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Abstract

A comprehensive numerical study of the effects of the contraction ratio upon viscoelastic flow through axisymmetric contractions was carried out.

Six contraction ratios were examined (CR = 2, 4, 10, 20, 40 and 100) using the Oldroyd-B and Phan–Thien–Tanner (PTT) constitutive equations,

under creeping-flow conditions and for a wide range of Deborah numbers (De). The results enabled the construction of vortex pattern maps, with

CR and De as independent parameters, elucidating the role of these dimensionless groups in controlling vortex growth, vortex type (lip or corner

vortices), and pressure-drop characteristics. The extensional parameter of the PTT model was also varied (ε = 0–0.5) and it was found that for small

values of ε the Couette correction is a monotonic decreasing function of De, while for high ε values it is a monotonic increasing function.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The entry-flow is a long-standing problem dating back to

the late 1800s [1]. The early works were mainly experimental

and were primarily stimulated by the need to construct a capil-

lary rheometer capable of measuring accurately the viscosity of

Newtonian fluids [2]. Since then contraction flows have been the

subject matter of numerous experimental and numerical works.

The first numerical study of this problem, in which the complete

equations of motion were solved, was published by Vrentas et

al. [3] and concerned the creeping flow of a Newtonian fluid

through an axisymmetric contraction.

In spite of the simple geometry, these flows exhibit com-

plex patterns where shear and extensional regions co-exist. Near

the walls the flow is shear-dominated while along the center-

line it is purely extensional. These flows are amongst the most

studied extensionally dominated flows, since they assume partic-

ular importance in industrial applications involving viscoelastic
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non-Newtonian fluids. Examples worth mentioning are polymer

processing applications, such as injection molding, spinning and

film blowing [4]. Literature on contraction flows up until the

late 1980s have been the subject of detailed reviews by Boger

[1] and White et al. [5], in which the complex effects of flow

geometry and fluid rheology were addressed. For a comprehen-

sive account of more recent results the reader is referred to the

thorough introductions of Alves et al. [6] and Rodd et al. [7].

An overview of the evolution of numerical methods applied to

the flow of viscoelastic fluids through contractions can be found

in Walters and Webster [8], which includes typical constitutive

models used to represent real fluids; for a more complete review

on the theme refer to the book by Owens and Phillips [9]. Here

we limit ourselves to a description of some important results

with direct relevance to the problem at hand.

1.1. The sudden contraction configurations

There are three main types of configuration used in sud-

den contraction research: the axisymmetric, the planar and the

three-dimensional contraction of which the square–square con-

traction is a particular case. In the first, the fluid flows from a

capillary of large diameter through a sudden contraction into a
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smaller capillary; in the corresponding planar case, the capil-

laries are replaced by channels of large aspect ratio (quasi-2D)

and the contraction occurs only in one direction, while in the

square–square case this happens in two perpendicular directions.

The flow of viscoelastic fluids through sudden contractions,

either planar, axisymmetric or square–square, generates com-

plex flow patterns. In general, these flows comprise regions of

strong shearing close to the walls and non-homogeneous exten-

sion along the centerline upstream and downstream of the con-

traction [10]. Yet, it has been shown that the fluid behavior asso-

ciated with entry flows in different geometries can be quite con-

trasting as a result of geometric and rheological dissimilarities.

Perhaps the most widely studied configuration is the axisym-

metric contraction, mainly due to its implications in pipe/duct

flow [11]. Most of the early papers are devoted to the experimen-

tal study of this flow (e.g. [12–16]; more recent experimental

studies can be found in [10,17–20]). Up to the early 1990s,

numerical methods were usually unable to accurately predict the

steady contraction flow of viscoelastic fluids, and most efforts

were thus dedicated to improving the numerical techniques, as

documented in the books of Crochet et al. [21] and Owens and

Phillips [9].

Studies on the planar geometry were carried out soon after

the pioneering investigations on axisymmetric contractions. The

planar geometry assumed relevance as optical experimental

techniques evolved, such as flow visualization and especially

birefringence, and the number of published works on this config-

uration increased substantially [22–29]. The flow through planar

contractions has also received additional attention in numerical

investigations [30–39] since this configuration was chosen as

a test case for the assessment and improvement of numerical

methods in computational rheology [40].

Some of the findings observed for the axisymmetric geome-

tries are replicated in the planar case, such as the formation

of a recirculating region upstream of the contraction and the

existence of an extra pressure drop associated with the flow of

viscoelastic fluids. However, some major differences have been

identified as a result of the different strain and strain-rate his-

tories experienced by fluid elements in the two geometries [1].

Walters and Webster [41] found no significant vortex activity

for Boger fluids in the 4:1 planar case, in marked contrast to

observations in 4.4:1 circular contractions. However, for shear-

thinning fluids, vortex growth was observed in both planar and

axisymmetric geometries. Evans and Walters [25,26] studied

the flows of shear-thinning and constant-viscosity elastic fluids

and found strong vortex enhancement at all times for the shear-

thinning fluids, but once more no significant vortex activity was

observed for Boger fluids in planar contractions. Rothstein and

McKinley [10] found that in the axisymmetric case, the size of

the salient corner vortex formed was smaller than in the planar

case. They attributed this outcome to the different Hencky strains

experienced by the polymer molecules as the flow changes from

uniaxial to planar.

Over the years, little attention has been paid to the flow

through square–square contractions, most likely because they

are significantly more complex, and in numerical terms a “sim-

ple” 2D simulation is clearly inadequate. In many ways, the

square–square geometry can be thought of as an intermediate

between the axisymmetric and the planar contraction. Geomet-

rically, similarities between the planar and the square–square

contractions are easy to picture. On the other hand, in terms of the

actual flow and variation of strain-rates, similarities between cir-

cular and square–square contractions have been observed in the

experimental study of Walters and Rawlinson [42]. In their study,

the differences between the flow of Boger fluids in planar and

axisymmetric geometries were also seen to occur between pla-

nar and square–square contractions. More recently, a few studies

have addressed this geometry, both under an experimental [6]

and a numerical [43] perspective.

1.2. Flow patterns

One of the remarkable flow features of viscoelastic fluids

worth emphasizing is the vortex formation and vortex enhance-

ment mechanism upstream of the contraction plane. In general,

for axisymmetric contraction flows, strong vortex enhancement

is observed both for Boger fluids and for shear-thinning vis-

coelastic fluids. However, the vortex characteristics and the way

vortex enhancement evolves with the Deborah number can be

strikingly different, depending on the flow geometry and the fluid

rheology. In some cases the vortex forms near the salient corner

and increases in strength, growing steadily upstream and radi-

ally inward towards the re-entrant corner [1,18]. In other cases

the salient corner vortex grows in size with the Deborah num-

ber, while simultaneously a lip vortex forms near the re-entrant

corner; subsequently, the lip vortex grows radially outwards and

forces the corner vortex to decrease in both size and intensity

until it is completely overtaken by the lip vortex [10].

Understanding the mechanisms underlying the flow transi-

tions (and inherent vortex enhancement evolution) that take

place as the Deborah number is varied has been a main driv-

ing force behind the experimental work in this area [9]. This

evolution was shown to depend greatly on the fluid rheology.

Boger et al. [16] and Boger and Binnington [18] investigated

the behavior of two different Boger fluids having similar shear

properties and yet found quite different vortex dynamics. It was

then recognized that extensional properties had to be taken into

account, and Boger [1] suggested the primary parameter to be

the extensional viscosity. Recent experimental investigations by

Rothstein and McKinley [10,20] corroborate the important role

of the extensional viscosity on the dynamics of vortex growth

and associated enhanced pressure drop. In this context one of the

aims of the current paper is to examine under which conditions

one pathway of vortex evolution is preferred over the other.

1.3. Excess pressure drop

In addition to the kinematics, another essential flow charac-

teristic is the pressure drop resulting from a sudden change in

diameter. The total pressure drop is a result of the pressure drop

due to the fully developed viscous flow through the tubes plus

the excess pressure drop associated with contraction entrance

effects. Apart from being crucial for a proper assessment of the

pumping power required in ducts [44,45], it yields information
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about the global state of viscoelastic stresses in the flow [10]. In

fact, many researchers have attempted to use the excess pressure

as a means to estimate the extensional viscosity of viscoelastic

fluids [19,46–51].

The extra pressure drop observed experimentally and pre-

dicted numerically for the flow of viscoelastic fluids through

sudden contractions can reach values much greater than those

exhibited by the corresponding Newtonian (or inelastic) fluids

with similar shear viscosity at the same flow rates [10,20,52].

This extra pressure drop is usually presented in dimensionless

form in terms of a Couette correction. For shear-thinning fluids,

the Couette correction is found numerically to attain a minimum

at low Deborah numbers and then to increase as the Deborah

number is further increased [37,38,53]. Furthermore, contrac-

tion ratio and geometry type have an effect on the magnitude and

on the onset of this enhanced pressure drop [10]. Experiments

with Boger fluids show a significant increase of the Couette

correction with the Deborah number, in marked contrast with

the numerical predictions using the UCM and the Oldroyd-

B models, for which a strong reduction in the extra pressure

drop is found, even leading to a pressure recovery due to elas-

tic effects [35,38]. Rothstein and McKinley [10,20] suggested

that the excess pressure drop observed in the experiments with

Boger fluids resulted from an extra dissipative contribution to

the elastic stress due to a stress-conformation hysteresis in the

non-homogeneous extensional flow near the contraction plane.

Phillips et al. [54] were able to predict numerically, at least qual-

itatively, a significant pressure drop enhancement using a closed

form of the adaptive length scale model of Ghosh et al. [55] in

accordance with experimental observations.

1.4. The contraction ratio

Ever since the fifth international workshop on numerical

methods in non-Newtonian flows [40], when the planar and

axisymmetric contraction geometries with a 4:1 contraction

ratio were put forth as benchmark problems in computational

rheology, special attention has been granted to geometries with

this specific contraction ratio. The reasoning behind the choice

of this particular value was based on the known results regarding

the flow of Newtonian fluids, where all interesting flow features

worthy of note take place for contraction ratios beneath 4:1

[52]. Even though it has been recognized a posteriori that for

non-Newtonian fluids this choice has been misguided, as many

interesting flow characteristics are only apparent for contraction

ratios beyond the specific ratio of 4:1 [52], most published

numerical works are still concerned with the standard case of

the 4:1 contraction ratio (e.g. [35,36,38,56–59]). Some authors

have used different values of the contraction ratio and there

are a few, mainly experimental, studies in which variations of

the contraction ratio are considered [1,10,15,17]. An exception

to this state of affairs in numerical investigations is the work

of Alves et al. [39], in which a detailed analysis of the effect

of the contraction ratio on the flow of a PTT fluid through a

planar sudden contraction was investigated. That work focused

on describing the flow patterns and quantifying the vortex

characteristics as a function of contraction ratio and Deborah

number. For high contraction ratios, it was found that flow

features in the vicinity of the corner, such as corner-vortex size,

and corresponding streamlines, scale with the upstream length

scale and with elasticity given by the Deborah number divided

by the contraction ratio, while features near the re-entrant corner

(vortex intensity and streamlines) scale with the downstream

length scale and with elasticity measured by the Deborah

number defined in terms of downstream quantities.

These experimental and numerical studies emphasize the

importance of investigating different contraction configurations

at varying contraction ratios. Thus, the present work extends

the previous study of Alves et al. [39], which was for the planar

geometry, by performing a comprehensive numerical analysis

on the effects of the contraction ratio on the flow patterns

and vortex dynamics in axisymmetric sudden contractions. A

comprehensive set of numerical simulations was performed,

ensuing new numerical results for the axisymmetric geometry

with the following contraction ratios: 2, 4, 10, 20, 40 and 100.

For the standard 4:1 ratio, the results given here for vortex

size and intensity have controlled accuracy and may therefore

be considered as benchmark data for the axisymmetric con-

figuration. A survey of literature for this case and comparison

of the existing data reveals as much scatter as that observed

for the planar case (shown in Fig. 1 of Alves et al. [38]). In

addition, the present work goes one step further by examining

other flow characteristics (such as excess pressure drop) and

by investigating various constitutive models corresponding

to Newtonian fluids, viscoelastic shear-thinning fluids (PTT

model) and constant-viscosity Boger fluids (Oldroyd-B model).

The paper is organized as follows. In Section 2, we present the

general governing equations and outline the numerical method

used to solve them. Section 3 describes the flow geometry and

the computational meshes used and in Section 4 we present

benchmark data for the standard 4:1 contraction geometry. In

Section 5, a systematic study of the effects of contraction ratio

and Deborah number on the flow patterns, vortex characteris-

tics and pressure drop is carried out, whereas Section 6 deals

with the effect of the rheological model. Finally, in Section 7,

we assess the suitability of the normal-stress ratio criterion of

Rothstein and McKinley [10] to estimate the onset of lip-vortex

activity, before ending the paper with the main conclusions.

2. Equations and solution method

The flow of a viscoelastic incompressible fluid can be

expressed in terms of its governing equations: conservation of

mass, conservation of momentum and a constitutive equation

for the extra stress tensor � as a function of the flow kinematics.

The first two equations can be written as:

∇ · u = 0 (1)

ρ

[

∂u

∂t
+ ∇ · (uu)

]

= − ∇p+ηs∇ · (∇u+∇uT)+∇ · � (2)

where ρ is the density of the fluid, t the time, u the velocity

vector, p the pressure, ηs the solvent viscosity and � is the extra

stress tensor given by an appropriate constitutive equation.
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Throughout this paper, we will use three different constitutive

models: the Newtonian, the Oldroyd-B model and a simplified

form of the Phan–Thien–Tanner (PTT) constitutive equation

[60]. These three models can be written with the single following

equation:

λ

[

∂�

∂t
+ ∇ · (u�)

]

+ f (�)�

= ηp(∇u + ∇uT) + λ(� · ∇u + ∇uT
· �) (3)

where λ is the relaxation time of the fluid and ηp is the polymer

zero-shear-rate viscosity (η0 = ηp + ηs, where η0 is the total zero-

shear-rate viscosity).

The PTT model exhibits shear-thinning behavior and has

been used extensively in numerical studies involving contrac-

tion flows (see, e.g. [37–39] and references therein) and was

shown to be appropriate for modeling both polymeric solutions

and polymer melts [9], although often this may require the use

of a multimode version.

The simplified version used here does not include the

contribution from the lower-convected part of the full

Gordon–Schowalter derivative, and the linear form of the stress

function f(�) is selected,

f (�) = 1 +
λε

ηp
tr(�), (4)

where tr( ) represents the trace operator and ε is an extension-

related parameter of the model, which eliminates singularities

in extensional viscosity. The limiting case of ε = 0 will also be

considered, as it represents an Oldroyd-B model, which is often

used to simulate the behavior of constant shear-viscosity Boger

fluids. Newtonian fluids are recovered by setting λ = 0.

The governing equations, Eqs. (1)–(3), are solved using a

finite-volume method with a time-marching pressure-correction

algorithm with fully collocated variable arrangement, as detailed

in Oliveira et al. [61]. This methodology has been explained

thoroughly in previous works [35,38,39,62] and only a brief out-

line is given here. The governing equations are discretized on

a computational mesh, which in the present case is orthogonal

and non-uniform. The meshes used to map the computational

domain are created from structured blocks, which in turn are

organized in control-volumes or cells. The equations are then

discretized and transformed into systems of algebraic equations.

These relate the values of each dependent variable (p, u, �),

evaluated at the cell center, to the values in the neighboring

control-volume centers. The time-dependent terms in Eqs. (2)

and (3) are retained in the discretization so that a steady-state

solution is effectively approached by successive time advance-

ment steps. At each time step, the algebraic equations are solved

for the dependent variables, until the norm of the residuals of all

the equations drops below a convergence tolerance within the

range of 10−4 to 10−6. In all cases full convergence was checked

by monitoring relevant variables, such as vortex size and inten-

sity, during the simulation procedure. Since in the present work

we are interested in steady-state calculations, the time derivative

is discretized with an implicit first-order Euler scheme. Central

differences are used to discretize the diffusive terms, while the

Fig. 1. Schematics of the flow configuration.

CUBISTA high-resolution scheme [62] is employed in the dis-

cretization of the advective term of the constitutive equation. The

advective term in the momentum equation in neglected since in

this work we are interested in truly creeping-flow conditions.

The CUBISTA scheme is a bounded version of the QUICK

scheme developed by Leonard [63], thus ensuring third-order

accuracy in uniform meshes, and was designed to yield a sym-

metric scheme and to respect Total Variation Diminishing (TVD)

restrictions. Alves et al. [39] used it extensively in a study of

PTT fluid flow through planar contractions, which is a similar

problem to the one we are dealing with in the present paper.

For the typical differential constitutive equations found in vis-

coelastic flows, which are hyperbolic in nature, the CUBISTA

scheme was shown to be more appropriate than other high-

resolution schemes from the point of view of accuracy and

iterative-convergence properties [62].

3. Problem definition and computational meshes

The geometry of the axisymmetric contraction is depicted in

Fig. 1, where R1 and R2 refer to the radii of the pipes upstream

and downstream of the contraction, respectively. The contraction

Table 1

Characteristics of the computational meshes

Mesh CR L1/R2 L2/R2 NC �xmin/R2 =

�rmin/R2

M1-CR2 2 2500 2500 7,732 0.020

M1-CR4 4 2500 2500 8,980 0.020

M3-CR4 4 2500 2500 35,920 0.010

M1-CR10 10 2500 2500 10,420 0.020

M1-CR20 20 2500 2500 11,956 0.020

M1-CR40 40 2500 2500 15,796 0.020

M1-CR100 100 5000 5000 23,920 0.020

M3-CR100 100 5000 5000 95,680 0.010

M1-CR4-SHORTa 4 40 100 5,282 0.020

M2-CR4-SHORTa 4 40 100 10,587 0.014

M3-CR4-SHORTa 4 40 100 21,128 0.010

M4-CR4-SHORTa 4 40 100 42,348 0.0071

M5-CR4-SHORTa 4 40 100 84,512 0.0050

CR, contraction ratio; L1, length of upstream channel; L2, length of downstream

channel; NC, number of cells; �x and �r, cell spacing.
a For CR = 4 very refined meshes were used in the benchmark simulations

with the Oldroyd-B fluid in order to assess the numerical uncertainty and the

true order of convergence. In these simulations smaller inlet and outlet tubes

were used.
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ratio between the two tubes, defined as CR = R1/R2, is an impor-

tant geometric parameter and in this study was varied between

2 and 100.

The total number of computational cells was varied depend-

ing on the contraction ratio used. Table 1 shows important

information on the computational domain and the meshes used,

such as the lengths of the upstream and downstream pipes (L1

and L2), the total number of cells (NC) and the size of the

smallest cell normalized by the radius of the downstream pipe,

�xmin/R2 = �rmin/R2, which is located at the re-entrant corner.

All meshes are orthogonal and non-uniform, with the size of

Fig. 2. Zoomed view of the axisymmetric computational meshes with contrac-

tion ratios (a) 4:1 (mesh M1-CR4), (b) 20:1 (mesh M1-CR20) and (c) 100:1

(mesh M1-CR100).

each cell relating to its neighbors by a geometric progression

within each direction, as illustrated in Fig. 2 for contraction

ratios of 4, 20 and 100 near the contraction plane. Cell cluster-

ing close to the re-entrant corner (shown in the zoomed views

of Fig. 2) and along the pipe walls was implemented since

the development of thin velocity and stress boundary layers is

expected to occur in these regions. The normalized minimum

cell spacing near the re-entrant corner is the same for all meshes

(�xmin/R2 = �rmin/R2 = 0.02) so that the local variations of the

resulting solution fields are not influenced by the mesh resolu-

tion. The exception is the benchmark 4:1 test case, for which we

have also used more refined meshes in order to assess the accu-

racy of the numerical results, and the CR = 100 case for which

a few tests were undertaken using mesh M3-CR100, in order to

further assess the numerical accuracy. The tube lengths L1 and

L2 were varied according to the contraction ratio to ensure fully

developed flow well upstream of the contraction plane and com-

plete flow redevelopment downstream of the contraction plane.

To ensure that this is achieved, we have chosen appropriate pipe

lengths based on our previous work for the planar case with a

4:1 contraction ratio [38].

The solvent viscosity ratio β = ηs/η0 will for most cases be

kept constant at the standard value of β = 1/9, while the exten-

sibility parameter of the PTT model will be usually taken as

ε = 0.25, which is typical of polymer melts or concentrated

solutions. PTT fluids exhibit shear-thinning behavior and an

extensional viscosity that is strain and strain-rate dependent.

The shear and extensional rheometrical properties for the PTT

model were presented in Fig. 23 of Ref. [38] and are not repeated

here for conciseness. In some cases the ε parameter will also

be varied, ranging from ε = 0.5 down to ε = 0, representing an

Oldroyd-B fluid.

The two other dimensionless groups characterizing the flow

are the Deborah and the Reynolds numbers, which are here

defined in terms of downstream characteristics,

De =
λU2

R2
(5)

Fig. 3. Estimated error in xR/R2 as a function of mesh size for the Newtonian

fluid and for the Oldroyd-B fluid at De = 1 (meshes M1-CR4-SHORT to M5-

CR4-SHORT).
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Table 2

Vortex predictions for CR = 4 with Oldroyd-B model (β = 1/9)

De xR/R2 ΨR × 103

M2-CR4-SHORT M4-CR4-SHORT Extrapolated Errora (%) M2-CR4-SHORT M4-CR4-SHORT Extrapolated Errora (%)

0 1.3149 1.3107 1.3095b 0.04b 1.831 1.834 1.836b 0.1b

0.1 1.374 1.380 1.382 0.1 2.38 2.35 2.34 0.4

0.5 1.602 1.598 1.597 0.1 5.70 5.45 5.37 1.5

1.0 1.840 1.796 1.769b 0.7b 12.3 10.6 9.50b 5b

1.5 2.015 1.938 1.912 1.3 20.8 16.2 14.6 11

1.8 2.125 2.016 1.980 1.8 27.8 20.0 17.4 15

a Finest mesh data relative to extrapolated value.
b Extrapolated data estimated from calculations in meshes M1-CR4-SHORT up to M5-CR4-SHORT.

Re =
ρU2R2

η0
(6)

where U2 is the average cross-sectional velocity in the smaller

pipe. The Reynolds number has been set to zero (Re = 0), by

leaving out the advective term in Eq. (2), to satisfy the creeping-

flow conditions considered in this work, and the Deborah number

was varied from zero (Newtonian flow) up to the maximum value

Fig. 4. Variation of the corner-vortex size, xR/R2, and intensity, ΨR, with the

Deborah number for the Oldroyd-B fluid with β = 1/9. Comparison with results

of Refs. [37] and [64].

where a convergent solution could be obtained. Note that the

advective stress term in Eq. (3) is, of course, retained.

4. Accuracy and benchmark data for CR = 4

For the particular contraction ratio of 4:1 a detailed study

of convergence with mesh refinement was carried out for the

Fig. 5. Variation of the corner-vortex size, xR/R2, and intensity, ΨR, with the

Deborah number for the PTT fluid with ε = 0.25 and β = 1/9. Comparison with

results of Ref. [37].
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Oldroyd-B fluid (β = 1/9) which is useful to quantify the uncer-

tainty of the numerical results. Five meshes were employed

having a consistent refinement, with minimum grid spacings of

(�xmin/R2 = �rmin/R2) varying from 0.02 down to 0.005, cor-

responding to a total number of control volumes ranging from

5282 to 84,512, as detailed in Table 1. The use of these meshes

allows the estimation of the apparent order of accuracy of the

numerical method, and to obtain accurate values using Richard-

son’s extrapolation technique. Table 2 presents the extrapolated

results for the size of the corner vortex, xR/R2, and its dimen-

sionless intensity, ΨR, as a function of the Deborah number.

The dimensionless vortex intensity is a measure of the amount

of fluid entrapped in the secondary cell and is given by the recir-

culating flow rate in the corner (or lip) vortex divided by the inlet

flow rate into the contraction domain. The estimated accuracy

of the numerical results is also included in Table 2, and is quan-

tified by the relative difference between the finest mesh results

and the extrapolated values, assuming second-order accuracy.

For the Newtonian and De = 1 cases we plot in Fig. 3 the esti-

mated absolute error of xR/R2 as a function of the characteristic

grid size. Two straight lines with slope of two are included in

the figure, thus illustrating the second-order accuracy achieved

by the numerical method, at least for the most refined meshes.

In Fig. 4 we present the influence of the Deborah number

on the corner-vortex size and intensity for the Oldroyd-B model

and compare with results from other authors [37,64]. The accu-

racy of the numerical results deteriorates as the Deborah number

increases, and the maximum attainable De decreases with mesh

refinement, in agreement with previous results obtained for the

planar contraction [38].

In contrast, for the PTT model with ε = 0.25, we were able

to obtain converged solutions up to De = 500, a value clearly

in excess of that attained by other authors [37], as illustrated

in Fig. 5. Again, mesh refinement leads to a decrease in the

critical De. However, for this viscoelastic model the numer-

ical solutions obtained in the coarse mesh M1 are already

very accurate, even for the higher De values (compare with

Fig. 4 for Oldroyd-B fluid), therefore no further refinement

was undertaken except for the 4:1 contraction ratio and a few

tests for the CR = 100 case. In the 4:1 benchmark test-case

we have also computed the numerical solutions on mesh M3-

CR4, which is generated from mesh M1-CR4 by doubling

the number of cells in each direction, in order to demonstrate

the insensitivity of xR/R2 and ΨR with mesh refinement, and

therefore validate the use of mesh M1 in the remaining sim-

ulations with the PTT model. Further numerical tests for the

CR = 100 case, not shown here for conciseness, also confirm

the adequacy of mesh M1 for the calculations with the PTT

model.

5. Effect of contraction ratio and Deborah number

In this section, we analyze the effects of Deborah number and

contraction ratio on the fluid flow kinematics through axisym-

metric contractions under creeping-flow conditions. We have

restricted this study to a Newtonian fluid and a shear-thinning

viscoelastic fluid following the PTT model with ε = 0.25 and

a solvent ratio β = 1/9 (which is hereafter referred to as the

standard PTT model).

Fig. 6. Streamline patterns for a PTT fluid (ε = 0.25, β = 1/9) in a geometry with a 4:1 contraction ratio (mesh M1-CR4).
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5.1. Flow patterns and streamlines

The effect of the Deborah number on the flow pattern

upstream of the contraction is shown in Figs. 6–8 for contraction

ratios of 4, 20 and 100, respectively.

For contraction geometries, vortices form upstream of the

contraction and grow in size and strength with elasticity (i.e.

Deborah number) independently of the contraction ratio, a

behavior which is typical of shear-thinning fluids [1,25,65]. The

nature of these recirculations, however, depends on the con-

traction ratio and Deborah number. The examples illustrated in

Figs. 6–8 were intentionally selected to illustrate the different

vortex trends, enhancements or inhibitions brought about by the

Deborah number and contraction ratio.

At low Deborah numbers the corner vortex grows with

increasing Deborah number until a lip vortex forms at a critical

value of De which is approximately independent of the con-

traction ratio provided that the contraction ratio is high (say,

CR>
˜

20). Lip and corner vortices co-exist within an intermediate

range of De that depends on the contraction ratio until eventually

the lip vortex grows towards the salient corner and dominates

the whole of the recirculating structure. Then, increasing fur-

ther the Deborah number for the contraction ratios studied here,

the large lip vortex continues to grow. As for the planar con-

traction geometry [39], the transition to a large lip vortex scales

with De/CR = λU2/R1, but the critical values for the planar and

axisymmetric contractions are different. For high contraction

ratios these three stages of vortex evolution are very clear, but

this is not the case for the lower contraction ratios tested, at

which the co-existence of distinct corner and lip vortices is not

observed. This apparent inconsistency can be better understood

if it is recognized that for the Deborah number at which the lip

vortex was expected to develop, the corner vortex has already

grown radially inwards to occupy the whole lateral wall from

the salient to the re-entrant corner.

In addition, in each case a weak secondary Moffat vortex is

also observed for the whole range of conditions considered in

Figs. 6–8. In fact, an infinite series of progressively smaller recir-

culations should be observed, as predicted by Moffatt [66] for a

Newtonian fluid in a corner. Although here we have high Deb-

orah number flows, and therefore the predictions of Moffat are

apparently not applicable, the flow in the vicinity of the salient

Fig. 7. Streamline patterns for a PTT fluid (ε = 0.25, β = 1/9) in a geometry with a 20:1 contraction ratio (mesh M1-CR20).
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Fig. 8. Streamline patterns for a PTT fluid (ε = 0.25, β = 1/9) in a geometry with a 100:1 contraction ratio (mesh M1-CR100).

corner is locally quasi-Newtonian since the shear rates are low,

as compared with the main flow. Due to the finite size of the

computational mesh we are unable to predict the third and sub-

sequent recirculations, although the second one is usually well

resolved. Generally, this second Moffat vortex is not observed

in similar numerical works found in the literature and therefore

confirms the good accuracy and resolution of the present results.

In Figs. 9–11 we overlap the streamlines (or τxx contour lines)

obtained at different CR and De to emphasize the correct choice

of scaling parameters for local flow characteristics. In Fig. 9, we

show the vortices near the re-entrant corner and we superimpose

the streamlines for three different contraction ratios (CR = 20,

40 and 100) maintaining the same downstream duct sizes. This

comparison is carried out at the same, low and high, Deborah

numbers. There is an almost perfect overlap of the lip vortex

near the re-entrant corner, even when a large lip-vortex dom-

inates the structure as observed for De = 20 in Fig. 9(b). The

collapse of the streamline patterns near the re-entrant corner is

clear evidence that the flow field in this region scales with De

for high CR geometries, i.e. the controlling deformation rate is

the downstream fully developed shear rate.

To complement this analysis, we show in Fig. 10 the normal-

stress τxx contour plot in the vicinity of the contraction plane.

Fig. 10(a) illustrates the effect of CR on τxx near the re-entrant

corner. In tune with previous observations (Fig. 9), the con-

tour lines in this region are observed to be independent of CR.

Although not shown here due to space limitations, this finding is

valid for all variables. In Fig. 10(b) we overlap τxx contour plots

for CR = 100 obtained using two meshes with different levels

of refinement (M1-CR100 and M3-CR100). It is clear that the

contour plot shown is independent of the mesh used except in

the region very close to the re-entrant corner, where small differ-

ences are observed. These differences are indeed only noticeable

at very large magnifications (only about 3% of the full width of

the upstream tube is shown in Fig. 10). Nevertheless, it should

be noted that the presence of a stress singularity at the re-entrant

corner will repeatedly produce minor deviations in the contour

lines even if the mesh is refined further. However, this does not

produce a noticeable impact on the flow patterns.

Away from the re-entrant corner the match between the

various sets of streamlines is extremely poor, even when we nor-

malize the distances using the radius of the upstream pipe R1 (or

CR, in non-dimensional terms). If in turn we plot the streamlines

corresponding to the same three CR but for three different De so

that the values of Deborah number divided by contraction ratio

are identical, e.g. De/CR = 0.05, and using the same upstream

pipe size, the resulting streamlines near the corner collapse as

shown in Fig. 11. Such data collapse demonstrates that the cor-

ner vortices scale with the dimensionless group De/CR, i.e. the

controlling deformation rate is now essentially the extensional

rate of fluid particles moving from the upstream to the down-

stream pipe, in the same way as observed for planar geometries

[39].

Fig. 12 shows a set of vortex pattern maps for the

contraction-plane region. These are a result of extensive numer-

ical calculations for various contraction ratios and increasing

Deborah numbers. The resulting flow patterns are classified as

corner vortex, lip vortex, or as a combination of lip plus corner-

vortex structures, and are plotted in maps of CR versus De or

De/CR to illustrate the different scaling rules. Fig. 12(a and b)
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Fig. 9. Comparison of streamlines for a PTT fluid (ε = 0.25, β = 1/9) near the re-entrant corner for three contraction ratios (CR = 20, 40 and 100) under standard

scaling: (a) De = 1; (b) De = 20.

represent the vortex maps for the axisymmetric contraction and

Fig. 12(c and d) depict the equivalent flow maps for a planar

contraction based on data from Alves et al. [39]. It is immedi-

ately clear that, for contraction ratios greater than 10, the onset

of formation of a lip vortex occurs at a fixed Deborah number,

while the point at which the lip vortex engulfs the corner vortex

occurs at a constant value of De/CR. Even though the overall

structure of the flow field in both axisymmetric and planar con-

tractions is strikingly similar, with the same type of vortices and

scaling rules found for both cases, the geometry of the contrac-

tion leads to a shift of the critical values of De and De/CR. The

vertical line in Fig. 12(a) for 0.1 ≤ De ≤ 0.2 demonstrates that

lip-vortex development is controlled by De. In the axisymmetric

contraction, this transition arises at an earlier Deborah number

than in the corresponding planar geometry (c.f. Fig. 12(a and

c)). The onset of a single merged vortex is dictated by De/CR as

is apparent in the vertical line in Fig. 12(b and d). Likewise, for

the axisymmetric case the transition occurs at a lower value of

the controlling parameter than that for the planar case.

5.2. Vortex size and intensity

In this section, the vortex trends and enhancement mecha-

nisms are analyzed in more detail by quantifying the size and

intensity of both corner and lip vortices.

The size of the vortex attached to the salient corner is denoted

here by xR and is measured as the longitudinal length from the

contraction plane to the edge of the vortex (along the axial direc-

tion) as shown in Fig. 1. The effect of dimensionless number

De/CR on this dimensionless vortex size (normalized with the

upstream channel radius R1) is shown in Fig. 13 for a range

of contraction ratios (2 ≤ CR ≤ 100). When plotted on a semi-

log scale, a sharp increase in the slope of the curve is observed

at De/CR ≈ 0.1 compatible with Fig. 12(b). Good agreement

between curves for different contraction ratios is observed for

CR ≥ 10. For smaller contraction ratios the agreement is not as

close since the flow in the smaller pipe has a greater influence

upon the flow features in the salient corner area. On the con-

trary, for high CR, the characteristics of the corner vortex are

only affected by upstream events and close agreement between

different CR is observed.

The variation of the dimensionless corner-vortex intensity,

ΨR, with De/CR is plotted in Fig. 14 for the same contrac-

tion ratios as above. Again, a reasonable correlation is achieved

for CR ≥ 10. These data provide further evidence that De/CR

is the correct scaling parameter for the corner-vortex inten-

sity.

In Fig. 15, the dimensionless lip-vortex intensity, ΨL, is plot-

ted as a function of the Deborah number for contraction ratios

higher than 10. Here, the lip-vortex intensity is calculated in the
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Fig. 10. Contour plots of τxx/(η0U2/R2) near the re-entrant corner for the PTT

fluid at De = 20. (a) Influence of CR (mesh M1) and (b) influence of mesh

refinement for CR = 100.

Fig. 11. Comparison of streamlines for a PTT fluid (ε = 0.25, β = 1/9) near the

corner after scaling distances with upstream channel height for three contraction

ratios (CR = 20, 40 and 100) under modified scaling (De/CR = 0.05).

cases when a lip and a corner vortex exist simultaneously or

when the lip vortex merges with the corner vortex. As expected

from the previous considerations ΨL scales with De, further

emphasizing that this is indeed the parameter controlling lip-

vortex generation and growth.

Incidentally, the maximum De slightly increases with the con-

traction ratio as shown also in Fig. 15. A similar result was

observed by Alves and Poole [67] in the flow through smooth

contractions, where a simple theoretical analysis is presented to

explain this finding.

5.3. Pressure drop

Associated with vortex enhancement, an extra pressure loss

has been experimentally measured in viscoelastic liquid flows

through axisymmetric contractions [8]. The total pressure drop

(�Ptotal) between a location in the large pipe upstream of the

contraction and a location in the small pipe downstream of the

contraction results from a combination of the pressure drop due

to fully developed Poiseuille flow (�PPoiseuille) in each pipe and

an extra pressure drop (�Pext) caused by the extensional flow

in the contraction:

�Ptotal = �PPoiseuille + �Pext (7)

This extra pressure loss is usually well above that expected from

estimates based on shear-viscosity alone [8,10] and is often made

dimensionless using the downstream fully developed wall shear

stress (τw) in the form

C =
�Pext

2τw
(8)

where C is termed the Couette correction.

This extra pressure drop is an important flow parameter and

during the fifth international workshop on numerical methods in

non-Newtonian flow it was proposed as a reference parameter

for the benchmark 4:1 contraction flow problem [40].

The evolution of the dimensionless extra pressure drop with

the Deborah number is shown in Fig. 16 for various contraction

ratios ranging from 10 to 100. In addition, we have plotted the

Couette correction based on Sampson’s analytical solution for

the Stokes flow of a Newtonian fluid through a circular orifice

of zero thickness in an infinite wall and use it to assess the

predictions at low De. The Sampson pressure drop is given by

[45]:

�PS =
3Qµ

R3
2

(9)

where R2 is the orifice radius and µ is the constant shear-

viscosity. As Sisavath et al. [45] highlight, for a contraction

geometry under creeping-flow conditions, the flow is symmetric

and as a result the extra pressure drop due to the entrance flow is

half the extra pressure drop through a thin orifice. Therefore, we

can estimate the Couette correction as C = (�PS/2)/2τw = 3π/16.

We should emphasize that this result is only (approxi-

mately) valid for creeping-flow conditions and high contraction

ratios.
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Fig. 12. Vortex pattern maps for the axisymmetric and planar case under: (a and c) standard scaling; (b and d) modified De scaling.

For the smallest De numbers, the numerically calculated Cou-

ette correction approaches asymptotically the value predicted

by Sampson’s equation, at least for the large contraction ratios

used here (we get C = 0.575 for CR = 100, De = 0). For lower

contraction ratios, consistent with the experimental observa-

tions of Rothstein and McKinley [10] and references therein, the

assumption of a lateral wall of infinite extent ceases to be a good

approximation. As we increase the Deborah number, extensional

effects start to play an important part—non-Newtonian behav-

ior is clearly visible as the Couette correction deviates from

the Sampson’s estimation, increasing substantially for De > 1. In

any case, for the large contraction ratios, the Couette correction

scales with the Deborah number.

Fig. 13. Variation of corner-vortex size, scaled with upstream tube radius, with

De/CR for a PTT fluid (ε = 0.25, β = 1/9).

6. Effect of the rheological model

As described in the Introduction, the behavior of constant-

viscosity and shear-thinning elastic fluids can be quite distinct,

depending on the flow conditions. The aim of this section is to

establish a comparison between the flow behavior triggered by

the use of different parameters of the rheological models.

We have performed a detailed study of the effect of the ε

parameter of the PTT model on the vortex features and extra

pressure drop. The value of ε was varied from 0.5 to 0, i.e. down

to the limiting case of the Oldroyd-B model. The use of the

Oldroyd-B constitutive equation in the simulations presents an

additional numerical difficulty, and convergence could not be

achieved for high Deborah numbers. As a consequence, for the

Fig. 14. Variation of corner-vortex intensity with modified De scaling for a PTT

fluid (ε = 0.25, β = 1/9).
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Fig. 15. Variation of lip vortex intensity with De for a PTT fluid (ε = 0.25,

β = 1/9).

Fig. 16. Variation of Couette correction with De for a PTT fluid (ε = 0.25,

β = 1/9).

Oldroyd-B model, the analysis is restricted to a much narrower

range of Deborah numbers.

Figs. 17–19 show the effect of ε on the size of the corner

vortex, the intensity of the lip vortex and the Couette correction,

respectively, for CR = 20. The variable used in the abscissa is the

Fig. 17. Effect of the ε parameter on the corner-vortex size (CR = 20).

Fig. 18. Effect of the ε parameter on the lip vortex intensity (CR = 20).

controlling parameter for each property (De for the lip-vortex

intensity and the Couette correction, and De/CR for the corner-

vortex size).

For the range of low De (and De/CR), which corresponds

to the corner-vortex region of the vortex map in Fig. 12(a), the

results of Couette correction, vortex size and intensity are iden-

tical for the two constitutive models used. At these low values

of De, the non-linear term of the PTT model is small and the

results are insensitive to the value of ε. However, for higher val-

ues of De (and De/CR), the results are highly influenced by ε.

For instance, at high De/CR when lip vortices are present, the

size of the vortex that reaches the outer wall increases in inverse

proportion to the value of ε (cf. Fig. 17). Similarly, the evolu-

tion of the lip-vortex intensity with De depends strongly on the

value of ε, showing intensification as ε decreases (Fig. 18). At

high De, the magnitude of the Couette correction becomes also

very sensitive to the ε parameter (Fig. 19). For the linear PTT

model with the standard parameters used in the previous sec-

tion (ε = 0.25), the extra pressure loss due to the contraction entry

leads to positive values of the Couette correction for the whole

range of De tested, while it may reach negative values as ε is

decreased. For the particular case of the Oldroyd-B fluid (ε = 0),

the Couette correction becomes negative for Deborah numbers

Fig. 19. Effect of the ε parameter on the Couette correction (CR = 20).
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Fig. 20. Comparison of the pressure profiles along the x-axis for different rhe-

ological models (CR = 40).

larger than 0.4. A negative value indicates a pressure gain as the

fluid goes through the contraction (�Ptotal < �PPoiseuille), i.e. an

elastic recovery. However, such an elastic recovery has not yet

been observed in experiments, not even with Boger fluids, a find-

ing that is corroborated by other numerical works (e.g. [37,68]).

Based on previous experimental observations and numerical cal-

culations, Rothstein and McKinley [10,20] suggested that the

inability of the Oldroyd-B constitutive model to predict the cor-

rect variation of the pressure drop with the Deborah number may

be related to an inadequate description of the internal molecu-

lar conformations of the polymer chains that arise during rapid

stretching.

The pressure profiles along the pipe axis are shown in dimen-

sionless form in Fig. 20 for a Newtonian, an Oldroyd-B and a

standard PTT fluid, in the CR = 40 geometry. For the viscoelastic

fluids the results are for De = 2. Examination of the region close

to the contraction plane (dashed line represents x = 0), there is a

clear pressure overshoot for the Oldroyd-B fluid. Downstream

of the contraction, the pressure corresponding to the Oldroyd-B

model starts to decrease sharply with an increasing slope. Far

downstream of the contraction (x/R2 ≈ 12), the slope approaches

that of the Newtonian fluid (with the same viscosity). For the

same Deborah number, the curve for the Oldroyd-B model is

steeper than for the PTT fluid because of shear-thinning effects

in the latter model.

The profiles of streamwise velocity and corresponding strain-

rate, along the centerline for the standard PTT fluid, are shown in

Fig. 21(a and b), respectively. These were obtained for CR = 40

and Deborah numbers in the range 0.1 ≤ De ≤ 500. For com-

parison, the results for a Newtonian fluid are also included. For

low De, at a position far upstream of the contraction where the

shear rate is low and where there are no shear-thinning or exten-

sional effects, the centerline velocity is approximately twice the

average velocity in the large pipe (U1), such as in Newtonian

Poiseuille flow. As the fluid approaches the contraction, the

velocity increases significantly when the diameter of the pipe

suddenly decreases. When the Deborah number increases the

dimensionless velocity gradient along the axis (i.e. the dimen-

sionless strain-rate) is reduced and the entrance effects are felt

Fig. 21. Profiles along the x-axis for the standard PTT model (ε = 0.25, β = 1/9)

with CR = 40: (a) velocity profiles and (b) strain-rate profiles.

further upstream of the contraction plane due to elastic effects.

Downstream of the contraction plane the flow fully re-develops

and, for low De, the velocity profile of the PTT fluid considered

here is identical to that of the Newtonian fluid. However, in an

intermediate range of Deborah numbers (De = 1 and 10), there is

a sharp velocity overshoot near the contraction plane, indicating

a tendency for the elastic flow to converge towards the axis (very

similar to what occurs in the reverse problem, of flow through

expansions, see Oliveira [11] and Poole et al. [69]). Although

the location of the maximum velocity does not change signifi-

cantly, it takes longer for the stresses to relax for the higher De

numbers. In these cases, the radial profiles of velocity are flatter

and therefore the maximum velocity attained at the centerline

is lower than the expected value of 2U2 for Poiseuille flow of

a Newtonian fluid on account of shear-thinning effects. At the

largest Deborah number plotted (De = 500), the fully developed

velocity profile resembles once more that of a Newtonian fluid.

At such high De, the shear viscosity is significantly smaller than

η0 (approaching ηs, here ηs/η0 = 1/9), and the Newtonian compo-

nent of the shear stress becomes the dominant term. It should be

emphasized that the extensional behavior of the Newtonian fluid

and of the PTT fluid is significantly different since the PTT fluid
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Fig. 22. Profiles along the x-axis for the Oldroyd-B model (β = 1/9) and CR = 40:

(a) velocity profiles and (b) strain-rate profiles.

is extensionally thickening until it reaches a plateau in exten-

sional viscosity at high strain rates, whereas a Newtonian fluid

always exhibits a constant extensional viscosity.

For the Oldroyd-B fluid (Fig. 22 for CR = 40), the veloc-

ity profiles upstream of the contraction are similar to those

described above for the PTT fluid, except that now a velocity

overshoot is also observed in the range of De obtainable. The

magnitude of this overshoot increases with the Deborah number,

and the fluid takes longer to fully re-develop, but as expected the

velocity at the centerline downstream of the contraction reduces

to the value for Newtonian Poiseuille flow further downstream

of the contraction (2U2).

7. The normal-stress ratio criterion

Rothstein and McKinley [10] showed that competing exten-

sional stresses and shear-induced normal stresses play a decisive

role on the pathway of vortex enhancement that a fluid will

follow in a contraction–expansion flow. They define a dimen-

sionless normal-stress ratio, N, and found that there is a critical

value of N ≈ 0.055 ± 0.005 below which corner-vortex growth

is observed and above which lip-vortex growth is observed. This

normal-stress ratio is the ratio of the first normal-stress differ-

ence in steady shear flow to that in transient uniaxial extension:

N ≡
N1/η0γ̇

(τxx − τrr)/η0ε̇
=

Sr(γ̇)

Tr(εH)
(10)

where Tr(εH) is the Trouton ratio evaluated at the total Hencky

strain accumulated along the axial distance, εH, Sr(γ̇) the shear-

rate-dependent stress ratio and γ̇ is the shear rate, which can be

estimated as γ̇ ≈ ε̇ = U2/R2 [10].

Following their approach, we plot the normal-stress ratio as

a function of the Deborah number for different fluids and dif-

ferent contraction ratios (Fig. 23). Values of N were obtained

directly from the material functions and Eq. (10) without resort-

ing to numerical simulations of the actual contraction flows.

Subsequently, based on the results of the simulation, a closed or

open symbol was given to each data point in Fig. 23 depending

on the vortex pattern predicted numerically. The open symbols

correspond to the salient-corner region and the closed sym-

bols correspond to the region where corner and lip vortices are

seen to co-exist, or where a large lip-vortex dominates. Also

marked in the figure is the critical range of the normal-stress

ratio (N ≈ 0.055 ± 0.005), which Rothstein and McKinley [10]

found to divide the data into two regions. Clearly, for the large

contraction ratios, the normal-stress ratio can be used success-

fully as a method to predict the onset of lip-vortex activity.

Hence, knowing the curve of N versus De and using this cri-

terion, one is able to identify if there is lip-vortex activity for

a certain De and to predict the approximate value of De at

which lip-vortex onset will occur, with the benefit of avoid-

ing expensive numerical calculations. We note that the onset

of lip-vortex activity coincides with the Deborah number for

which the normal-stress ratio attains a value close to 0.055,

when approached from below. After a lip-vortex structure has

been established, and N = 0.055 is approached from above (as

some of the data points shown by closed symbols below the line

N = 0.055 in Fig. 23 indicate), then no further change of vortex

type should occur.

Fig. 23. Normal-stress ratio as a function of the Deborah number for different

contraction ratios and rheological models. The open symbols correspond to

corner-vortex region, and the closed symbols to the region where corner and lip

vortices co-exist, or where a large lip vortex dominates.
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8. Conclusions

Comprehensive numerical simulations with a finite-volume

method of PTT viscoelastic flow through axisymmetric abrupt

contractions of varying contraction ratio, from 2 up to 100, pro-

duced results for the vortex characteristics and the formation

mechanism similar to those found in a previous study for the

planar case [39]. The inception of a lip-vortex mechanism and

its intensification are controlled by a Deborah number defined in

the usual way, based on downstream quantities (De = λU2/R2),

starting at De ≈ 0.1–0.2 (compared with the range 1–2 for the

planar case). On the other hand, the characteristics of the corner

vortices are controlled by a scaled Deborah number, De/CR.

The Couette correction, a normalized measure of the local

pressure loss due to the contraction, was seen to first decrease

with De and then, for De > 1, to increase up to values three

times greater than those obtained for a Newtonian fluid. This

variation, valid for the PTT model with ε = 0.25, was very sen-

sitive to the extensibility parameter used in the PTT model. For

low values of ε, and namely for ε → 0 leading to the Oldroyd-

B model, the Couette correction never exceeds the Newtonian

value (which is itself in excellent agreement with the theory of

Sampson) and even becomes negative (elastic recovery) for the

Oldroyd-B model when De increases, as also found by other

authors.

The vortex type (corner, lip or mixed) is quantified in a two-

dimensional map with CR and De as independent parameters. A

discerning criterion proposed by Rothstein and McKinley [10]

in which the vortex type correlates with a normal-stress ratio of

shear and elongational stresses, was shown to match reasonably

well the results of our simulations. Finally, the paper also pro-

vides vortex data of benchmark quality for the 4:1 contraction

test case, which may be useful for code assessment since the

existing results in the literature exhibit too much scatter.
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