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Effect of confinement on DNA dynamics in microfluidic devices
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The dynamics of dissolved long-chain macromolecules are different in highly confined
environments than in bulk solution. A computational method is presented here for detailed
prediction of these dynamics, and applied to the behavior of;1–100mm DNA in micron-scale
channels. The method is comprised of a self-consistent coarse-grained Langevin description of the
polymer dynamics and a numerical solution of the flow generated by the motion of polymer
segments. Diffusivity and longest relaxation time show a broad crossover from free-solution to
confined behavior centered about the pointH'10Sb , whereH is the channel width andSb is the
free-solution chain radius of gyration. In large channels, the diffusivity is similar to that of a sphere
diffusing along the centerline of a pore. For highly confined chains (H/Sb!1), Rouse-type
molecular weight scaling is observed for both translational diffusivity and longest relaxation time.
In the highly confined region, the scaling of equilibrium length and relaxation time withH/Sb are
in good agreement with scaling theories. In agreement with the results of Harden and Doi@J. Phys.
Chem.96, 4046~1992!#, we find that the diffusivity of highly confined chains does not follow the
scaling relation predicted by Brochard and de Gennes@J. Chem. Phys.67, 52 ~1977!#; that
relationship does not account for the interaction between chain and wall. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1575200#
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I. INTRODUCTION

The behavior of a dissolved polymer chain in a confin
space is central to many natural and technological proces
and has taken on renewed importance because of new
developing technologies for single molecule manipulat
and analysis of DNA.1–7 For instance, in certain implemen
tations of exonucleolytic sequence analysis it is desirabl
link an individual long DNA strand to a surface~e.g., a bead!
without manual intervention.6,7 The ability to engineer such
tasks will be greatly improved by predictive computation
tools for polymer chains in microfluidic geometries. In th
work, we present a general method for dynamic simulati
of macromolecules in confined geometries.

The equilibrium properties and conformations adop
by a confined chain in solution have been stud
extensively.8,9 Much less theoretical or computational wo
is available on the dynamics of confined chains, either
equilibrium or flow, in spite of their practica
importance.10–15 Qualitatively, one might envision two ef
fects of confinement on the dynamics of a dissolved ch
First, the change in equilibrium conformation brought on
confinement may change the molecular motion~see Fig. 1!.
Second, and more important, as we shall see, the sol
flow in the confining geometry will also influence the pol

a!Electronic mail: graham@engr.wisc.edu
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mer segment dynamics. More precisely, the mobility of
individual segment decreases while hydrodynamic inter
tions between segments are screened, leading to Rouse r
than Zimm scaling of the diffusivity for small channels.16

The resulting dependence of diffusivity on channel width h
been predicted from scaling arguments by Brochard and
Gennes16 and from self-consistent mean field theory and t
Kirkwood approximation by Harden and Doi.17 Both studies
predict power law behavior of the diffusivity in terms o
channel width, but the predicted exponents are different.
results of those two studies will be discussed below in m
detail.

Progress beyond scaling or quasistatic results has b
slow. In principle, the time scales of interest in many ca
are accessible to coarse-grained, or Brownian models.18,19

Existing simulations20 of chain models in confined geom
etries have not accounted for changes in the hydrodynam
brought on by confinement. The central challenge is to c
sider polymer and solvent motions simultaneously, with
solvent motion satisfying the no-slip boundary condition
the surfaces of the confining geometry. In this work, we a
dress this challenge with an approach that combines te
niques from computational fluid dynamics and polym
physics. This method is then used to generate computati
predictions of the dynamics of long DNA molecules in
channel of micrometer dimensions. Our results represent
first self-consistent Brownian dynamics treatment of polym
5 © 2003 American Institute of Physics
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dynamics and hydrodynamics under confinement. We
that confinement begins to affect the equilibrium configu
tion of the molecule when the channel width (H) is on the
order of the free-solution radius of gyration (Sbulk). Signifi-
cant changes in the equilibrium relaxation time and diffus
ity are observed at much larger widths.

II. DNA MODEL

In the present work, we extend our free-solution mo
of DNA21 for use in simulations of DNA in microfluidic
devices. A linear molecule dissolved in a viscous solven
represented byNb interaction sites ~beads! connected
through Ns5Nb21 entropic connectors~springs!. A force
balance on this chain leads to the stochastic differen
equation19,21–23

dr5Fu1
1

kBT
D"f1

]

]r
"DGdt1A2B"dw, ~1!

D5B"BT. ~2!

Here,kB is Boltzmann’s constant, andT is the absolute tem
perature. The vectorr contains the 3Nb spatial coordinates o
the beads that constitute the polymer chain, withr i denoting
the three Cartesian coordinates of beadi. The vectorf has
length 3Nb , with f i denoting the total non-Brownian, non
hydrodynamic force acting on beadi. The vectoru of length
3Nb represents the unperturbed velocity field~i.e., the veloc-
ity field in the absence of the polymer!, with ui5v(r i) de-
noting the unperturbed velocity field at the location of beai.
The components ofdw are obtained from a real-value
Gaussian distribution with mean zero and variancedt.

The motion of a segment of the macromolecule create
velocity field in the fluid, which in turn affects the motion o
the entire macromolecule. These hydrodynamic interacti
~HI! enter the chain dynamics through the 333 block com-
ponents of the 3Nb33Nb diffusion tensor,D, which can be
expressed as

Di j 5kBTS 1

6pha
Id i j 1Vi j D , ~3!

whereh is the solvent viscosity,a is the bead hydrodynami
radius, andVi j is the hydrodynamic interaction tensor,19,24

which relates the velocity perturbation at pointr i to a point

FIG. 1. ~Color! A chain of 7920 Kuhn segments~bulk radius of gyration
536.3 Kuhn lengths! confined to a channel 30 Kuhn lengths wide.
Downloaded 02 Mar 2007 to 128.104.198.71. Redistribution subject to AI
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force atr j . The Brownian forces,25 which appear in the las
term of Eq.~1!, are intimately coupled to these velocity pe
turbations through the fluctuation–dissipation theorem@Eq.
~2!#.

In an infinite domain~no walls!, the Stokes flow velocity
field due to a point force located atxj is given by v8(x)
5VOB(x2xj )"f(xj ), where VOB is the free-space Green’
function, or Oseen–Burgers tensor,19,24

VOB~x2xj !5
1

8phux2xj u
F I1

~x2xi !~x2xi !

ux2xj u2 G . ~4!

The tensor,Vi j , appearing in Eq.~3! is then given by

Vi j 5~12d i j !VOB~r i2r j !. ~5!

In Brownian dynamics simulations21,23,26of polymers,VOB

is typically replaced with the Rotne–Prager–Yamaka
~RPY! tensor,27

VRPY~x2xj !5
1

8phux2xj u
FC1I1C2

~x2xi !~x2xi !

ux2xj u2
G

if ux2xj u>2a, ~6!

1

6pha FC18I1C28
~x2xi !~x2xi !

ux2xj u2
G if ux2xj u,2a, ~7!

C1511
2a2

3ux2xj u2
, C2512

2a2

ux2xj u2
, ~8!

C18512
9ux2xj u

32a
, C285

3ux2xj u

32a
. ~9!

A diffusion tensor generated using RPY hydrodynamics
guaranteed to be positive-semidefinite for all chain confi
rations. We note here that, for both Oseen–Burgers and R
hydrodynamics,Vi j 50 for i 5 j , and ]/]r i "Vi j 50 for all
i , j . In Sec. III, we describe how the above discussion
modified for bounded domains.

The spring force between adjacent beads is describe
means of a wormlike spring~WLS! model28,29 which has
been shown to be appropriate for molecules such as D
having stiff backbones,21,26,29–34

f i j
s 5

kBT

2bk
F S 12

ur j2r i u

qo
D 22

211
4ur j2r i u

qo
G r j2r i

ur j2r i u
. ~10!

Here, f i j
s is the force exerted on beadi due to connectivity

with bead j, and bk is the Kuhn length of the molecule
Letting Nk represent the number of Kuhn segments in
molecule andNk,s the number of Kuhn segments per sprin
q05Nk,sbk is the maximum spring length, or the conto
length of the portion of the molecule represented by o
spring. The contour length of the chain is then given byL
5Nsq0 .

Following our previous work,21,26,30 for the excluded
volume potential between two beads of the chain we use
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Ui j
ev5

1

2
vkBTNk,s

2 S 3

4pSs
2D 3/2

expF23ur j2r i u2

4Ss
2 G , ~11!

where v is the excluded volume parameter, andSs
2

5Nk,sbk
2/6 is the radius of gyration of an ideal chain consi

ing of Nk,s Kuhn segments.
Using Ns510 for 21mm stainedl-phage DNA at room

temperature in a 43.3 cP solvent, in previous work
determined,21,30 by direct comparison to available bulk ex
perimental data, that suitable parameter values arebk

50.106mm, a50.077mm, v50.0012mm3. With these val-
ues, the above-outlined model was able to reproduce the
perimentally observed bulk relaxation time, diffusivity an
equilibrium stretch~size! of DNA. The model also gives re
sults in quantitative agreement with transient and stea
state behavior of 21mm DNA in both simple shear and pla
nar extension over a wide range of Weissenberg number
contrast to other available treatments for DNA in solutio
the model discussed here also produces diffusivity result
quantitative agreement with experimental data for cha
ranging from 21 to 126mm, underscoring its predictive ca
pability. After appropriate modifications to account for co
finement, the model should provide useful predictions
DNA behavior in microfluidic devices.

III. HYDRODYNAMIC INTERACTIONS
IN MICROFLUIDIC DEVICES

As mentioned earlier, simple arguments predict that
dynamics of a dissolved macromolecule confined to a ch
nel comparable to its equilibrium coil size~;1 mm for viral
DNA! are different from those in free solution, largely as
consequence of the no-slip boundary condition on the fl
motion. Available analytical work24,35,36has concentrated o
resolving particle–wall interactions for a few special geo
etries ~i.e., a spherical particle near an infinite plane or
cated between two infinite planes, and a particle at the c
terline of a cylindrical channel!. The long-range effect of the
wall on the mobility of a particle decays slowly, as 1/h,
whereh is the distance from the wall. Hydrodynamic inte
actions between confined particles decay as 1/r 2 for particles
near an infinite plane and exponentially in a channel.24,36

Dufresneet al.37 recently considered the hydrodynamic co
pling of two Brownian particles near a plane wall. Tho
authors compared their experimental results to analytical
dictions for point particles near an infinite plane, i.e., keep
only the leading order far field effects—and found go
agreement with experimental observation provided (h/a)
.2, wherea is the radius of the particle. That study repr
sents the first direct experimental validation of the use
point particle hydrodynamic interactions between Brown
particles near a surface. The findings of Dufresneet al. are
particularly relevant to dynamical studies of polymers
confined geometries~microfluidic devices!, where the veloc-
ity field generated by motion of the macromolecule is ge
erally taken to be due to point forces acting on the interac
sites, or ‘‘beads’’ that constitute the chain.

We now present a method for the numerical evaluat
of the hydrodynamic interaction tensor for general geo
Downloaded 02 Mar 2007 to 128.104.198.71. Redistribution subject to AI
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etries. The level of treatment of HI in a bounded doma
considered here is similar to that employed by Grieret al.37

in their work. Note however, that closed form solutions on
exist for Oseen–Burgers hydrodynamics in a few spe
cases ~i.e., point particles between infinite planes or
straight channels with constant cross-section!; for general ge-
ometries the problem must be solved numerically.

The Green’s function for Stokes flow in an arbitrary d
vice can be expressed as

V5VOB1VW, ~12!

whereVOB is the free-space Green’s function@Eq. ~4!# and
VW is a correction which accounts for the no-slip constra
on the walls. The velocity perturbation due to a point for
acting atxj is then given as

v8~x,xj !5vOB8 ~x2xj !1vW8 ~x,xj !

5@VOB~x2xj !1VW~x,xj !#"f~xj !. ~13!

Thus,vW8 (x,xj ) can be obtained as the solution to the inco
pressible Stokes flow problem

2¹p1hs¹
2vW8 50, ¹"vW8 50, ~14!

subject to

vOB8 1vW8 50 at the walls. ~15!

The wall Green’s function,VW(x,xj ), is obtained by the
following procedure. First, we takevOB8 (x2xj ) to be due to a
point force (f 1) acting in thex1 direction, located at the
point xj . The Stokes flow problem is then solved using
finite element method49 to obtain vW8 (x,xj ). This gives the
first column ofVW(x,xj ) by

S V11
W

V21
W

V31
W
D 5

1

f 1

vW8 . ~16!

Similarly, the second and third columns ofVW(x,xj ) are
obtained by applying point forces in thex2 andx3 directions,
respectively. Now,Vi j , in Eq. ~3! is given by

Vi j 5VW~r i ,r j !1~12d i j !VOB~r i2r j !. ~17!

In contrast to the case of unbounded flow, hereVi j Þ0 for
i 5 j . Furthermore,]/]r i "Vi j

W is nonzero fori 5 j , resulting in
a nonzero drift term in Eq.~1!.

The evaluation of the Green’s function is perform
once, in a preprocessing step, for a given device or geome
VW(xi ,xj ) is obtained numerically on a grid. During
Brownian dynamics simulation,Vi j

W and its divergence are
obtained by finite element interpolation.39

At first glance, it may appear that one needsO(NG
2 ) of

the Vmn
W ’s, with NG being the number of grid points in th

microfluidic domain. However, in confined geometries, t
Green’s function decays rapidly~exponentially, in a chan-
nel!, and in practice one only needs to keep theVmn

W ’s for
uxn2xmu,x0 , wherex0 is a cutoff distance which depend
on the proximity of the pointxj to the device walls. Thus, in
practical applications, one needsO(NG) of the Vmn

W ’s, with
the coefficient of proportionality depending on the details
the computational domain.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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As in the bulk case~Sec. II!, use of the point force
Green’s function in the above-given formulation leads
nonpositive-semidefiniteD for some chain configurations
However, a diffusion tensor constructed by the abo
outlined method usingVRPY in place of VOB results in a
nonsymmetricD; this violates the reciprocity relation

V~r i ,r j !5VT~r j ,r i !, ~18!

which follows from self-adjointness of the Stokes operato24

This violation is analogous to that which would occur if RP
hydrodynamic interactions were used naively for sphere
unequal size.40–42For that situation, Felderhof40 performed a
multipole expansion of the free-solution hydrodynamic int
action tensor. To order 1/r 3, the resulting hydrodynamic in
teraction tensor is identical~for ur i j u>2a) to the symme-
trized RPY tensor,Vi j

MP5(Vi j
RPY1Vj i

RPY)/2. By analogy with
this result, we obtain a symmetric, positive-semidefinite d
fusion tensor as follows. First,Vi j

OB is replaced byVi j
RPY in

Eqs. ~15! and ~17!, giving a wall correctionV̄i j
WÞ(V̄j i

W)T.
Then, a symmetric, positive-semidefinite diffusion tensor
calculated according to

Vi j
W5

V̄i j
W1~V̄j i

W!T

2
. ~19!

We note here that we account for hydrodynamic interacti
at the point force level~i.e., Oseen–Burgers in a confine
geometry!; the Rotne–Prager–Yamakawa formulation is e
ployed only to maintain positive-semidefiniteness of the d
fusion tensor. While the use of Eq.~19! to obtain a symmet-
ric D is not rigorous, it is essentially a near-fie
regularization, and introduces an error in the point force
drodynamics of ordera/H!1. Our treatment of hydrody
namic interaction may be considered as an approxim
Rotne–Prager–Yamakawa formulation for confined geo
etries. For the special case of particles above an infinite p
wall, our treatment of the hydrodynamic interaction can
worked out analytically. We have done this and verified t
our method is indeed a well-behaved near-field modificat
of the near-wall point-force solution.

IV. SIMULATION

In this work, we consider the behavior of individu
DNA molecules in an infinitely long microchannel wit
square cross section~see Fig. 1!. The centerline of the chan
nel is oriented along thex axis, with the cross section lying
in theyz plane. In the limit of infinite channel length, a poin
force acting on the fluid generates no net flow even if
channel ends are open; for there to be a net flow the fo
would need to be infinite. For the numerical evaluation of
hydrodynamic interaction tensor, the infinitely long chann
is therefore approximated by a closed channel of length 1H,
at which the results are insensitive to further increase
length. Figure 2 shows the mesh andvx50.01/z ~red! and
20.01/z ~blue! contour surfaces for a unit point force in th
x direction, located at the center of a 6.3-mm-wide channel.
In addition to the detailed ‘‘HI’’ model described earlier, w
consider two approximate models. In the reduced mobi
~RM! model, hydrodynamic interactions between partic
Downloaded 02 Mar 2007 to 128.104.198.71. Redistribution subject to AI
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are neglected, while modifications to the bead mobility d
to the wall are maintained. In that case the diffusion ten
@Eq. ~3!# becomes block-diagonal,

Di j
RM5kBTd i j S 1

6pha
I1Vi j

WD . ~20!

In the free-draining~FD! model, which has been favored i
many literature studies of DNA, both hydrodynamic intera
tions and modifications to the bead mobility are neglect
resulting in a position-independent, isotropic diffusion te
sor,

Di j
FD5d i j

kBT

6pha
I . ~21!

The physical confinement of the molecule is taken in
account through a simple bead-wall repulsive potential of
form

Ui
wall 5H Awall

3bkdwall
2 ~y2dwall!

3 for y,dwall ,

0 for y>dwall ,

~22!

~23!

wherey represents the distance of beadi from the wall in the
wall-normal direction~into the fluid!. Throughout this work,
we takeAwall525kBT anddwall5bkNk,s

1/2/250.236mm.
Equation~1! was evolved in time using a semi-implic

integration scheme described in our previous papers.21,23The
range of the hydrodynamic interaction is proportional to t
channel width, H; all components of D less than
0.001 max(Dii) were neglected. The decomposition ofD
@Eq. ~3!# is computationally demanding, and was achiev
using a fast algorithm proposed by Fixman25 and imple-
mented as described in our earlier work.23 A time step of
Dt50.01(6phaSs

2)/(kBT) was used in all simulations. Al
simulations here were performed without an imposed vel
ity field (v50). All results are presented for DNA at room
temperature in a 1 cPsolvent. Chains ranging from 4.2mm
(Ns52) to 420mm (Ns5200) were simulated in channe

FIG. 2. ~Color! Green’s function meshing for a 63.6mm36.36 mm36.36
mm channel. Also shown is thevx50.01/z ~red! and 20.01/z ~blue! con-
tours due to a point force in thex direction of magnitude 1, located at th
center of the channel. The inset is a closeup view of the velocity conto
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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having widths in the range of 0.636– 21.2mm. Note that the
level of molecular discretization was kept constant atNk,s

519.8. We investigated the effect of molecular discretizat
on the full model by usingNk,s513.2 in simulations of 42,
126, and 210mm chains in 1.6mm channels; the results wer
within a few percent of the coarser representation, lend
credence to the predictive capabilities of the model. The
sults were also found to be fairly insensitive to the wall p
rameterd, providedd5O(a).

The following properties are considered in this wor
The ‘‘stretch’’ of the chain is defined as the absolute len
of the molecule in the channel direction

X̄5max~r i ,x!2min~r i ,x!, ~24!

wherer i ,x is thex component of the position vector of bea

i; X5^X̄& The equilibrium diffusivity of a chain in the chan
nel direction,Dx , is determined by

Dx5 lim
t→`

1

2t
^@r c,x~ t !2r c,x~0!#2&, ~25!

where r c,x is the x component of the center-of-mass of th
chain. The approximate Kirkwood diffusivity tensor is give
by

DK5K 1

Nb
2 (

i , j 51

Nb

Di j L . ~26!

The Kirkwood diffusivity in the channel direction isDx
K

5D11
K . We have compared the Kirkwood diffusivity to th

center-of-mass diffusivity calculated by Eq.~25!, and found
them to be in quantitative agreement for all channels con
ered in this work. Figure 3 shows a comparison between
Kirkwood diffusivity and that obtained by Eq.~25! for a 21
mm DNA chain in a 1.59-mm-wide channel.

The longest relaxation time of a chain,l1 , is calculated
by allowing a chain that is initially fully stretched along th
centerline of the channel to relax to equilibrium. Near eq
librium, the relaxation time is determined by a fit to an e
ponential decay,

^X̄2&~ t !5~X̄2~0!2^X̄2&eq!expS 2
t

l1
D 1^X̄2&eq, ~27!

FIG. 3. Comparison between the mean-squared displacement of the
center of mass~solid line! in the axial direction and that predicted by th
Kirkwood diffusivity ~dashed line!. Results are for a 21mm chain in a
1.59-mm-wide channel. The mean-squared displacement was averaged
80 trajectories.
Downloaded 02 Mar 2007 to 128.104.198.71. Redistribution subject to AI
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where^ &eq indicates an equilibrium average. The radius
gyration of the chain,S, is defined through

S25K 1

Nb
(
i 51

Nb

ur i2r cu2L . ~28!

We also defineXb , Dx,b
K , l1,b , and Sb as the equilibrium

bulk values of the stretch, Kirkwood diffusivity in the chan
nel direction, longest relaxation time, and radius of gyratio
respectively.

V. RESULTS

We first present results on the equilibrium stretch
DNA molecules in microchannels. Simple scalin
arguments8 give X}NkH

22/3 for a chain in a good solvent
this scaling has been previously verified by Monte Ca
simulations.8,9 Figure 4 shows the dimensionless equilibriu
stretch,X* 5^X&eq/Xb , as a function of the inverse dimen
sionless channel width, 1/H* 5Sb /H. Chains ranging from
4.2 mm (Ns51) to 420mm (Ns5200) are considered. Also
shown is the predicted scaling,X* }(H* )22/3. As found
previously,9 static confinement effects appear here at 1/H*
'0.3, while the scaling regime is realized for 1/H* *0.5.
The transition from free-solution to confined behavior is ce
tered about the point 1/H* '0.4. For 1/H* *0.4, we refer to
the chains asstrongly confined, while below the transition
we refer to the chains asweaklyconfined.

Although static equilibrium properties such as the stre
can be obtained through Monte Carlo simulations, dynam
properties such as relaxation time and diffusivity require
resolution of solvent motion, as do transient processes
the dynamics of a relaxing chain. Figure 5 shows the dim
sionless Kirkwood diffusivity,D* 5Dx

K/Dx,b
K , as a function

of 1/H* for chains ranging from 4.2 to 420mm. For a
!H, a!Sb , and N@1, dimensional analysis leads one
expectD* 5 f (H* ). This will be discussed in more detail i
the following. The results shown in Fig. 5 were obtained
FD simulation, with the diffusion tensor and correspondi
Kirkwood diffusivity periodically evaluated from an instan
taneous realization of the static equilibrium configuration

Figure 5 shows a broad crossover from free-solution
havior. In the weakly confined region (1/H* &0.4), the mol-
ecule might be expected to behave as a sphere diffu

ain

ver

FIG. 4. Stretch as a function of channel width for various lengths of DN
Symbols correspond toL54.2 mm ~s!, L510.5mm ~h!, L521 mm ~L!,
L542 mm ~n!, L584 mm ~v!, L5126 mm ~,!, L5210 mm ~x!, andL
5420 mm ~1!. The solid line corresponds to the scalingX* }(1/H* )2/3.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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in a large channel. The special case of a sphere diffus
along the centerline of a circular channel has been solve
varying degrees of accuracy.35 The asymptotic solution o
Faxen43 is given by

D* 5122.104S r s

r p
D 12.09S r s

r p
D 3

20.95S r s

r p
D 5

1OS r s

r p
D 7

,

~29!

where r s and r p are the sphere and channel radii, resp
tively. From our bulk simulations, we determined the hyd
dynamic radius (r h) of our chains to be 0.55Sb . The dashed
curve in Fig. 5 represents Eq.~29! with r s5r h and r p

5H/2. We find that Faxen’s solution matches well our r
sults for chain molecules when 1/H* ,0.1. In comparison,
for solid spheres in a circular channel, Faxen’s expressio
relatively accurate out tor s /r p51/2, which would corre-
spond to 1/H* '0.45. Our results lie slightly below Faxen
expression for small 1/H* , probably because we do not forc
the chains to remain centered in the channel. The g
agreement with Faxen’s expression indicates that in the
gion 1/H* ,0.1 the molecule behaves as a nondraining ch
with the decrease in mobility due to channel walls affect
the entire chain uniformly. In the region 0.1&1/H* &0.4, the
chain can no longer be represented as sphere diffusing
channel, and the mobility becomes higher than predicted
the Faxen result; hydrodynamic screening due to chan
walls causes a transition toward free-draining behavior. T
transition from nondraining to free-draining behavior beg
at H'10Sb , well before the transition to strongly confine
behavior (H'2Sb) in Fig. 4.

Before discussing our results for larger 1/H* , it is of
interest to review several experimental investigations in
region 1/H* ,0.5. All available experiments on porous m
terials measure an effective diffusivity (Deff). This quantity
is related to our reduced diffusivity by44 Deff

5DbuKpD* /t, whereDb is the bulk diffusivity, u is the
volume fraction of the pores,t is the tortuosity, andKp is the
equilibrium partition coefficient. In 1973, Satterfieldet al.44

reported on the diffusion of low molecular weight paraffin

FIG. 5. Kirkwood diffusivity as a function of inverse channel width fo
various lengths of DNA. Symbols correspond toL54.2 mm ~s!, L510.5
mm ~h!, L521 mm ~L!, L542 mm ~n!, L584 mm ~v!, L5126mm ~,!,
L5210 mm ~x!, and L5420 mm ~1!. Line styles correspond toD*
}(1/H* )22/3 ~solid line!, Faxen’s expression~dashed line!, the curve fit of
the data of Cannell and Rondelez~Ref. 45! ~dotted line! and the curve fit of
the data of Satterfieldet al. ~Ref. 44! ~dot-dashed!. The closed symbols are
the RM model results for the 420mm chains.
Downloaded 02 Mar 2007 to 128.104.198.71. Redistribution subject to AI
g
to

-
-

-

is

d
e-
in

a
y
el
is
s

e

,

aromatic hydrocarbons, and sugars through homogene
microporous silica-alumina bead catalyst. Forr s /r p,1/2,
they found their data could be fit to the expressionD*
5exp(24.6r s /r p). This relation is shown as the dot-dash
curve in Fig. 5. In that work they noted that this exponent
dependence onr s /r p had also been observed in other sy
tems. In 1975, Coltonet al.38 reported on the diffusion of
proteins and monodisperse polystyrene~molecular weights
up to 670 000! through borosilicate glass. They found th
D* for the proteins was in qualitative agreement with t
above-given exponential fit, but thatD* for the polystyrene
chains was independent ofH* . In 1980, Cannell and
Rondelez45 considered the diffusion of monodisperse po
styrene chains~molecular weights up to 600 000! through
porous membranes. For 0.1,r s /r p,0.5, they found their
data followed the Renkin equation46

D* Kp5S 12
r s

r p
D 2F122.104

r s

r p

12.09S r s

r p
D 3

20.95S r s

r p
D 5G ,

~30!

provided they setr s51.45r h , where r h was the Stokes–
Einstein hydrodynamic radius of the molecules as de
mined from light-scattering experiments. The Renkin eq
tion combines Ferry’s equilibrium partition coefficient,44,47

Kp
F5(12r s /r p)2, with Faxen’s expression for the diffusio

of a sphere along the centerline of a channel. The do
curve in Fig. 5 represents Faxen’s expression withr s

51.45r h . The Renkin equation has been used with vary
success to describe rigid solute diffusion through biologi
and artificial membranes~see Satterfieldet al.44 for refer-
ences!.

We note that the curve representing the experime
study of the diffusion of long flexible polymers throug
membranes lies below our simulation results~the other
study38 concluded no dependence onH* ). Our simulations
provide a direct measurement ofD* , unlike the experimenta
studies which inferredD* from indirect estimates oft, u,
andKp . In addition, our simulations are performed at infini
dilution, while the experimental investigations, although p
formed at finite concentrations, assumedD* ~andKp) to be
independent of solute concentration within the pores. Thi
in contrast to the study of Cannell and Rondelez,44 who ob-
served a large change inKpD* when the~dilute! concentra-
tion was increased by a factor of 3. Also, in our simulation
there is no adsorption of the solute to the pore walls. In
experiments of Colton and Satterfield, preferential solute
sorption was estimated from equilibrium studies, and the
timated corrections to the pore diameters were made w
necessary. Cannell and Rondelez measured the flow ra
polystyrene solutions through their membranes as a func
of time and concluded that adsorption did not occur. Furth
more, all of the above-discussed experiments were obta
from membranes having pore radii on the order of na
meters; the diffusivity determined from those experime
may include effects of potential wells.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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We now turn our discussion to the ‘‘strongly confined
region of Fig. 5 (1/H* .0.5). In 1977, Brochard and
de Gennes16 used a modified blob theory to obtain the sc
ing relation D* }(1/H* )22/3, provided thata!H!Sb . In
developing this relation, they assumed that the highly c
fined molecule could be represented as a sequence of b
which do not interact hydrodynamically. This assumpti
imposes the scalingD}Nk

21 . In fact, if a!H, D}Nk
21 and

D* }(H* )m, then dimensional analysis and good solve
bulk molecular weight scaling are sufficient to arrive atm
52/3.

More recently, Harden and Doi17 combined an
analytical-series solution for the Stokes flow due to po
forces in a capillary~circular cross section! with a self-
consistent mean field calculation for the equilibrium config
ration of the confined chain. They obtainedD}Nk

21 for
highly confined chains, but found that transverse averag
of the Kirkwood diffusion coefficient results inD*
}(H* )0.61. Note that the results of Harden and Doi indica
that the reduced variableD* will not display a master curve
in 1/H* for highly confined chains. But as mentioned earli
if the scalea does not enter the problem, the exponentmust
be 2/3. However, in the work of Harden and Doi and in o
work presented here, there is an additional ratio of len
scalesa/d that comes into play, whered is the length scale
associated with polymer–wall interactions. The ratioa/d is
order unity, which suggests that the 2/3 scaling proposed
Brochard and de Gennes cannot be realized; the magn
of the exponent will depend on the magnitude ofa/d. The
fact that Harden and Doi’s exponent of 0.61 persists
H/a.102 is consistent with this reasoning, as are our resu
which we now discuss.

Our results collapse onto a master curve inD* versus
H* in the weakly confined region. This master curve exten
beyond the region represented by Faxen’s expression, al
way to the transition to strongly confined behavior. Howev
in the strongly confined region (1/H* *0.4), we observe
some scatter in the data (D* lower for longer chains! as well
as a deviation from the predicted scaling for the diffusiv
data; we findD* ;(1/H* )21/2 from a fit of the data in this
region, rather thanD* ;(1/H* )22/3. As discussed earlier
this deviation indicates that additional length scales~i.e., the
ratio a/d) are coming into play that were not accounted
in the simple scaling theory of Brochard and de Gennes

As the level of chain confinement increases, hydro
namic interactions between beads become weaker due t
solvent boundary condition on the walls of the device.
quantify this effect, we performed simulations using the R
model @Eq. ~20!#, which assumes complete screening of
terbead hydrodynamic interactions. The diffusivity of 4
mm DNA chains using the RM model are shown as clos
circles in Fig. 5. The RM model results converge to those
the full model atSb*5H. In general, the point at which th
RM results match those of the full model is a function of t
level of molecular discretization (Nk,s519.8, for the results
reported in this work!. WhenH is on the order of the equi
librium spring length ('bkNk,s

1/2), hydrodynamic interactions
between beads are screened. However, at that level of
finement, a finer molecular model~smallerNk,s) should be
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used, at which point screening will again no longer be co
plete. The RM model is thus of limited value.

We next consider the relaxation of DNA chains in m
crochannels. Individual chains, initially 99% stretched alo
the axis of the channel, were allowed to relax to equilibriu
Figure 6 shows the transient stretch of 126mm DNA chains,
averaged over 10 trajectories, for various channel wid
Both the HI and FD model results are shown. Recall t
model parameters were chosen so that relaxation time
both the HI and FD models matched the experimental b
relaxation time for 21mm DNA chains. In order to provide a
more reasonable comparison between the two models,
time axis of the FD results was scaled bylHI,b

126 /lFD,b
126 '0.6,

wherelHI,b
126 andlFD,b

126 are the bulk relaxation time of 126mm
chains as determined by the HI and FD models, respectiv
The HI relaxation dynamics are strongly dependent on ch
nel width, while the relaxation dynamics of the FD model a
virtually unaffected by confinement. The RM model~results
not shown! overpredicts the relaxation times; the HI and R
relaxation results converge at the same point as the diffu
ity results in Fig. 5.

Longest chain relaxation times were determined by
method leading to Eq.~27! for various chain lengths and
channel widths. Figure 7 shows the reduced relaxation ti
l1* 5l1 /l1,b as a function of 1/H* for chains up to 126mm.
We observe a crossover region centered about 1/H* '0.1
followed by a power law region which is fully developed
1/H* '0.5. We note two sources of scatter in thel1 data
obtained in the crossover region. First, chains in this reg
may be fully relaxed before they have had time to sample
cross section of the channel; the relaxation time obtained
Eq. ~27! in this region is not a true equilibrium average~such
as that obtained from the autocorrelation function for t
end-to-end vector!. Second, there is significantly more nois
in the relaxation trajectories in this region.

The only existing theoretical prediction for the longe

FIG. 6. ~Color! Relaxation of 126mm chains, initially 99% stretched along
the centerline of the channel. Results for both the HI and FD models
shown. The time axis for the FD case has been scaled so that the two m
have equivalent bulk relaxation times~see the text!. Each data set represen
an average over 10 trajectories. Line colors correspond to channel widt
H→` ~black!, H510.6 mm54.8Sbulk ~red!, H56.36 mm52.9Sbulk

~green!, H53.18 mm51.5Sbulk ~blue!, H51.59 mm50.73Sbulk ~orange!,
H50.636 mm50.29Sbulk ~brown!.
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relaxation time is for highly confined chains, and aga
comes from the scaling analysis of Brochard a
de Gennes.16 By assuming complete screening of blob–bl
hydrodynamic interactions, they predictedl1}Nk

2H21/3. As
in the case of diffusivity, dimensional analysis for the case
weak confinement leads to a master curve in the redu
variablesl1* and 1/H* . If no new length scales come int
play in the highly confined region, we again expect a mas
curve in the reduced variables. Since Rouse-type sca
(l1}Nk

2) is also expected in this region, one obtains~using
bulk good solvent scaling,l1,b}Nk

9/5 andSb}Nk
3/5) a power

law in the reduced variablesl1* }(1/H* )1/3. This prediction
is shown as the solid line in Fig. 7, which is in good agre
ment with our results. As anticipated by Brochard and
Gennes,16 for strongly confined chains the relaxation tim
shows a weaker dependence on channel width than doe
stretch or diffusivity.

The relaxation of a stretched chain in a narrow slit h
been observed experimentally by Bakajinet al.48 In that
work, fluorescently dyed DNA molecules were allowed
relax to equilibrium after being stretched in an electric fie
Those authors found that confinement significantly increa
the time required for individual molecules to relax
equilibrium.49 For '74 mm chains, Bakajinet al. estimated
that the relaxation time roughly doubled when the slit wid
was decreased from 5 to 0.3mm, and again when the sli
width was decreased to 0.09mm. We estimateSb51.6 mm
for 74 mm chains, which gives 1/H* 50.32, 5.3, and 17.8 for
the 5, 0.3, and 0.09mm slits, respectively. Figure 7 indicate
that l* does increase by about a factor of 2 in going fro
1/H* 50.32 to 1/H* 55.3 in agreement with the observa
tions of Bakajinet al.From the power law scaling~for which
the exponents for slit and channel are expected to be
same!, one expects thatl* will increase by a factor of 1.5 a
1/H* increases from 5.3 to 17.8.

VI. CONCLUSIONS

We have performed self-consistent Brownian dynami
hydrodynamic simulations of DNA in microchannels, using
method that simultaneously resolves both macromolec
and solvent motion in microfluidic devices. For diffusivity i
the axial direction (Dx

K) and longest relaxation time (l1), we
observe a crossover region from free-solution dynamics c

FIG. 7. Chain relaxation time as a function of channel width for vario
lengths of DNA. Symbols correspond toL510.5mm ~s!, L521 mm ~h!,
L542 mm ~L!, L584 mm ~n!, L5126mm ~v!. The solid line corresponds
to the scalingl* }(1/H* )1/3.
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tered about the pointH'10Sb , whereH is the width of the
square channel andSb is the free-solution radius of gyratio
of the chain. ForH*10Sb , we find that the molecule dif-
fuses in a manner similar to a solid sphere with radius eq
to the free-solution hydrodynamic radius of the molecule.
H'10Sb the molecule begins a transition to free-draini
behavior, which is complete atH'2Sb . For H&2Sb , the
chains may be considered strongly confined and Rouse-t
In the strongly confined region we find the equilibriu
length (X) andl1 to be well-represented by the scaling r
lations X}NkH

2/3 and l1}Nk
22H21/3 as predicted by

Brochard and de Gennes.16 The computed diffusivity in the
strongly confined region does not follow the predicted sc
ing of Brochard and de Gennes,16 Dx

K}Nk
21H22/3. While

we do observe Rouse-type behavior (Dx
K}Nk

21), we find
D}H21/2. Our diffusion results, as well as those of Hard
and Doi,17 suggest that the diffusivity scaling exponent al
depends on the ratioa/d, wherea is the segment hydrody
namic radius andd is the length scale associated wi
polymer-wall interactions.
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22H.-C. Öttinger, Stochastic Processes in Polymeric Fluids~Springer, Ber-

lin, 1996!.
23R. M. Jendrejack, M. D. Graham, and J. J. de Pablo, J. Chem. Phys.113,

2894 ~2000!.
24C. Pozrikidis,Introduction to Theoretical and Computational Fluid Dy

namics~Oxford University Press, New York, 1997!.
25M. Fixman, Macromolecules19, 1204~1986!.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



nia

o
er

d

ev.

nd

ltant
ith a

1173J. Chem. Phys., Vol. 119, No. 2, 8 July 2003 Effect of confinement on DNA dynamics
26R. M. Jendrejack, J. J. de Pablo, and M. D. Graham, J. Non-Newto
Fluid Mech.108, 123 ~2002!.

27J. Rotne and S. Prager, J. Chem. Phys.50, 4831~1969!.
28J. F. Marko and E. D. Siggia, Macromolecules27, 981 ~1994!.
29J. F. Marko and E. D. Siggia, Macromolecules28, 8759~1995!.
30R. M. Jendrejack, J. J. de Pablo, and M. D. Graham,Technical Proceed-

ings of the Fifth International Conference on Modeling and Simulation
Microsystems~Applied Computational Research Society, San Juan, Pu
Rico, 2002!, pp. 88–91.

31R. G. Larson, T. T. Perkins, D. E. Smith, and S. Chu, Phys. Rev. E55,
1794 ~1997!.

32J. S. Hur, E. S. G. Shaqfeh, and R. G. Larson, J. Rheol.44, 713 ~2000!.
33R. G. Larson, H. Hua, D. E. Smith, and S. Chu, J. Rheol.43, 267 ~1999!.
34B. Ladoux and P. S. Doyle, Europhys. Lett.52, 125 ~2000!.
35J. Happel and H. Brenner,Low Reynolds Number Hydrodynamics~Klu-

wer, Dordrecht, 1991!.
36C. Pozrikidis,Boundary Integral and Singularity Methods for Linearize

Viscous Flow~Cambridge University Press, Cambridge, 1992!.
Downloaded 02 Mar 2007 to 128.104.198.71. Redistribution subject to AI
n

f
to

37E. R. Dufresne, T. M. Squires, M. P. Brenner, and D. G. Grier, Phys. R
Lett. 85, 3317~2000!.

38C. K. Colton, C. N. Satterfield, and C.-J. Lai, AIChE J.21, 289 ~1975!.
393D quadratic interpolation functions are used.
40B. U. Felderhof, Physica A89, 373 ~1977!.
41C. W. J. Beenakker, J. Chem. Phys.85, 1581~1986!.
42K. R. Hase and R. L. Powell, Phys. Fluids13, 32 ~2001!.
43H. Faxen, Arch. Mat. Astron. Fys.17, 27 ~1923!.
44C. N. Satterfield, C. K. Colton, and W. H. Pitcher, AIChE J.19, 628

~1973!.
45D. S. Cannell and F. Rondelez, Macromolecules13, 1599~1980!.
46E. M. Renkin, J. Gen. Physiol.38, 225 ~1953!.
47J. D. Ferry, J. Gen. Physiol.20, 95 ~1936!.
48O. B. Bakajin, T. A. J. Duke, C. F. Chou, S. S. Chan, R. H. Austin, a

E. C. Cox, Phys. Rev. Lett.80, 2737~1998!.
49We used a quadratic velocity, linear pressure formulation. The resu

sparse, symmetric system of equations was solved using GMRES w
partial LU decomposition preconditioner.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


