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Adynamical system is controllable if by imposing appropriate external signals on a subset of its nodes, it can
be driven from any initial state to any desired state in finite time. Here we study the impact of various
network characteristics on the minimal number of driver nodes required to control a network. We find that
clustering and modularity have no discernible impact, but the symmetries of the underlying matching
problem can produce linear, quadratic or no dependence on degree correlation coefficients, depending on
the nature of the underlying correlations. The results are supported by numerical simulations and help
narrow the observed gap between the predicted and the observed number of driver nodes in real networks.

W
hile during the past decade significant efforts have been devoted to understanding the structure,
evolution and dynamics of complex networks1–6, only recently has attention turned to an equally
important problem: our ability to control them. Given the problem’s importance, recent work has

extended the concept of pinning control7–9 and structural controllability10–13 to complex networks. Here we focus
on the latter approach. A networked system is considered controllable if by imposing appropriate external signals
on a subset of its components, called driver nodes, the system can be driven from any initial state to any final state
in finite time14–17. As the control of a system requires a quantitative description of the governing dynamical rules,
progress in this area was limited to small engineered systems. Yet, recently Liu et al.10 showed that the identifica-
tion of the minimal number of driver nodes required to control a network, ND, can be derived from the network
topology by mapping controllability16 to the maximummatching in directed networks18. The mapping indicated
that ND is mainly determined by the degree distribution P(kin, kout). We know, however, that a series of char-
acteristics, from degree correlations19–21 to local clustering22 and communities23–26, cannot be accounted for by
P(kin, kout) alone, prompting us to ask: which network characteristics affect the system’s controllability?

The three most commonly studied deviations from the random network configuration are (i) clustering,
manifested as a higher clustering coefficient C than expected based on the degree distribution27; (ii) community
structure, representing the agglomeration of nodes into distinct communities, captured by the modularity
parameter Q25; (iii) degree correlations28. First, we motivate our work by showing that network characteristics
other than the degree distribution also affect network control. Next, we use numerical simulations to identify the
network characteristics that affect controllability, finding that only degree correlations have a discernible effect.
We then analytically derive nD 5 ND/N for random networks with a given degree distribution and correlation
profile. More detailed calculations are provided in the Supplementary Information Sec. III. Finally, we test our
predictions on real networks.

Results
Prediction based on the degree distribution. To motivate our study we compared the observed ND to the
prediction based on the degree sequence for several real networks. For this we randomize each network preserving
its degree sequence and we calculate Nrand

D , the number of driver nodes for the randomized network. PlottingND

versus Nrand
D on log-log scale indicates that the degree sequence correctly predicts the order of magnitude of ND

despite known correlations19,20 (Fig. 1a). However, by plotting nD 5 ND/N versus nrandD ~Nrand
D

�

N we observe
clear deviations from the degree based prediction (Fig. 1b). Our goal is to understand the origin of these
deviations, and the degree to which network correlations can explain the observed nD.
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Numerical simulations. We start from a directed network with
Poisson29,30 or scale-free degree distribution31,32. The scale-free
network is generated by the static model described in the Methods
section. We use simulated annealing to add various network
characteristics by link rewiring, while leaving the in- and out-
degrees unchanged, tuning each measure to a desired value, for
details see the Methods section. We computed nD using the
Hopcroft-Karp algorithm33.

Clustering. We use the global clustering coefficient27 defined for
directed networks as

C~
3: number of triangles

2: number of adjacent edge pairs
: ð1Þ

The simulations indicate that changes in C only slightly alter nD and
that the effect is not systematic (Fig. 2a). Hence we conclude that C
plays a negligible role in determining nD.

Modularity. We quantify the community structure using25,26:

Q~
1

E

X

vw

Avw{
k

inð Þ
v k

outð Þ
w

E

" #

dcv ,cw , ð2Þ

whereAvw is the adjacency matrix, cv and cw are the communities the
v andw nodes belong to, respectively. SpecifyingQ still leaves a great
amount of freedom in the number and size of the communities. We
therefore choose to randomly divide the nodes into NC equally sized
groups, and increase the edge density within these groups, elevating
Q to the desired value.
The simulations indicate that this community structure has no

effect on nD (Fig. 2b). While adding communities to networks can
be achieved in many different ways, and the effect of modularity
can be explored in more detail (e.g. hierarchical organization of
communities23,34,35, overlapping community structure24,36, etc), we
have failed to detect systematic, modularity induced changes in
nD, prompting us to conclude that Q does not play a leading role
in nD.

Degree correlations. In directed networks each node has an in-degree
(ki) and an out-degree (ko), thus we can define four correlation
coefficients: correlations between the source node’s in- and out-
degree, and the target node’s in- and out-degree (Figs. 3, 4)28. We
use the Pearson coefficient to quantify each correlation with a single
parameter:

Figure 2 | Effect of the clustering coefficient C and modularityQ on the density of driver nodes, nD. Network size isN5 10, 000. Each data point is an

average over 50 independent runs; the error bars, typically smaller than the symbol size, represent the standard deviation of the measurements.

Figure 1 | (a) We compare ND for real systems to Nrand
D , representing the number of driver nodes needed to control their randomized counterparts.

Randomization eliminates all local and global correlations, only preserving the degree sequence of the original system. We find that the degree sequence

predicts the order of magnitude ofND correctly, however, small deviations are hidden by the log scale, needed to show the whole span ofND seen in real

systems. (b) These deviations are more obvious if we compare the density of driver nodes nD 5 ND/N and nrandD in linear scale, finding that for some

systems (e.g. regulatory and p2p Internet networks) the degree sequence serves as a good predictor of nD, while for other systems (e.g. metabolic networks

and food webs) nD deviates from the prediction based solely on the degree sequence.
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r a{bð Þ
~

1

E

X

e k að Þ
e {k að Þ

� �

j bð Þ
e {j bð Þ

� �

s að Þs bð Þ
, ð3Þ

where
X

e ? sums over all edges, a, bg {in, out} is the degree type,

k(a) is the degree of the source node, j(b) is the degree of the target

node. And ja~
1

E

X

ej
a
e is the average degree of the nodes at the

beginning of each link, s2a~
1

E

X

e k að Þ
e {k að Þ

� �2

is the variance; k bð Þ

and s(b) are defined similarly.
Simulations shown in Figs. 3 and 4 indicate that degree correla-

tions systematically affect nD. We observe three distinct types of
behavior:

(i) nD depends monotonically on r(out-in), so that low (negative)
correlations increase nD and high (positive) correlations lower
nD (Figs. 3c, 4c);

(ii) Both r(in-in) and r(out-out) increase nD, independent of the sign of
the correlations (Figs. 3a, 3d, 4a, 4d);

(iii) r(in-out) has no effect on nD (Figs. 3c, 4c).

The behavior is qualitatively the same for Erdős-Rényi (Fig. 3) and
scale-free (Fig. 4) networks.
The diversity of these numerical results require a deeper explana-

tion. Therefore in the remaining of the paper we focus on

understanding analytically the role of degree correlations, which,
by systematically altering nD, affect the system’s controllability.

Analytical framework.The task of identifying the driver nodes can
be mapped to the problem of finding a maximum matching of the
network10. A matching is a subset of links that do not share start or
end points. We call a node matched if a link in the matching points
at it and we gain full control over a network if we control the
unmatched nodes. The cavity method has been successfully used
to calculate the size of the maximum matching for undirected37

and directed10 network ensembles with given degree distribution.
Here we study network ensembles with a given degree correlation
profile.
We calculate nD analytically for a given P(kin, kout) and selected

degree-degree correlation e(jin, jout; kin, kout), representing the prob-
ability of a directed link pointing from a node with degrees jin and jout
to a node with degrees kin and kout. In the absence of degree correla-
tions (neutral case)

e 0ð Þ ji,jo; ki,koð Þ~P inð Þ jið ÞQ outð Þ joð ÞQ inð Þ kið ÞP outð Þ koð Þ, ð4Þ

where Q outð Þ joð Þ~
2jo

kh i
P outð Þ joð Þ, Q inð Þ kið Þ~

2ki

kh i
P inð Þ kið Þ and Ækæ is

the average degree. To ensure analytical tractability we chose21

Figure 3 | The impact of degree-degree correlations on the density of driver nodes (nD) for the Erdős-Rényimodel (N5 10, 000) for average degrees Ækæ
5 1 (red), Ækæ5 3 (green), Ækæ5 5 (blue), Ækæ5 7 (black) and Ækæ5 9 (orange). The results are similar for the scale-freemodel (see Fig. 4). Each data point

is an average of 100 independent runs.
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e in-inð Þ ji,jo; ki,koð Þ~Q outð Þ joð ÞP outð Þ koð Þ

P inð Þ jið ÞQ inð Þ kið Þzr in-inð Þm in-inð Þ ji, kið Þ
h i

,

ð5aÞ

e in-outð Þ ji,jo; ki,koð Þ~Q outð Þ joð ÞQ inð Þ kið Þ

P inð Þ jið ÞP outð Þ koð Þzr in-outð Þm in-outð Þ ji, koð Þ
h i

,

ð5bÞ

e out-inð Þ ji,jo; ki,koð Þ~P inð Þ jið ÞP outð Þ koð Þ

Q outð Þ joð ÞQ inð Þ kið Þzr out-inð Þm out-inð Þ jo, kið Þ
h i

,

ð5cÞ

e out-outð Þ ji,jo; ki,koð Þ~Q inð Þ jið ÞP inð Þ kið Þ

P outð Þ joð ÞQ outð Þ koð Þzr out-outð Þm out-outð Þ jo, koð Þ
h i

:

ð5dÞ

By fixing m(a–b)(j, k) (a, bg {in, out}) we obtain a one parameter
network ensemble characterized by r(a–b), where m(a–b)(j, k) satisfies
the constraints

X

?

j~0

m a{bð Þ j, kð Þ~
X

?

k~0

m a{bð Þ j, kð Þ~0, ð6Þ

s að Þs bð Þ
X

?

j,k~0

jk:m a{bð Þ j, kð Þ~1, ð7Þ

and all elements of e(a–b)(j, k) are between 0 and 1.
Our goal is to understand the relation between nD and the degree

correlation coefficient r(a–b). Assuming that r(a–b) is small we treat the
correlations as perturbations to the neutral case, discussing the
impact of the four r(a–b) correlations separately.

Out-in correlations. Using equation (5c) and keeping the first non-
zero correction we obtain (Supplementary Information Sec. III.):

nD
out�inð Þ

~nD
0ð Þ
{r out�inð Þ kh i

4
M1 ŵ2, 1{w1ð ÞzM1 1{ŵ1, w2ð Þ½ �,ð8Þ

where nD
0ð Þ is the fraction of driver nodes of the uncorrelated net-

work; wi and ŵi only depend on P(kin, kout)
10, and

M1 x,yð Þ~
X

?

j,k~1

m out�inð Þ j, kð Þxj{1yk{1
: ð9Þ

Equation (8) predicts that nD depends linearly on r(out-in), a prediction
supported by simulations for small r(out-in) (Figs. 3c and 4c). This
behavior is also revealed by the equivalent problem of finding the

Figure 4 | The impact of degree-degree correlations on the density of driver nodes (nD) for the scale-free model (N 5 10, 000, c 5 2.5) for average
degrees Ækæ5 1 (red), Ækæ5 3 (green), Ækæ5 5 (blue), Ækæ5 7 (black) and Ækæ5 9 (orange). The results are similar for the Erdős-Rényi model (see Fig. 3).

Each data point is an average of 100 independent runs.
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maximummatching of graphs10. For a node Awith out-degree k0, by
definition only one edge can be in thematching. If the remainder k0 –
1 edges point to nodes with degree 1 (disassortative case), A inhibits
them from being matched, so we have to control each of them indi-
vidually, increasing nD. If the remainder k0 – 1 edges point to hubs
(assortative case), these hubs are likely to be matched through
another incoming edge, decreasing nD.

Out-out correlations. The cavity method indicates that for out-out
correlations the first nonzero correction is of order (r(out-out))2:

nD
out-outð Þ

~nD
0ð Þ
zr out-outð Þ2 kh i

8

H inð Þ
’ 1{w1ð ÞM2 ŵ2ð ÞzH outð Þ

’ w2ð ÞM2 1{ŵ1ð Þ
h i

,

ð10Þ

whereH að Þ xð Þ~
P

?

k~1Q
að Þ kð Þxk{1 (ag {in, out}) only depends on

P(kin, kout) and

M2 xð Þ~
X

?

j,k~1,l~0

m out�outð Þ l,jð Þm out�outð Þ l,kð Þ

P outð Þ lð Þ
xj{1xk{1

: ð11Þ

Equation (10) predicts that nD
out�outð Þ does not depend on the out-

out correlation of the directly connected nodes, but only on the
correlation between the second neighbors, hence its dependence is
quadratic in r(out-out), a prediction supported by numerical simula-
tions (Figs. 3d and 4d). Indeed, positive (negative) r(out-out) correlation
between the immediate neighbors means that if nodeA has high out-
degree, then node B is expected to have high (low) out-degree, and
therefore C is likely to have high out-degree (Fig. 5). That is, both
positive and negative one-step out-out correlations induce positive

two-step correlations, accounting for the symmetry of the effect
observed in simulations (Figs. 3d and 4d).

In-in correlations. Switching the direction of each link does not
change the matching, but turns out-out correlations into in-in cor-
relations. So nD

in�in can be obtained by exchanging P(in)(kin) and
P(out)(kout) in equation (10), predicting again a quadratic dependence
on r(in-in), supported by the numerical simulations (Figs. 3a and 4a).

In-out correlations. The equations for nD do not depend on the in-
degree of the source and the out-degree of the target of a link, hence
we predict that r(in-out) does not play a role in network controllability, a
prediction supported by the simulations (see Figs. 3b and 4b).
Taken together, we predict that the functional dependence of nD

on degree correlations defines three classes of behaviors, depending
on the matching problem’s underlying symmetries: nD has no
dependence on r(in-out), linear dependence on r(out-in) and quadratic
dependence on r(in-in) and r(out-out). These predictions are fully sup-
ported by numerical simulations (Figs. 3 and 4): for small rwe see no
dependence on r(in-out), an asymmetric, monotonic dependence on
r(out-in), and a symmetric on r(in-in) and r(out-out).
To directly compare the analytical predictions to simulations we

need to know the complete e(ji, jo; ki, ko) distribution, which is not
explicitly set in our simulations. So to test the results we use a rewir-
ing method that sets the e(ji, jo; ki, ko) distribution, not only the r
correlation coefficient21. This method is not as robust as our original
algorithm and the range of accessible r values is more restricted.
However, since our results are based on perturbation schemewe only
expect them to be correct for small r values. Indeed, we find that the
predictions quantitatively reproduce the numerical results in a fair
interval of r(a–b) (Fig. 6).

Real networks. We test the predictions provided by the developed
analytical and numerical tools on a set of publicly available network
datasets. When complex systems are mapped to networks, the links
connecting the nodes represent interactions between them. In this
context self-loops represent self-interactions, with a strong, well
understood impact on controllability10,38. While in some systems
self-loops are obviously present (e.g. neural networks), in others
they are manifestly absent (e.g. electric circuits39). Our purpose
here is to test the effect of correlations, hence we rely on datasets
that capture the wiring diagram of various complex systems with
different correlation properties. Therefore, even if in a few of these

Figure 5 | One-step out-out correlations induce positive two-step
correlation. Positive (negative) correlation between neighboring nodes

means that if nodeA has high out-degree, then node B is likely to have high

(low) out-degree, and hence C will likely have high out-degree.

Figure 6 | The analytic formulas are tested with simulations on an (a) Erdős-Rényi model and on a (b) scale-free model. We used the algorithm

proposed in21 to set e(a2b)(ji, jo; ki, ko). For (a) network we choose N5 1, 000 and Ækæ 5 3; for (b) N5 1, 000, c5 2.5 and Ækæ 5 4. Each data point is an

average over 100 independent runs; the errors represent by the standard deviation of the measurements.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1067 | DOI: 10.1038/srep01067 5



maps self-loops are missing, it is beyond the scope of this work to
complete these networks. However, when studying controllability of
a particular system, careful thought has to be put into whether self-
loops are present or not. We present a systematic study on the effect
of self-loops in the Supplementary Information Sec. II.B.
To test the impact of our predictions on real networks we calculate

D~
ND{Nrand

D

N
, ð12Þ

where Nrand
D represent the number of driver nodes for the degree-

preserved randomized version of the original network. Hence if D5

0 then P(kin, kout) accurately determines ND; if D ? 0 then the
structural properties not captured by the degree sequence influence
its controllability. We measure the correlations in several real net-
works and based on our numerical and analytical results we predict
the sign of D (Fig. 7). We grouped the networks according to our
predictions. We provide the details of each network dataset in the
Supplementary Information Table SI.

Group A. The networks of p2p Internet (Gnutella filesharing clients)
do not have strong correlations, therefore we expect nD to be cor-
rectly approximated by the prediction based on P(kin, kout) (i.e. D<
0), in line with the empirical observations.

Group B. As in most networks the three relevant correlations coexist
to some degree (Fig. 7), it is impossible to isolate their individual role.
Yet, the networks in this group (electric circuits, metabolic networks,
neural networks, power grids and food webs with exception of the
Seagrass network) all have negative out-in and nonzero in-in and
out-out correlations, each of which individually increase nD as we
showed above. Therefore we predict D. 0, in line with the empirical
observations.

Group C. Only the prison social-trust and the cell phone network
feature significant positive out-in correlations. These networks also
display nonzero in-in and out-out correlation, leading to the coex-
istence of two competing effects: out-in correlations decrease nD and
the out-out and in-in correlations increase nD. Since the out-in cor-
relation is a first order effect (equation (8)), while out-out and in-in
correlations are only of second order (equation (10)), we expect a
decrease in nD (i.e. D , 0), consistent with the empirical results.

GroupD.The Seagrass foodweb and citation networks do not feature
significant out-in correlations, only the secondary in-in and out-out

correlations, hence we expect nD to increase (D. 0), consistent with
the observations.

Group E.Only the transcriptional regulatory networks are somewhat
puzzling in that they show degree correlations, yet the degree
sequence still correctly gives nD. However, the simulations indicated
that the effect of correlations is negligible for high nD. And our
analytical results showed that the value of the correction depends
on details of e(ji, jo; ki, ko), not captured by the Pearson coefficient r.
These observations highlight that even though in most cases our
qualitative predictions based on r are valid, in some cases further
investigation is required.

Discussion
The goal of our paper was to clarify the higher order network char-
acteristics that influence controllability. We studied the effect of
three topological characteristics: clustering, modularity and degree
correlations. We used numerical simulations to identify the role of
the relevant characteristics, finding that changes in the clustering
coefficient and the community structure have no systematic effect
on the the minimum number of driver nodes nD. In contrast degree
correlations showed a robust effect, whose magnitude and direction
depends on the type of correlation. Using the cavity method we
derived nD for networks with given degree distribution and correla-
tion profiles, finding results that are consistent with our numerical
simulations. For real networks these numerical and analytic results
enabled us to qualitatively explain the deviation of the observed nD
from the prediction based only on P(kin, kout).
Our results not only offer a new perspective on the role of topo-

logical properties on network controllability, but also raise several
questions. Future research directions include determining the
optimal network structure to minimize the number of necessary
driver nodes, and studying how different network characteristics
influence the robustness of the control configuration.

Methods
Generating a scale-free network.We use the static model to generate directed scale-
free networks40. We start from N disconnected nodes and assign a weight wi 5 (i 1
i0)

–a to each node i (i5 1…N).We randomly select two nodes i and jwith probability
proportional to wi and wj respectively and if they are yet not connected, we connect
them. We allow self-loops, but avoid multi-edges. We repeat the process until L links
have been placed. The resulting network has average degree Ækæ5 2L/N, and P(in/out)(k)

, k–c for large k, where c~1z
1

a
, and maximum degree kmax*i{a

0 .

To systematically study correlations, the starting network has to be uncorrelated.
However, the presence of hubs may induce unwanted degree correlations41, and may

Figure 7 | The observed and predicted deviation between ND and N rand
D . Red line: D~ ND{Nrand

D

� ��

N , the prediction error based on the degree

sequence. Dashed lines: correlations relevant to controllability. For each network D is calculated by averaging over 50 independent configurations.
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also considerably limit the maximum and minimum correlations accessible via
rewiring42. We overcome these difficulties by introducing a structural cutoff in the
degrees, choosing i0 to ensure kmax, (ÆkæN)1/2 43. Note, that in the static model of Goh
et al. i0 5 040.

As both in- and out-degree of node i is proportional to wi, the above procedure
results in correlations between the in- and out-degrees of node i. To eliminate the
correlations, we randomize the in-degree sequence while keeping the out-degree
sequence unchanged.

Rewiring algorithm. We use degree preserving rewiring20 to add each network
characteristic. Suppose that the chosen network characteristic is quantified by a
metric X. To set its value to X*, we define the E(X)5 jX2 X*j energy, so E(X*) is a
global minimum. We minimize this energy by simulated annealing44: (1) choose two
links at random with uniform probability; (2) rewire the two links and calculate the
energy E(X) of the resulted network; (3) accept the new configurationwith probability

p~
1, if DEƒ0

e{bDE
, if DEw0,

�

ð13Þ

where the b parameter is the inverse temperature; (4) repeat from step one and
gradually increase b. Stop if jE(X) 2 E(X*)j is smaller than a predefined value.

Note, that keeping the degree sequence bounds the possible values of X that can be
reached by rewiring. In all cases we study the full interval of accessible X values.
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