for dynamic simulation$letail. _ o
of macromolecules in confined geometries. Progress beyond scaling or quasistatic results has been

The equilibrium properties and conformations adoptecSlow. In principle, the time scales of interest in many cases
by a confined chain in solution have been studiedare accessible to coarse-grained, or Brownian mddefs.
extensively?® Much less theoretical or computational work EXisting simulation® of chain models in confined geom-
is available on the dynamics of confined chains, either irtries have not accounted for changes in the hydrodynamics
equilibrium or flow, in spite of their practical brought on by confinement. The central challenge is to con-
importancet®~*® Qualitatively, one might envision two ef- sider polymer and solvent motions simultaneously, with the
fects of confinement on the dynamics of a dissolved chainsolvent motion satisfying the no-slip boundary condition on
First, the change in equilibrium conformation brought on bythe surfaces of the confining geometry. In this work, we ad-
confinement may change the molecular motisee Fig. 1L dress this challenge with an approach that combines tech-
Second, and more important, as we shall see, the solveniques from computational fluid dynamics and polymer
flow in the confining geometry will also influence the poly- physics. This method is then used to generate computational
predictions of the dynamics of long DNA molecules in a
aElectronic mail: graham@engr.wisc.edu channel of micrometer dimensions. Our results represent the
PElectronic mail: depablo@engr.wisc.edu first self-consistent Brownian dynamics treatment of polymer
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force atrj. The Brownian force&® which appear in the last
term of Eq.(1), are intimately coupled to these velocity per-
turbations through the fluctuation—dissipation theoid.
2)].

In an infinite domair(no wallg, the Stokes flow velocity
field due to a point force located a is given byv'(x)
= QO%(x—x))-f(x;), where Q°® is the free-space Green's
function, or Oseen—Burgers tensor*

(X=X (X=X;)

? l @

FIG. 1. (Colon) A chain of 7920 Kuhn segmentbulk radius of gyration  The tensor£);; , appearing in Eq(3) is then given by
=36.3 Kuhn lengthsconfined to a channel 30 Kuhn lengths wide. !

QOB(x—x))=

87 m|x—xj] IX—X;

@ =(1-6))Q%(ri—r). 5

dynamics and hydrodynamics under confinement. We findn Brownian dynamics simulatio?s?*26of polymers, (°8

that confinement beginS to affect the equilibrium Conﬁgura'is typ|ca”y rep|aced with the Rotne_Prager_Yamakawa
tion of the molecule when the channel widtHX is on the  (RpY) tensor?’

order of the free-solution radius of gyratioB,.). Signifi-

cant changes in the equilibrium relaxation time and diffusiv- (X—X)(X—X;)
ity are observed at much larger widths. QR (x—xj)= Cil+Co———
87 m|x—x| X=X

In the present work, we extend our free-solution model

of DNA?! for use in simulations of DNA in microfluidic (X—=X;)(X—=X;)

devices. A linear molecule dissolved in a viscous solventis 67 ya Cil+C Ix—xi|2 i |X—XJ|<2a' @
represented byN, interaction sites(bead$ connected !
through Ng=Np—1 entropic connectorgsprings. A force 222 222
balance on this chain leads to the stochastic differential C,=1+ 5 (32:1_—2, (8)
equatiof®?1-23 3x—x| Ix=x
1 J 9x—x;| 3|x—Xx|
dr=|u+ ——D-f+ —-D|dt+ \2B-dw, (1) 1 j a1
D=B-B". 2)

A diffusion tensor generated using RPY hydrodynamics is
Here,kg is Boltzmann'’s constant, andis the absolute tem- guaranteed to be positive-semidefinite for all chain configu-
perature. The vectarcontains the Bl,, spatial coordinates of rations. We note here that, for both Oseen—Burgers and RPY
the beads that constitute the polymer chain, wjtdenoting  hydrodynamics£);;=0 for i=j, and d/dr;-€;=0 for all

the three Cartesian coordinates of beadhe vectorf has i,j. In Sec. Ill, we describe how the above discussion is
length AN,,, with f; denoting the total non-Brownian, non- modified for bounded domains.
hydrodynamic force acting on beadThe vectoru of length The spring force between adjacent beads is described by

3N, represents the unperturbed velocity fiéle., the veloc- means of a wormlike springWLS) modef®2° which has
ity field in the absence of the polymemwith u;=v(r;) de- been shown to be appropriate for molecules such as DNA

noting the unperturbed velocity field at the location of bead having stiff backbone&'26:29-34
The components oflw are obtained from a real-valued 5
Gaussian distribution with mean zero and variadte s kgT Ir,-— nl 4|fj—fi| ri—r;
The motion of a segment of the macromolecule creates 5= 1- —1 el (19
2bk o Qo |rj r||

velocity field in the fluid, which in turn affects the motion of
the entire macromolecule. These hydrodynamic interaction;;.k.;-re,fisj is the force exerted on beadiue to connectivity
(HI) enter the chain dynamics through the3 block com-  with beadj, and b, is the Kuhn length of the molecule.
ponents of the B, X 3N,, diffusion tensorD, which can be  |etting N, represent the number of Kuhn segments in the
expressed as molecule andNy s the number of Kuhn segments per spring,
0o=Ny sby is the maximum spring length, or the contour
€©)] length of the portion of the molecule represented by one
spring. The contour length of the chain is then givenlby
where 7 is the solvent viscositya is the bead hydrodynamic =Ngqq.
radius, andQ;; is the hydrodynamic interaction tensdr;* Following our previous workl?%39 for the excluded
which relates the velocity perturbation at pomtto a point  volume potential between two beads of the chain we use

1
D”:kBT(FUaI 5ij+9ij y
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etries. The level of treatment of HI in a bounded domain
, (1)  considered here is similar to that employed by Geeal>’

in their work. Note however, that closed form solutions only
where v is the excluded volume parameter, argf  e€xist for Oseen—Burgers hydrodynamics in a few special
=N, (b?/6 is the radius of gyration of an ideal chain consist-cases(i.e., point particles between infinite planes or in
ing of Ny ¢ Kuhn segments. straight channels with constant cross-sedtifor general ge-

Using Ng= 10 for 21 um stained\-phage DNA at room Ometries the problem must be solved numerically.

temperature in a 43.3 cP solvent, in previous work we The Green’s function for Stokes flow in an arbitrary de-
determined° by direct comparison to available bulk ex- Viceé can be expressed as
perimental data, that suitable parameter values e Q=008+ QW (12)
=0.106 um, a=0.077 um, v =0.0012um°. With these val- o8 - , _
ues, the above-outlined model was able to reproduce the eyyr\}\(/e_reﬂ is the free-space Green's functipg. (4)] and -
perimentally observed bulk relaxation time, diffusivity and ¥ i & correction which accounts for the no-slip constraint
equilibrium stretch(size of DNA. The model also gives re- ©N the walls. The velocity perturbation due to a point force

sults in quantitative agreement with transient and steady2Cting atx; is then given as

state behavior of 2:m DNA in both simple shear and pla- V' (X,X)) = Vog(X— X)) + Viy(X,X;)
nar extension over a wide range of Weissenberg numbers. In o5 W
contrast to other available treatments for DNA in solution, =[Q7E(x—x;) + QY(x, %)) ]-f(x). (13

the model discussed here also produces diffusivity results iy s V{y(x,x) can be obtained as the solution to the incom-
guantitative agreement with experimental data for Chai”%)ressible St(])kes flow problem

ranging from 21 to 126um, underscoring its predictive ca-

pability. After appropriate modifications to account for con-  —VP+ 7V =0, V-v{y=0, (14
finement, the model should provide useful predictions Ofsubject to

DNA behavior in microfluidic devices.

Vogtvy=0 at the walls. (15
1 1 W H 1
IIl. HYDRODYNAMIC INTERACTIONS The wall Green’s fl_mctlonQ (X,Xj), is obtained by the
IN MICROFLUIDIC DEVICES following procedure. First, we takegg(x—X;) to be due to a

_ _ . _ point force ;) acting in thex,; direction, located at the
As mentioned earlier, simple arguments predict that theyoint x;. The Stokes flow problem is then solved using a

dynamics of a dissolved macromolecule confined to a charfinite element methdd to obtain Vi(X,X;). This gives the
nel comparable to its equilibrium coil size-1 um for viral  first column of QW(x,x;) by

DNA) are different from those in free solution, largely as a W
consequence of the no-slip boundary condition on the fluid Qn 1
motion. Available analytical wofk*>3®has concentrated on Q| ==v,. (16)
resolving particle—wall interactions for a few special geom- QW f1
etries(i.e., a spherical particle near an infinite plane or lo- 31
cated between two infinite planes, and a particle at the cerSimilarly, the second and third columns ﬁW(x,xj) are
terline of a cylindrical channgl The long-range effect of the obtained by applying point forces in tlxg andx; directions,
wall on the mobility of a particle decays slowly, ashl/ respectively. Nowf);;, in Eq.(3) is given by
whereh is the distance from the wall. Hydrodynamic inter- AW oB
actions between confined particles decay a8 fbr particles = Q1 1)+ (1= 8 QA =) (7
near an infinite plane and exponentially in a charffiéf.  In contrast to the case of unbounded flow, h€xg+0 for
Dufresneet al*" recently considered the hydrodynamic cou-i=j. Furthermorea/ari-ﬂ}?’ is nonzero foii = j, resulting in
pling of two Brownian particles near a plane wall. Thosea nonzero drift term in Eq(1).
authors compared their experimental results to analytical pre- The evaluation of the Green’s function is performed
dictions for point particles near an infinite plane, i.e., keepingonce, in a preprocessing step, for a given device or geometry;
only the leading order far field effects—and found goonW(xi,xj) is obtained numerically on a grid. During a
agreement with experimental observation providédaj Brownian dynamics simulatiorﬂ}’j" and its divergence are
>2, wherea is the radius of the particle. That study repre- obtained by finite element interpolatidh.
sents the first direct experimental validation of the use of At first glance, it may appear that one ne@ls\lé) of
point particle hydrodynamic interactions between Brownianthe Q‘rﬁ’n's, with Ng being the number of grid points in the
particles near a surface. The findings of Dufreshal. are  microfluidic domain. However, in confined geometries, the
particularly relevant to dynamical studies of polymers inGreen’s function decays rapidiiexponentially, in a chan-
confined geometriegnicrofluidic devicey where the veloc- nel), and in practice one only needs to keep B¥,’s for
ity field generated by motion of the macromolecule is gen{x,—Xm|<Xq, Wherex, is a cutoff distance which depends
erally taken to be due to point forces acting on the interactioron the proximity of the poink; to the device walls. Thus, in
sites, or “beads” that constitute the chain. practical applications, one nee@{Ng) of the QY 's, with

We now present a method for the numerical evaluatiorthe coefficient of proportionality depending on the details of
of the hydrodynamic interaction tensor for general geomthe computational domain.
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As in the bulk casgSec. I), use of the point force
Green’s function in the above-given formulation leads to
nonpositive-semidefinitdd for some chain configurations.
However, a diffusion tensor constructed by the above-
outlined method using2R"Y in place of Q°® results in a
nonsymmetri®; this violates the reciprocity relation

Q(ri,rj)=QT(r]-,ri), (18)

which follows from self-adjointness of the Stokes operator.
This violation is analogous to that which would occur if RPY
hydrodynamic interactions were used naively for spheres of
unequal sizé°~*2For that situation, Felderht¥performed a
multipole expansion of the free-solution hydrodynamic inter-
action tensor. To order 7, the resulting hydrodynamic in-
teraction tensor is identicafor |r;;|=2a) to the symme- FiG. 2. (Colon Green's function meshing for a 636mx6.36 umx6.36
trized RPY tensomi"j"P: (QEPY—f— jSPY)IZ_ By analogy with  um channel. Also shown is the,=0.01{ (red and —0.01/ (blue) con-
this result, we obtain a symmetric, positive-semidefinite dif_tours due to a point force in thedirection of magnitude 1, located at the

. . . . center of the channel. The inset is a closeup view of the velocity contours.
fusion tensor as follows. Firsf2(® is replaced by2;" " in P v

Egs. (15 and (17), giving a wall correction®# (9.
Then, a symmetric, positive-semidefinite diffusion tensor isare neglected, while modifications to the bead mobility due

calculated according to to the wall are maintained. In that case the diffusion tensor

W, AW Eq. (3)] becomes block-diagonal,
W_Qij +(ﬂji)T [ q ] g
e 2 ' (19 RM 1 w

We note here that we account for hydrodynamic interactions o _ _
at the point force leveli.e., Oseen—Burgers in a confined !N the free-drainingFD) model, which has been favored in

geometry; the Rotne—Prager—Yamakawa formulation is em-many literature studies of DNA, both hydrodynamic interac-
ployed only to maintain positive-semidefiniteness of the dif-fions and modifications to the bead mobility are neglected,
fusion tensor. While the use of E(L9) to obtain a symmet- resulting in a position-independent, isotropic diffusion ten-
ric D is not rigorous, it is essentially a near-field SOl
regularization, and introduces an error in the point force hy-
drodynamics of ordea/H<1. Our treatment of hydrody- DED: 8ij
namic interaction may be considered as an approximate 67 na

Rotne—Prager—Yamakawa formulation for confined geom-  Tne physical confinement of the molecule is taken into

etries. For the special case of particles above an infinite plang.cqunt through a simple bead-wall repulsive potential of the
wall, our treatment of the hydrodynamic interaction can beggrm

worked out analytically. We have done this and verified that

keT

l. (21

our method is indeed a well-behaved near-field modification Ayall 3
of the near-wall point-force solution. uval — ! 3p, 52 (Y~ Swan)”  TOF Y< Sy (22)
i k@wall
0 for y= 5wa|| , (23)

IV. SIMULATION

In this work, we consider the behavior of individual
DNA molecules in an infinitely long microchannel with wherey represents the distance of baddom the wall in the
square cross sectidsee Fig. 1L The centerline of the chan- wall-normal direction(into the fluid. Throughout this work,
nel is oriented along thg axis, with the cross section lying we takeA,,q=25kgT and 5wa|,=ka§{§/2=0.236Mm.
in theyz plane. In the limit of infinite channel length, a point Equation(1) was evolved in time using a semi-implicit
force acting on the fluid generates no net flow even if theintegration scheme described in our previous papersThe
channel ends are open; for there to be a net flow the forceange of the hydrodynamic interaction is proportional to the
would need to be infinite. For the numerical evaluation of thechannel width, H; all components of D less than
hydrodynamic interaction tensor, the infinitely long channel0.001 maxD;) were neglected. The decomposition Df
is therefore approximated by a closed channel of length,10 [Eq. (3)] is computationally demanding, and was achieved
at which the results are insensitive to further increase irusing a fast algorithm proposed by Fixmiarand imple-
length. Figure 2 shows the mesh ang=0.01/ (red and mented as described in our earlier wétkA time step of
—0.01£ (blue) contour surfaces for a unit point force in the At=0.01(67777a5§)/(kBT) was used in all simulations. All
x direction, located at the center of a GuB-wide channel. simulations here were performed without an imposed veloc-
In addition to the detailed “HI” model described earlier, we ity field (v=0). All results are presented for DNA at room
consider two approximate models. In the reduced mobilittemperatureri a 1 cPsolvent. Chains ranging from 42m
(RM) model, hydrodynamic interactions between particle(Ng=2) to 420 um (Ng=200) were simulated in channels
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FIG. 3. Comparison between the mean-squared displacement of the chaflG. 4. Stretch as a function of channel width for various lengths of DNA.
center of massgsolid line) in the axial direction and that predicted by the Symbols correspond tb=4.2 um (O), L=10.5um (O), L=21 um (),
Kirkwood diffusivity (dashed ling Results are for a 2Jum chain in a L=42 um (A), L=84 um (<), L=126 um (V), L=210 um (>>), andL
1.59.um-wide channel. The mean-squared displacement was averaged over420 um (+). The solid line corresponds to the scalikg e (1/H*)%3,

80 trajectories.

where( )4 indicates an equilibrium average. The radius of

level of molecular discretization was kept constaniNaty N
=19.8. We investigated the effect of molecular discretization < 1 2’3 T
on the full model by usindNy s=13.2 in simulations of 42, - N_b “=4 Iri—rd®).
126, and 21Qum chains in 1.6um channels; the results were _ K o
within a few percent of the coarser representation, Iendin%\/e also defineX,, Dy, Aip, and$, as the equilibrium
credence to the predictive capabilities of the model. The rebulk values of the stretch, Kirkwood diffusivity in the chan-
sults were also found to be fairly insensitive to the wall pa_nel d|rept|on, longest relaxation time, and radius of gyration,
rameters, provideds=0(a). respectively.

The following properties are considered in this work.
The “stretch” of the chain is defined as the absolute lengthv. RESULTS
of the molecule in the channel direction

(28)

We first present results on the equilibrium stretch of
X=maxr; ) —min(r; ,), (249 DNA molecules in microchannels. Simple scaling
) ' o argument® give X<N,H 23 for a chain in a good solvent;
wherer, , is thex component of the position vector of bead this scaling has been previously verified by Monte Carlo

Ii; X=(X) The equilibrium diffusivity of a chain in the chan- simulations>® Figure 4 shows the dimensionless equilibrium

nel direction,Dy, is determined by stretch,X* =(X)q/Xp, as a function of the inverse dimen-
1 sionless channel width, B =S,/H. Chains ranging from
D,=Ilim 2_t<[rc,x(t)_rc,x(0)]2>! (25  4.2um (Ng=1) to 420um (Ns=200) are considered. Also
t—oo

shown is the predicted scalings* «(H*)~?2. As found
wherer ¢, is the x component of the center-of-mass of the Previously; static confinement effects appear here &1*1/
chain. The approximate Kirkwood diffusivity tensor is given ~0-3, while the scaling regime is realized forHt/=0.5.

by The transition from free-solution to confined behavior is cen-
N tered about the point B#* ~0.4. For 1H* =0.4, we refer to
DK — i 25: D. (26 the chains astrongly confined, while below the transition
N2 =1 e we refer to the chains aseaklyconfined.

_ S o Although static equilibrium properties such as the stretch
The Kirkwood diffusivity in the channel direction i®,  can be obtained through Monte Carlo simulations, dynamic
=DY,;. We have compared the Kirkwood diffusivity to the properties such as relaxation time and diffusivity require the
center-of-mass diffusivity calculated by E@5), and found  resolution of solvent motion, as do transient processes like

them to be in quantitative agreement for all channels considhe dynamics of a relaxing chain. Figure 5 shows the dimen-
ered in this work. Figure 3 shows a comparison between thgjpnless Kirkwood diffusivityD* = DX/DK,, as a function

KirkWOOd d|foS|V|ty and that Obtained by E(ﬁ25) fOI‘ az?2l Of 1/H* for Chains ranging from 4.2 to 42Qm For a
#m DNA chain in a 1.59zm-wide channel. <H, a<$S,, andN>1, dimensional analysis leads one to
The longest relaxation time of a chain, , is calculated  expectD* =f(H*). This will be discussed in more detail in
by allowing a chain that is initially fully stretched along the the following. The results shown in Fig. 5 were obtained by
centerline of the channel to relax to equilibrium. Near equi-Fp simulation, with the diffusion tensor and corresponding
librium, the relaxation time is determined by a fit to an ex-kjrkwood diffusivity periodically evaluated from an instan-
ponential decay, taneous realization of the static equilibrium configuration.
o Figure 5 shows a broad crossover from free-solution be-
+<x2>eq, (27) havior. In the weakly confined region 1f <0.4), the mol-
ecule might be expected to behave as a sphere diffusing

Vv o — t
<x2><t>=<x2<o>—<x2>eo>exp( “n

1
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10°= aromatic hydrocarbons, and sugars through homogeneous
microporous silica-alumina bead catalyst. Farr,<1/2,

they found their data could be fit to the expression

=exp(—4.6r5/rp). This relation is shown as the dot-dashed

Q curve in Fig. 5. In that work they noted that this exponential
dependence ong/r, had also been observed in other sys-
tems. In 1975, Coltoret al®® reported on the diffusion of

10 proteins and monodisperse polystyrefmeolecular weights

iy up to 670 000 through borosilicate glass. They found that

1/H D* for the proteins was in qualitative agreement with the
above-given exponential fit, but thBt* for the polystyrene
FIG. 5. Kirkwood diffusivity as a function of inverse channel width for chains was independent dfi*. In 1980, Cannell and
various lengths of DNA. Symbols correspondlie-4.2 um (O), L=10.5 5 ; ; ; ; _
um (D), L=21 um (O, L—42 um (A), L~ 84 um (<)), L= 126 sam (V). Rondele? c_on5|dered the dlffu3|on of monodisperse poly
L=210 um (>), and L=420 um (+). Line styles correspond w*  Styrene chaingmolecular weights up to 600 OD@hrough
«(1/H*) =23 (solid line), Faxen’s expressiofdashed ling the curve fit of ~ porous membranes. For @ils/rp< 0.5, they found their

the data of Cannell and Rondel@zef. 45 (dotted ling and the curve fitof  data followed the Renkin equati%?n

the data of Satterfieldt al. (Ref. 44 (dot-dashef The closed symbols are
the RM model results for the 420m chains.
3 5
rS rS rS
1-2.104-+2.09 —| —0.95 —
) p p

2
, , _ D*Kp=[1--
in a large channel. The special case of a sphere diffusing r
along the centerline of a circular channel has been solved to

varying degrees of accuraty.The asymptotic solution of (30
Faxeft? is given by
r r\ 3 r\ 2 r\’ provided they setr =1.45,, wherer, was the Stokes—
D*=1—2.104(—S +2.0€<—S -0.95 —=| +0| 2], Einstein hydrodynamic radius of the molecules as deter-
p p p p mined from light-scattering experiments. The Renkin equa-

tion combines Ferry’s equilibrium partition coefficiefit}’

whererg andr, are the sphere and channel radii, respecK;=(1—rS/rp)2, with Faxen’s expression for the diffusion
tively. From our bulk simulations, we determined the hydro-of a sphere along the centerline of a channel. The dotted
dynamic radiusI(;,) of our chains to be 0.5%,. The dashed curve in Fig. 5 represents Faxen’s expression with
curve in Fig. 5 represents Eq29) with rg=r, andr, =1.45,,. The Renkin equation has been used with varying
=H/2. We find that Faxen’s solution matches well our re-success to describe rigid solute diffusion through biological
sults for chain molecules whenH? <0.1. In comparison, and artificial membranegsee Satterfielcet al** for refer-
for solid spheres in a circular channel, Faxen’s expression isnces.
relatively accurate out to/r,=1/2, which would corre- We note that the curve representing the experimental
spond to 1H* ~0.45. Our results lie slightly below Faxen’s study of the diffusion of long flexible polymers through
expression for small H*, probably because we do not force membranes lies below our simulation resulte other
the chains to remain centered in the channel. The goodtudy® concluded no dependence btt). Our simulations
agreement with Faxen’s expression indicates that in the regrovide a direct measurementDf , unlike the experimental
gion 1H* <0.1 the molecule behaves as a nondraining chaistudies which inferred* from indirect estimates of, 6,
with the decrease in mobility due to channel walls affectingandK,. In addition, our simulations are performed at infinite
the entire chain uniformly. In the region GsIl/H* =0.4, the  dilution, while the experimental investigations, although per-
chain can no longer be represented as sphere diffusing infarmed at finite concentrations, assuni2tl (andK,) to be
channel, and the mobility becomes higher than predicted bindependent of solute concentration within the pores. This is
the Faxen result; hydrodynamic screening due to channéh contrast to the study of Cannell and Rondéfewho ob-
walls causes a transition toward free-draining behavior. Thiserved a large change K,D* when the(dilute) concentra-
transition from nondraining to free-draining behavior beginstion was increased by a factor of 3. Also, in our simulations,
at H~=~10S,, well before the transition to strongly confined there is no adsorption of the solute to the pore walls. In the
behavior H~2S,) in Fig. 4. experiments of Colton and Satterfield, preferential solute ad-

Before discussing our results for largeH/, it is of  sorption was estimated from equilibrium studies, and the es-
interest to review several experimental investigations in theimated corrections to the pore diameters were made when
region 1H* <0.5. All available experiments on porous ma- necessary. Cannell and Rondelez measured the flow rate of
terials measure an effective diffusivityp(g). This quantity  polystyrene solutions through their membranes as a function
is related to our reduced diffusivity B% D  of time and concluded that adsorption did not occur. Further-
=Dp0K,D*/7, whereDy, is the bulk diffusivity, 6 is the ~ more, all of the above-discussed experiments were obtained
volume fraction of the pores; is the tortuosity, an&, isthe ~ from membranes having pore radii on the order of nano-
equilibrium partition coefficient. In 1973, Satterfiedd al**  meters; the diffusivity determined from those experiments
reported on the diffusion of low molecular weight paraffins, may include effects of potential wells.
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We now turn our discussion to the “strongly confined”
region of Fig. 5 (1H*>0.5). In 1977, Brochard and
de Genne¥ used a modified blob theory to obtain the scal-
ing relation D* «<(1/H*) 2" provided thata<H<S,. In
developing this relation, they assumed that the highly con- —.
fined molecule could be represented as a sequence of blob:
which do not interact hydrodynamically. This assumption =
imposes the scaling =N, *. In fact, if a<H, DxN, * and
D*x(H*)™, then dimensional analysis and good solvent
bulk molecular weight scaling are sufficient to arrivenat
=2/3.

More recently, Harden and Ddi combined an 10 . l'{}
analytical-series solution for the Stokes flow due to point t(s) t (s)
forces in a capillary(circular cross sectionwith a self-
consistent mean field calculation for the equilibrium configu-riG. 6. (Colon Relaxation of 126um chains, initially 99% stretched along
ration of the confined chain. They obtaindk<N, ' for  the centerline of the channel. Results for both the HI and FD models are

highly confined chains, but found that transverse averaginghown- The time axis for the FD case has been scaled so that the two models
f the Kirkwood diffusion coefficient results inD* ave equivalent bulk relaxation timésee the tejt Each data set represents

o 0.61 i an average over 10 trajectories. Line colors correspond to channel widths of

o (H*)™®~ Note that the results of Harden and Doi indicateH -« (black, H=10.6 um=4.85,,, (red, H=6.36 um=2.9S,

that the reduced variabB* will notdisplay a master curve (green, H=3.18 um=1.5S,,, (blug), H=1.59 um=0.735,,, (orange,

in 1/H* for highly confined chains. But as mentioned earlier,H =0.636 xm=0.28,, (brown).

if the scalea does not enter the problem, the exponemnist

be 2/3. However, in the work of Harden and Doi and in our

work presented here, there is an additional ratio of |engtmsed, at which point screening will again no |0nger be com-
scalesa/ o that comes into play, wheré is the length scale plete. The RM model is thus of limited value.

associated with polymer—wall interactions. The rai@ is We next consider the relaxation of DNA chains in mi-
order unity, which suggests that the 2/3 scaling proposed byrochannels. Individual chains, initially 99% stretched along
Brochard and de Gennes cannot be realized; the magnitudge axis of the channel, were allowed to relax to equilibrium.
of the exponent will depend on the magnitudeadb. The  Figure 6 shows the transient stretch of 326 DNA chains,
fact that Harden and Doi's exponent of 0.61 persists foraveraged over 10 trajectories, for various channel widths.
H/a> 1% is consistent with this reasoning, as are our resultsBoth the HI and FD model results are shown. Recall that
which we now discuss. model parameters were chosen so that relaxation times of

Our results collapse onto a master curveDifi versus  both the HI and FD models matched the experimental bulk
H* in the weakly confined region. This master curve extendselaxation time for 23um DNA chains. In order to provide a
beyond the region represented by Faxen’s expression, all theore reasonable comparison between the two models, the
way to the transition to strongly confined behavior. Howevertime axis of the FD results was scaled bjf$/\ 5y~ 0.6,
in the strongly confined region (H*=0.4), we observe where\i;$ and\ gy, are the bulk relaxation time of 126m
some scatter in the dat®{ lower for longer chainsas well  chains as determined by the HI and FD models, respectively.
as a deviation from the predicted scaling for the diffusivity The HI relaxation dynamics are strongly dependent on chan-
data; we findD* ~ (1/H*)~ 2 from a fit of the data in this nel width, while the relaxation dynamics of the FD model are
region, rather tharD* ~(1/H*) 23, As discussed earlier, virtually unaffected by confinement. The RM modg#sults
this deviation indicates that additional length scdles, the  not shown overpredicts the relaxation times; the Hl and RM
ratio a/ 8) are coming into play that were not accounted forrelaxation results converge at the same point as the diffusiv-
in the simple scaling theory of Brochard and de Gennes. ity results in Fig. 5.

As the level of chain confinement increases, hydrody- Longest chain relaxation times were determined by the
namic interactions between beads become weaker due to theethod leading to Eq(27) for various chain lengths and
solvent boundary condition on the walls of the device. Tochannel widths. Figure 7 shows the reduced relaxation time,
quantify this effect, we performed simulations using the RMAT =\;/\,, as a function of H* for chains up to 126.m.
model[Eq. (20)], which assumes complete screening of in-We observe a crossover region centered aboHf* /0.1
terbead hydrodynamic interactions. The diffusivity of 420followed by a power law region which is fully developed at
um DNA chains using the RM model are shown as closedl/H* ~0.5. We note two sources of scatter in the data
circles in Fig. 5. The RM model results converge to those ofobtained in the crossover region. First, chains in this region
the full model atS,=5H. In general, the point at which the may be fully relaxed before they have had time to sample the
RM results match those of the full model is a function of thecross section of the channel; the relaxation time obtained by
level of molecular discretizationNy s=19.8, for the results Eq.(27) in this region is not a true equilibrium averageich
reported in this work WhenH is on the order of the equi- as that obtained from the autocorrelation function for the
librium spring length (Ekaﬁfﬁ), hydrodynamic interactions end-to-end vectgr Second, there is significantly more noise
between beads are screened. However, at that level of com the relaxation trajectories in this region.
finement, a finer molecular modémallerNy s) should be The only existing theoretical prediction for the longest

X (um)
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tered about the poirtl ~10S,,, whereH is the width of the

square channel ang, is the free-solution radius of gyration
of the chain. FoH=10S,, we find that the molecule dif-
fuses in a manner similar to a solid sphere with radius equal

< to the free-solution hydrodynamic radius of the molecule. At
H~10S, the molecule begins a transition to free-draining
0 behavior, which is complete & ~2S,. For H=<2S,, the
10 '2 chains may be considered strongly confined and Rouse-type.
10 In the strongly confined region we find the equilibrium

1/H length (X) and\, to be well-represented by the scaling re-
FIG. 7. Chain relaxation time as a function of channel width for variouslations X=NH?® and \;=N, ?H *® as predicted by
lengths of DNA. Symbols correspond to=10.5um (O), L=21xm (D), Brochard and de Genne3The computed diffusivity in the
L::ZMmI(_Q)'*'-:S;UimIfSA)v L =126 um (<. The solid line corresponds  strongly confined region does not follow the predicted scal-
to the scalingh "o (1/H7) ™ ing of Brochard and de Genn&sDX«N,*H 22 While
we do observe Rouse-type behavi® <N, 1), we find
—-1/2 H H
relaxation time is for highly confined chains, and againP>H . Our diffusion results, as well as those of Harden

comes from the scaling analysis of Brochard ang@nd Doi;* suggest that the diffusivity scaling exponent also

de Genned® By assuming complete screening of blob—blob dePends on the ratia/ 5, wherea is the segment hydrody-
hydrodynamic interactions, they predictegeN2H 13, As namic radius ands is the length scale associated with

in the case of diffusivity, dimensional analysis for the case ofClymer-wall interactions.
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