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Effect of Cytokines on Osteoclast Formation
and Bone Resorption during Mechanical Force Loading of
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Mechanical force loading exerts important e	ects on the skeleton by controlling bone mass and strength. Several in vivo
experimental models evaluating the e	ects of mechanical loading on bone metabolism have been reported. Orthodontic tooth
movement is a useful model for understanding the mechanism of bone remodeling induced by mechanical loading. In a mouse
model of orthodontic tooth movement, TNF-� was expressed and osteoclasts appeared on the compressed side of the periodontal
ligament. In TNF-receptor-de
cient mice, there was less tooth movement and osteoclast numbers were lower than in wild-type
mice. �ese results suggest that osteoclast formation and bone resorption caused by loading forces on the periodontal ligament
depend on TNF-�. Several cytokines are expressed in the periodontal ligament during orthodontic tooth movement. Studies have
found that in�ammatory cytokines such as IL-12 and IFN-� strongly inhibit osteoclast formation and tooth movement. Blocking
macrophage colony-stimulating factor by using anti-c-Fms antibody also inhibited osteoclast formation and tooth movement. In
this review we describe and discuss the e	ect of cytokines in the periodontal ligament on osteoclast formation and bone resorption
during mechanical force loading.

1. Osteoclast Differentiation

Osteoclasts, derived from hematopoietic stem cells, control
bone resorption [1]. Two factors that in�uence the forma-
tion of mature osteoclasts have been identi
ed. �e 
rst
is receptor activator of NF-�B ligand (RANKL) [2], also
called osteoclast di	erentiation factor (ODF) [3], osteoprote-
gerin ligand (OPGL) [4], or TNF-related activation-induced
cytokine (TRANCE) [5]. �e second factor is macrophage
colony-stimulating factor (M-CSF), which is essential for
the proliferation and di	erentiation of osteoclast precursors
[6]. Osteopetrotic (op/op) mice, which are de
cient in M-
CSF, show a lack of osteoclast development [7]. It has
been reported that TNF-� mediates osteoclast formation

in vitro [8–10] and in vivo [11, 12]. TNF-�-induced osteo-
clast recruitment is probably central to the pathogenesis of
in�ammatory disorders [13]. TNF-� is a known cause of
rheumatoid arthritis [14], periodontal diseases [15], and post-
menopausal osteoporosis [16]. TNF-� can induce biological
reactions via two cell-surface receptors: TNF receptor type 1
(TNFR1) and TNF receptor type 2 (TNFR2). Each receptor
mediates di	erent intracellular signals. Analysis of TNFR1-
and TNFR2-de
cient mice revealed that TNFR1 induces
osteoclast di	erentiation, while TNFR2 inhibits osteoclast
di	erentiation [17]. �e role of TNF-� signaling in osteo-
clastogenesis remains poorly understood, and further studies
are needed to clarify the relationship between TNF-� and
osteoclast di	erentiation.
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Figure 1: Schema of appliance for orthodontic tooth movement in
mice. �e orthodontic appliance is composed of a Ni-Ti coil spring.
�e appliancewas inserted between the upper incisors and the upper
le� 
rst molar and 
xed with a 0.1mm stainless wire around both
teeth.

2. Mechanical Loading

Mechanical loading has important e	ects on skeletal bone
mass and strength [18]. Several in vivo experiments have eval-
uated the e	ects of mechanical loading on bone metabolism,
with mechanical loading caused by jumping [19, 20], tread-
mill running [21, 22], squatting [23], and swimming [24].
Orthodontic tooth movement is another useful in vivo
model for elucidating the mechanism of mechanical loading-
induced bone remodeling [25–28]. Orthodontic tooth move-
ment has mainly been studied in rat and mouse models
[29–37]. Recent advances in molecular biology techniques
have provided opportunities for the use of gene-mutated
mice, including those with mutations in genes that regulate
bone metabolism. Mouse models of tooth movement can be
advantageous in understanding the molecular mechanisms
not only of tooth movement but also of mechanical loading-
induced bone remodeling. In the mouse model, Ni-Ti coil
springs aremost suitable for exerting continuous orthodontic
force [38, 39] (Figure 1). Orthodontic tooth movement is
achieved by the process of alveolar bone resorption on the
compression side and new bone formation on the tension
side [40] (Figure 2). �ere is an association between osteo-
clasts and bone resorption on the compression side during
orthodontic tooth movement [41]. In a mouse model, bone
resorption and tartrate-resistant acid phosphatase- (TRAP-)
positive multinuclear cells were recognized on the compres-
sion side.

3. TNF-�-Mediated Mechanical
Loading-Induced Osteoclast Formation
and Bone Resorption

Mechanical forces a	ect tooth movement via the biological
responses of cells in the periodontal ligament, the alveolar
bone, and other paradental tissues [42]. Several cytokines and
hormones are involved in this process. It has been reported
that orthodontic tooth movement increases levels of TNF-�
in the gingival sulcus in humans [43, 44]. It has been shown

that TNF-� is expressed in rat periodontal tissue under
pathological conditions resulting from excessive orthodontic
force [45]. When a tooth movement system was applied to
mice de
cient in TNFR1 or TNFR2, less tooth movement
was observed in TNFR2-de
cient mice than in wild-type
mice [38]. �is result suggests that TNFR2 is important for
orthodontic tooth movement. On the other hand, con�icting
results were reported in a study of TNFR1- and TNFR2-
de
cient mice, which found increased osteoclast formation
in TNFR1-de
cient mice, with inhibited osteoclast formation
in TNFR2-de
cient mice [17]. Andrade et al. evaluated the
e	ect of TNFR1 on osteoclast formation in orthodontic tooth
movement. �e number of osteoclasts in TNFR1-de
cient
mice was lower than in wild-type mice [46]. To further
con
rm the role of TNFRs, we performed tooth movement
experiments using mice with mutations in both TNFR1 and
TNFR2. We found a signi
cant decrease in tooth movement
in the double mutated mice [39]. �ese results suggest that
TNF-� a	ects orthodontic tooth movement. However, the
relationship between orthodontic movement and TNF-� is
not fully understood.

4. Effect of Cytokines on Mechanical
Loading-Induced Osteoclast Formation and
Bone Resorption

Cytokines in the gingival area during orthodontic tooth treat-
ment provide information about local cellular metabolism,
re�ecting the status of periodontal health and bone remod-
eling. Many investigators have found cytokine expression in
the gingival area during orthodontic tooth movement. �e
course of osteoclast formation can be controlled by cytokines.
Interleukin- (IL-) 6 [47], IL-17 [48], and transforming growth
factor-� [49] induce osteoclast formation and increase bone
resorption by osteoclasts. Conversely, IL-4 [50, 51], IL-10
[52], IL-12 [53–56], IL-13 [57], IL-18 [58–60], and IFN-�
[49, 61] inhibit osteoclast formation and several osteoclast
functions. IL-4 [50, 51], IL-12 [55, 56], IL-18 [59, 60], and
IFN-� [61] inhibit TNF-�-induced osteoclast formation in
vitro and in vivo. It has been reported that the cytokines
IL-1� [62], TNF-� [38, 43, 44], IL-6 [63–65], IL-8 [64,
65], RANKL [66], M-CSF [67], TGF-� [68], IL-2 [65], and
IFN-� [69] were locally increased during orthodontic tooth
movement. �ese cytokines may a	ect osteoclast forma-
tion during orthodontic tooth movement. We previously
reported that TNF-� is expressed on the compression side
of the tooth and plays an important role in mechanical
tooth movement [38].�erefore, we examined whether these
cytokines inhibitmechanical toothmovement.We found that
IFN-� inhibited osteoclastogenesis during orthodontic tooth
movement, suggesting that experimental tooth movement
may cause TNF-�-induced osteoclastogenesis that is then
inhibited by IFN-� [69]. In another study using a rat model,
IFN-� inhibited osteoclast formation on the compression
side during experimental tooth movement, as shown by
immunohistochemical staining [70]. �ese results suggest
that IFN-�might control excessive osteoclastogenesis during
orthodontic tooth movement. We previously demonstrated
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Figure 2: Schematic diagram of tooth movement. Applying orthodontic force to the tooth causes compression of the periodontal ligament.
�e compressed side of periodontal ligament is called the compression side and the side where the periodontal ligament is pulled is called
the tension side. Osteoclasts appear on the compression side and osteoblasts on the tension side. �e tooth moves as osteoclasts resorb bone
while osteoblasts form bone.

IL-12-induced apoptosis of osteoclast precursor cells during
osteoclastogenesis [55, 56]. In these studies, we found that IL-
12 inhibited TNF-�-mediated osteoclastogenesis by inducing
apoptotic changes in osteoclast precursor cells through inter-
actions between TNF-�-induced Fas and IL-12-induced FasL.
We also investigated whether IL-12 inhibits mechanical tooth
movement. IL-12 inhibited mechanical tooth movement
through inhibition of osteoclastogenesis and bone resorption
on the pressure side of teeth [71]. Many apoptotic cells were
also recognized on the pressure side in IL-12-treated mice.
Apoptosis may be caused by the interactions between TNF-
�-induced Fas and IL-12-induced FasL in orthodontic tooth
movement. Our results led us to conclude that IFN-� and IL-
12 induction inhibit osteoclastogenesis and tooth movement
caused by mechanical force loading.

5. Effects of M-CSF on Mechanical
Loading-Induced Osteoclast Formation
and Bone Resorption

M-CSF is well known as an essential factor in osteoclast
formation. It has been reported that administration of M-
CSF receptor c-Fms antibody completely blocks osteoclasto-
genesis and bone erosion induced by TNF-� administration
or in�ammatory arthritis [12]. Orthodontic tooth movement
is also mediated by TNF-�. �erefore, we hypothesized
that anti-c-Fms antibody might block osteoclastogenesis and
bone resorption at the compression side of a tooth undergo-
ing orthodontic tooth movement. In our study, anti-c-Fms
antibody injected daily into a local site for 12 days during
mechanical loading signi
cantly inhibited orthodontic tooth
movement and markedly reduced the number of osteoclasts
in vivo [39]. Brooks et al. showed that injection of M-
CSF accelerated orthodontic tooth movement and osteoclast

formation [72]. �ese results suggest that control of M-CSF
could regulate osteoclast formation and tooth movement
in orthodontic treatments. �e receptor tyrosine kinase
inhibitor SU11248 prevents activation of the M-CSF receptor,
inhibiting osteoclast formation and function in vitro and in
vivo [73]. �e tyrosine kinase inhibitor imatinib also inhibits
the M-CSF receptor. �ese results suggest the possibility
of drug treatment for bone destruction [74]. However, the
therapeutic use of M-CSF must be approached with caution
because signi
cant complications have been encountered
with other forms of anticytokine therapy [75]. Further studies
are necessary to evaluate the therapeutic use of M-CSF.

6. Root Resorption

Root resorption is a possible complication of orthodontic
treatment and is a serious problem for orthodontists. Several
studies have suggested that excessive orthodontic force is a
critical factor in root resorption [76, 77]. It has been reported
that root resorption is associated with tooth morphology
[78], tooth intrusion [79, 80], periodontal condition [81],
and systemic factors such as genetics [82], the immune
system [83, 84], and bone metabolism [85, 86]. In our
mouse orthodontic tooth movement system, a Ni-Ti coil
spring was inserted between the upper incisors and the
upper 
rst molar. Root resorption occurred in this model
[87]. Root resorption results from the activity of odonto-
clasts, which play a role similar to that of osteoclasts in
bone resorption. Like osteoclasts, odontoclasts are mult-
inucleated giant TRAP-positive cells with ru�ed borders
[88]. Tsuchiya et al. reported that odontoclasts had fewer
nuclei, smaller TRAP-positive area, and higher expression
of MMP-9 than osteoclasts [89]. It remains unclear whether
odontoclasts and osteoclasts can be considered functionally



4 �e Scienti
c World Journal

identical. We tested our hypothesis that IL-12 and anti-c-
Fms antibody might inhibit odontoclastogenesis and root
resorption during orthodontic tooth movement by injecting
IL-12 locally adjacent to the 
rstmolar every other day during
the experimental period. We found that IL-12 inhibited
odontoclastogenesis and root resorption during orthodontic
tooth movement [71]. Anti-c-Fms antibody also signi
cantly
inhibited odontoclastogenesis and root resorption during
orthodontic tooth movement [87]. M-CSF and its receptor
are potential therapeutic targets inmechanical stress-induced
odontoclastogenesis, and injection of an anti-c-Fms antibody
might be useful to prevent mechanical stress-induced root
resorption during orthodontic tooth movement.

7. Conclusion

Many studies have reported the expression of various
cytokines during mechanical loading of the periodontal
ligament. Several studies using gene-mutated mice have
shown that TNF-� plays a key role in mechanical force
loading-induced osteoclast formation in the periodontal
ligament. �erefore, it is important to study the relationship
between TNF-�-induced osteoclast formation and cytokines
expressed during mechanical loading. Further studies are
needed to fully understand the e	ect of cytokines onmechan-
ical loading-induced osteoclast formation.
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