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Summary. Oocytes were obtained from patients with tubal infertility at fixed times
after the onset of the endogenous LH rise or hCG injection, and were inseminated
immediately after recovery or after periods of 4\p=n-\4\m=1/2\,5\p=n-\5\m=1/2\and 6\p=n-\6\m=1/2\h in culture in
vitro. Delayed insemination resulted in a marked increase in the proportion of
oocytes that were fertilized and developed to normal embryos and maximum rates
occurred after 5\p=n-\5\m=1/2\h in culture (0\p=n-\\m=1/2\h, 26%; 4\p=n-\4\m=1/2\h, 50%; 5\p=n-\5\m=1/2\h, 89%; 6\p=n-\6\m=1/2\h,
69%). The range and mean (\m=+-\s.d.) intervals from insemination for the pronuclear
and early cleavage stages were 27\p=n-\43(35\m=.\6 \m=+-\4\m=.\4)h for 2-cell stages, 36\p=n-\65
(45\m=.\7\m=+-\8\m=.\3)h for 4-cell stages, 45\p=n-\73(54\m=.\3\m=+-\12\m=.\6)h for 8-cell stages and 68\p=n-\85h
for the 16-cell stage. In 7/50 patients receiving 1 or 2 embryos at the 2-, 4- and 8-cell
stages, fetal development was normal and 2 women had twin pregnancies (36%
success compared with 8% for single embryos). All pregnancies were from the groups
in which insemination was delayed for 5\p=n-\6\m=1/2\h. It is concluded that a short period of
culture in vitro may allow the completion of oocyte maturation, and improve the
results of in-vitro fertilization.

Introduction

The process of fertilization of human oocytes by spermatozoa in vitro has been described in
detail by a number of workers (Edwards, Bavister & Steptoe, 1969; Bavister, Edwards &
Steptoe, 1969; Soupart & Strong, 1974, 1975; McMaster, Yanagimachi & Lopata, 1978;
Lopata, Sathananthan, McBain, Johnston & Speirs, 1980). The birth of normal babies following
the transfer of 8- to 16-cell embryos to the uteri of women with blocked Fallopian tubes after
fertilization in vitro (Edwards, Steptoe & Purdy, 1980b) would support the proposition that, at
least in some cases, normal fertilization can occur in vitro. However, the relatively low rate of
success in establishing normal pregnancies after transfer of embryos to the uterus of the oocyte
donor may be due, in part, to the failure of normal fertilization and embryonic development,
because oocyte maturation is often incomplete at the time of insemination. Some evidence to
support this hypothesis has been obtained from experiments in sheep (R. M. Moor, A. O.
Trounson, S. M. Willadsen & C. Polge, unpublished data). In these experiments, exposure of
follicular oocytes to spermatozoa in vivo before oocyte maturation was complete resulted in the
failure of normal fertilization and failure of, or abnormal, cleavage and embryonic development.
Delay of insemination to allow the oocyte time to complete the maturation process within the
oviduct resulted in a marked increase in the number of normal blastocysts. This observation led
us to investigate the possibility that delayed insemination in vitro of human follicular oocytes,
obtained at unknown and probably variable intervals from ovulation, may lead to an increase in
normal fertilization, embryonic development and pregnancy after embryo transfer.
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Materials and Methods

Subjects
Oocytes were recovered from the ovaries of patients at laparoscopy by the methods

described by Renou, Trounson, Wood & Leeton (1981), Wood, Leeton, Talbot & Trounson

(1981a), and Wood et al. (1981b). In some patients the final maturation of oocytes was

controlled by the intramuscular injection of 4000 i.u. hCG (Pregnyl; Organon Aust. Ltd,
Clayton, Australia), and is termed the controlled ovulatory cycle. Alternatively, oocyte
maturation was allowed to occur naturally and the time of oocyte recovery was determined from
the time of the onset of the endogenous LH rise, and is termed the natural ovulatory cycle.

For controlled ovulation, all the patients were given 150 mg clomiphene citrate (Clomid; S.
Merrell and Co., Sydney, Australia) daily from Day 5 to Day 9 after the start of menses (Day
1). On Day 10, the patients were examined by ultrasonics to assess the size of ovarian follicles
(Kratochwil, Urban & Friedrich, 1972). If the largest follicle seen was 1-7 cm or larger in

diameter, the patient was admitted to hospital and, if there was no endogenous LH surge, within
1 or 2 days given hCG 34-37 h before laparoscopy, to correspond with available theatre lists
(usually on Days 13 to 15). If the follicles were smaller than 1-6 cm in diameter, a second
ultrasound examination was performed 2 days later. When no follicles were seen by ultrasound,
the appearance of preovulatory cervical mucus changes (Trounson, Mahadevan, Wood &
Leeton, 1979) was used to determine the time of hCG injection.

Patients allocated to the natural ovulatory cycle were given clomiphene citrate, as described
previously, or no treatment to stimulate follicular growth. The patients were examined by
ultrasonics to assess follicular size on Days 10-12, and were admitted to hospital on the same

criteria as for controlled ovulation. Urine samples were obtained from all patients every 3 h in
hospital and LH excretion rate was determined by a commercial test (Higonavis: Mochida
Pharmaceutical Co. Ltd, Tokyo, Japan) or radioimmunoassay (Trounson, Herreros, Burger &
Clarke, 1980a).

Laparoscopy was timed for 26-29 h after the mid-point in time of the first urine sample with
elevated LH excretion rates (greater than twice the standard deviation of all previous baseline
samples). Three consecutive samples with elevated LH were required before the rise was

accepted as the genuine preovulatory surge and the time of laparoscopy confirmed.

Insemination and oocyte culture

Follicular fluid aspirates were examined immediately after collection in small disposable Petri
dishes (Kayline Plastics, Thebarton, Australia) and the oocyte and cumulus mass were identified
and washed in follicular fluid that was free of erythrocytes or washed in the culture medium used
for insemination when uncontaminated follicular fluid was not available. The oocyte and
cumulus mass was then transferred to 1 ml culture medium for insemination in 5 ml
tissue-culture tubes (Falcon Plastics, Oxnard, California, U.S.A.). The tops of the tubes were

covered with the caps provided but were not sealed, and they were incubated at 37-5°C in an

humidified atmosphere of 5% C02, 5% 02 and 90% N2.
The culture medium used for insemination was modified Hams FIO or the mouse embryo

culture medium described by Hoppe & Pitts (1973), modified as described by Trounson, Leeton,
Wood, Webb & Kovacs (1980b). Hams FIO medium was prepared from the dried powder
(Flow Laboratories, Sydney, Australia) using five times glass-distilled water and contained (per
ml) 211 µg NaHC03, 5 mg human serum albumin (Sigma Pharmaceuticals, Melbourne,
Australia), 75 ug penicillin G and 75 µg streptomycin sulphate, with or without 245 µg calcium
lactate. The final osmolarity of the solution was adjusted to 280 mosmol and a final pH of 7-4.

Semen samples were obtained in hospital from the husbands of the oocyte donors 1-2 h
before insemination of the oocytes. The concentration, motility and proportion of live
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spermatozoa, as determined by the eosin Y dye exclusion test, were recorded. After liquefaction
of the semen (10-20 min at 35°C), 1 ml semen was added to a 10 ml tissue-culture tube
containing 3 ml of the medium for insemination, which had been equilibrated at 37-5°C under
5% C02 in air for at least 3 h. The sperm suspension was thoroughly mixed by gentle pipetting
and any gelatinous material or cellular aggregations were removed. The sample was then
centrifuged for 10 min at 500 g and the supernatant discarded. The sperm pellet was

re-suspended in 2 ml culture medium by gentle pipetting and the larger cell aggregations again
removed. The sample was re-centrifuged for 5 min and the supernatant discarded. The
spermatozoa were then allowed to migrate into 0-2—1-0 ml culture medium that was gently
added to the surface of the sperm pellet, during incubation for 30—45 min at 37-5°C under 5%
C02 in air. The volume of culture medium added was in proportion to the concentration of
motile spermatozoa in the fresh ejaculate so that the final concentration of spermatozoa for
insemination was in the order of 45-100  106/ml. An aliquot was then taken from the surface
of the sample and transferred to a 5 ml Falcon tube. The sperm concentration and motility were

determined in the final sperm suspension and 0-3-0-8  106 motile spermatozoa were added in a

volume of 10-30 µ to the culture tubes containing the oocytes.
In the present study, spermatozoa were added to the oocytes immediately after collection

(0-30 min) or at 4-4$ h, 5-5$ h and 6-6$ h after collection of the oocytes.
The oocytes were taken out of the insemination medium 12-23 h after the addition of

spermatozoa and the adhering cumulus cells were removed by gentle pipetting in a series of
finely drawn pasteur pipettes. The internal diameters of these pipettes were chosen for the
efficient removal of cumulus cells without distortion of the oocyte and in some instances 2 or 3
pipettes were used in order of decreasing bore size. The presence or absence of 2 distinct
pronuclei and 1 or 2 polar bodies were noted. Any other abnormality such as multiple
pronuclei, granulation or vesiculation of the cytoplasm or an abnormal shape of the oocyte were

also recorded. This step of the procedure was carried out at room temperature (22-24°C) in a

Petri dish containing the culture medium used for embryonic development. The medium for
culture differed from the medium used for insemination by the replacement of BSA or HSA with
15% (v/v) heat-inactivated (56°C for 30 min) serum obtained from the patient 1-2 days before
laparoscopy.

The cumulus-denuded oocyte was returned to incubation in 1 ml serum-enriched medium for
embryo culture in a 5 ml tissue-culture tube which had been previously equilibrated for 8—16 h
under 5% C02, 5% 02 and 90% N2 at 37-5°C. The oocytes were examined in the culture tubes
for cleavage once or twice every 24 h and the cleavage stage noted. Oocytes were fixed for
examination by phase-contrast microscopy as whole mounts or were sectioned for transmission
electron microscopy, if they failed to cleave within 24 h of removal of cumulus cells, if they
underwent abnormal or uneven cleavage or fragmentation, or if they showed arrested cleavage
for 24 h or more.

Embryos that cleaved regularly within each 24-h period were considered to be normal if the
blastomeres were of equal size. The normal embryos were transferred to the patient's uterine
cavity in 10-25 µ culture medium in fine Teflon tubing (20-26 French gauge) or were frozen
(A. Trounson, unpublished data).

Results

Delayed insemination ofoocytes
The results of all attempted fertilizations in vitro of oocytes with dispersed or activated

cumulus are shown in Table 1. There was no difference, overall or within intervals of delayed
insemination, between patients given hCG and those in which the rise of endogenous LH was

used to determine the time of oocyte recovery. There was a marked effect of the interval of
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delayed insemination on the proportion of oocytes with pronuclei that subsequently showed
normal cleavage ( | = 34-5 ;  < 0-001). A delay of even 4-4$ h appeared to improve the
proportion of fertilized oocytes, and this improvement could be clearly distinguished at 5-5$ h
and 6—6$ h when more oocytes were involved. Maximum fertilization and cleavage rates
occurred at 5-5$ h (89% of all activated oocytes cleaved normally) and the difference between
5-5$ h and 6-6$ h (69%) was significant (( ] = 4-36;  < 0-05).

Table 1. The influence of delayed insemination on fertilization and cleavage of human
oocytes in vitro

No. of oocytes

Interval
between oocyte Type of No.
collection and ovulatory of

insemination (h) control patients

Normal
Pronuclear cleavage (%

No (>2 of activated
pronuclei pronuclei) oocytes)

With
activated
cumulus

04 Endogenous
LH

hCG
Total

15

21

36

15

27
42

14

22

7(2)

13(4)
20(6)

3(20)

8(30)
11(26)

4-4$ Endogenous
LH

hCG

Total

1(50)

1(50)
2(50)

5-5} Endogenous
LH

hCG
Total

14

11

25

17

20
37

17

17

34

17(100)

16 (80)
33 (89)

6-6} Endogenous
LH

hCG

Total

11

14

25

16

20
36

13(1)

15(1)
28(2)

12 (75)

13 (65)
25 (69)

Multiple pronuclei, which in at least two cases could be identified as polyspermia by the
presence of sperm tails in the cytoplasm, occurred only in the oocytes inseminated immediately
after recovery (6/20 (30%) pronuclear oocytes) and in those in which insemination was delayed
for 6-6$ h (2/28 (7%) pronuclear oocytes). Abnormal cleavage or fragmentation was frequently
associated with multiple pronuclei (Table 1) but the incidence in oocytes with two pronuclei was
low throughout the groups (3/14 at 0-$ h, 1/3 at 4-4$ h, 1/34 at 5-5$ h and 1/26 at 6-6$ h).

Cleavage and development ofembryos
The observations recorded for apparently normal cleavage in relation to the time after

insemination are shown in Text-fig. 1. In many cases, cleavage at the 2-cell stage was not
observed because of the interval between observations, and in some cases two observations were
made at the 4-cell stage because of the necessity to transfer embryos. All embryos continued
normal cleavage to the next stage or were transferred, and those with arrested develop¬
ment or that were abnormal are not included in the data used for Text-fig. 1. At the 1-cell
stage (12-31 h after insemination), all the oocytes had two visible pronuclei and often two
identifiable polar bodies. The earliest time normal 2-cell embryos were observed was 27 h after
insemination and the latest time was 43 h (mean ± s.d. time from insemination was 35-6 ± 4-4
h); 4-cell embryos were observed between 36 and 65 h (mean 45-7 ± 8-3 h), 8-cell embryos
between 45 and 73 h (mean 54-3 ± 12-6 h) and 16-cell embryos between 68 and 85 h.
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Text-fig. 1. Observations of the time after insemination and the developmental stages of oocytes
and embryos which continued to cleave in vitro or were transferred to the patients. The vertical
bars indicate the total number of oocytes or embryos within cleavage stages, recorded from
observations made each day to assess progressive development of the embryos. The dots are all
observations of the 9 oocytes and embryos which developed to fetuses after transfer to the
patients.

The cleavage rates of the embryos that resulted in pregnancy after transfer to the patient
show the minimum range over which normal cleavage may occur (Text-fig. 1). There was a

considerable overlap in the time after insemination between each cleavage stage. This overlap
was minimal in embryos that continued development to fetuses after transfer and there was a

general trend for shorter cleavage intervals for these embryos. Embryos with the longer interval
between cleavage divisions may have reduced viability and they may be more likely to become
arrested as development continues.

Embryos developed equally well in the two types of culture media used and there were no

apparent differences in the proportion of embryos developing, cleavage rate, or the final cell
stage achieved. There was no difference in the cleavage rate of embryos from the different
intervals of delayed insemination, which would indicate that if fertilization and cleavage is
initiated it may proceed normally, under the culture conditions described in this paper,
irrespective of when the spermatozoa are added to the oocyte.

In other investigations more advanced embryos have been obtained by culture in both the
media described and the morphological appearance of human embryos at the various stages of
development are shown in Plate 1. In the human embryo, the blastomeres remain separate until
after the 16-cell stage. Compaction of the blastomeres occurs between 96 and 120 h at the
morula stage of 32-cells or more and a blastocoele is visible between 120 and 144 h. Fully
expanded blastocysts and those hatched from the zona pellucida are obtained between 140 and
160 h. Complete development from the pronuclear stage to the hatched blastocyst stage may be
achieved in the one culture tube without change or addition of fresh culture medium.

Development ofembryos after transfer to the patients
The successful establishment of fetuses, as seen by ultrasonics at a minimum of 8 weeks

gestation and normal ß-hCG plasma levels, was confined to the groups in which insemination
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was delayed for 5-6$ h (Table 2). However, it was in these groups that the majority of normal
embryos was obtained and, consequently, the larger number of embryos transferred. Fetal
development resulted from the transfer of 2-, 4- and 8-cell embryos, all of which appeared to be
normal, with blastomeres of equal size and within the post-insemination interval expected for
that cleavage stage (Text-fig. 1), although the one 2-cell embryo transferred together with a 4-cell
embryo, 39 h after insemination, was considered to be close to the limit for cleavage from 2- to
4- cells.

Table 2. Data on the delay in insemination, stage of embryo development, number of embryos trans¬
ferred and number of pregnancies in women

Interval of
delayed

insemination (h)

  of
patients
receiving
embryos

Cell stage
of embryo

No. of embryos
transferred

to each patient

No. of pregnancies

Single fetus Twin fetuses

 

Total

4-cell
8-cell
16-cell

4-4}
Total

4-cell

5-5}

Total

1
1
7
4
2
5
2

22

2-cell
and 4-cell
4-cell
4-cell

and 8-cell
8-cell
8-cell

1
2
1
2
2
1
2

31

6-6}

Total

1
9
2
3
3

18

2-cell
4-cell
4-cell
8-cell
8-cell

1
1
2
1
2

23

Considering only the groups in which insemination was delayed for 5-6$ h, 2 pregnancies
resulted from the transfer of 26 single embryos, whereas 5 pregnancies resulted from the transfer
of 14 twin embryos (Table 2). Two of the latter were diagnosed as twin fetuses. Overall, this
represents a pregnancy rate of 36% and an embryo survival rate of 25% for twin embryos

PLATE 1

Developmental stages of human embryos. Photographs were taken during culture or before
transfer of fresh unmounted specimens.
Fig. 1. A pronuclear-stage oocyte 16 h after insemination.

Fig. 2. A 2-cell embryo.
Fig. 3. A 4-cell embryo.
Fig. 4. An 8-cell embryo.
Fig. 5. A morula-stage embryo.
Fig. 6. A blastocyst which has hatched out of the zona pellucida.
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transferred, compared to 8% pregnancy and embryo survival rate for single embryos. The
oocytes eventually leading to successful pregnancies were all from clomiphene-treated patients, 5
of which had also been given hCG injections.

Discussion

The recovery of follicular oocytes at fixed time intervals from arbitrary markers, such as the
elevation of LH excretion or the injection of hCG, must result in a variation in the stage of
oocyte maturation achieved. Oocytes are rarely obtained from ovulated follicles of women

(Wood et ai, 1981a), and there is very little chance that ovulated oocytes could be recovered
from tubai remnants by laparoscopy. To achieve the desired result ofmature oocytes for in-vitro
fertilization and embryo transfer, it was considered necessary to approach as close as possible
the time of ovulation. In our studies we have found considerable variation in the proportion of
patients with recent ovulations over the interval of 32-40 h after hCG injection and 24-30 h after
detection of the endogenous LH rise. These proportions tend to approach the expected normal
distribution. The use of clomiphene to induce the growth of multiple follicles (Trounson, Leeton,
Wood, Webb & Wood, 1981) enables laparoscopy to be carried out closer to the expected time
of ovulation, as all follicles do not ovulate at exactly the same time and oocytes may be obtained
from unruptured follicles even if ovulation has begun. Intervals of 35-36 h between hCG
injection and laparoscopy and 26-27 h between the start of the LH surge and laparoscopy have
been chosen in our work to minimize the occurrence of ovulation and to retain high rates of
fertilization and development in vitro. As shown in the present studies, this can only be achieved
if oocytes are cultured for 5-6$ h in vitro before insemination to allow oocyte maturation to be

completed.
It is not possible to ascertain whether oocytes are completely mature at the time of recovery

and there is no indicator, that may be measured in vivo, of the state of oocyte maturation
following the LH stimulus. Even if it was assumed that there is a constant interval from the time
the follicle receives the LH stimulus for the completion of oocyte maturation and ovulation,
errors in determining the onset of the LH rise and the specific level of LH the follicles respond to
would contribute to variation in stage of oocyte maturation at laparoscopy. In the natural
ovulatory cycle there is frequently a lack of a sustained and easily distinguished LH surge with
the assays that are currently being used. In preliminary experiments (Trounson et al, 1980a) we
have shown that the rise in peripheral plasma progesterone concentrations is a more precise
indicator for determining the time of laparoscopy for successful in-vitro fertilizations when no

delay of insemination was used. It is known that progesterone secretion occurs in response to
LH stimulation only in healthy follicles late in the follicular phase in woman (Baird, Baker,
McNatty & Neal, 1975; McNatty, Moore-Smith, Osathanondh & Ryan, 1979; Bomsel-
Helmreich et al, 1979) and the determination of the onset of sustained progesterone secretion
may be a better indicator of the time of ovulation and the time of oocyte maturity. The ovarian
steroids, particularly oestrogen and progesterone, are intimately involved in the initiation of
cytoplasmic maturation and in the final stage of nuclear maturation of oocytes (Thibault, 1977;
Moor, 1978) and the importance of maintaining oestrogen levels in follicular fluid during oocyte
maturation has been emphasized by McNatty, Moore-Smith, Makris, Osathanondh & Ryan
(1979) in follicles cultured in vitro and by Edwards, Steptoe, Fowler & Baillie (1980a) in
follicular aspirates of oocytes fertilized in vitro. Hunter, Cook & Baker (1976) showed that pig
oocytes, induced to ovulate with hCG when follicular oestrogens are low, fail to undergo normal
nuclear and cytoplasmic maturation and, consequently, abnormalities of fertilization occur. In
studies of the maturation of sheep oocytes cultured within follicles in vitro, Moor & Trounson
(1977) found that normal fertilization and embryonic development required the addition of both
oestrogen and gonadotrophins to the culture media. In the controlled human ovulatory cycle, the
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injection of hCG does give some precision to the time that follicles are exposed to the stimulus
for the resumption of meiosis. However, this does not greatly increase the synchronization of
ovulation and this is probably related to variation in the capacity of follicles to bind and respond
to hCG. We have noted that patients often ovulate before laparoscopy at 35 h if endogenous LH
begins to rise at the time of hCG injection. Conversely, if hCG is given when follicles are smaller
than 1 · 7 cm diameter or before urinary oestrogen excretion rates reach maximum levels (A. O.
Trounson, unpublished data), follicles do not have the usual preovulatory appearance (Wood et

al., 1981a) at laparoscopy and fertilization usually fails to occur. It is therefore important to
administer hCG close to the time when the endogenous LH rise would normally occur and at a

time when follicles are producing high levels of oestrogen. At present, the time of hCG injection
is determined by the day of the menstrual cycle, follicle size, cervical mucus changes and daily
urine or plasma oestrogen levels. When using these features to determine the time of hCG
injection, some follicles may be still in the growth stage when they receive the LH stimulus,
leading to differences in the time taken to initiate and complete the changes required for nuclear,
cytoplasmic and membrane maturation of oocytes necessary for normal fertilization and
development (Moor & Warnes, 1979; Masui & Clarke, 1979).

The occurrence of polyspermy observed at a relatively high incidence after insemination
immediately after recovery when compared to delayed insemination could be attributed to the
failure of complete cortical granule release after penetration by a spermatozoon. Cortical
granules are often still migrating to the surface of the plasma membrane immediately after
oocyte recovery and they accumulate under the membrane during 6 h of culture in vitro (A. H.
Sathananthan & A. O. Trounson, unpublished data). Close association of cortical granules with
the plasma membrane is considered important for cortical granule release and the zona reaction
(Millonig, 1969; Longo, 1973). Complete failure of sperm penetration of human oocytes may be
due to changes in the zona which occur during maturation and alter its penetrability. Some

support for this proposition is the failure of spermatozoa to penetrate into the ooplasm of
immature oocytes obtained from follicles without prior culture in vitro (Overstreet & Hembree,
1976). Soupart & Morgenstern (1973) reported that penetration of spermatozoa through the
zona was not related to the state of nuclear maturation in oocytes cultured for 38 to 48 h,
although fertilization occurred in only one oocyte with an immature nucleus. Edwards et al.
(1969) also provided evidence of sperm penetration of the zona and fertilization of oocytes
cultured for 38 h in vitro, but this was again confined to oocytes in which nuclear maturation
was complete. Changes in the zona which allow penetration by spermatozoa may precede the
completion of cortical granule migration to the plasma membrane, leading to polyspermy.

The relatively low incidence of gross abnormalities of cleavage of pronuclear oocytes could
be due to the short period of culture used in the present studies. In other experiments, a varied
proportion, 40-50% of regularly cleaving embryos, undergo fragmentation or arrested
development beyond the 8-cell stage. The remainder of the embryos will continue development to
at least the morula and hatched blastocyst stage. It is difficult to separate the effects of
sub-optimal culture conditions during extended culture and potential embryonic abnormalities
induced by collection of incompletely matured oocytes and fertilization in vitro. Fragmentation,
retarded development and abnormal cleavage are common sequelae of the attempted fertilization
of immature oocytes and oocytes matured by culture in vitro (Trounson, Willadsen & Rowson,
1977; Moor & Warnes, 1978).

The interval between cleavage divisions observed in the present study was similar to that
reported by Edwards (1973) for in-vitro fertilized human embryos and for early cleavage
divisions of mouse embryos (Whitten & Dagg, 1961). In contrast to most species except for the
mouse, the human embryo can be successfully cultured from the 1 -cell stage to the hatched
blastocyst stage in vitro (Steptoe, Edwards & Purdy, 1971). Development beyond the 8-cell
stage was confined to culture in Hams FIO medium in studies reported by Edwards (1973).
Modified Earle's solution was used to obtain one of the successful pregnancies reported by
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Edwards et al. (1980b) and in more recent studies in our laboratory, blastocysts and
pregnancies have been obtained from fertilization and culture in simple media used routinely for
culture of mouse embryos (Trounson et al, 1980b). A simple culture medium with relatively few
chemical components has the advantage of ensuring quality control, as there is less chance of
introducing unsuitable chemicals at the time of preparation, and can be readily prepared in the
laboratory.

The pregnancy rate obtained after embryo transfer in the present study is not entirely
satisfactory for routine clinical use in the treatment of infertility, although the results continue to

improve as procedures are optimized. The transfer of two embryos instead of a single embryo
should result in a higher overall pregnancy rate if all the embryos have an equal potential for
survival. This appeared to be the case with the limited numbers involved in the present study
(36% for twin embryos and 8% for single embryos). There was no marked difference in the
survival rate of embryos of different stages (2-cell to 16-cell) after transfer. This may be
complicated by an interaction of reduced viability of embryos cultured for increasing periods of
time and reduced embryonic survival due to premature transfer of early cleavage stage embryos,
particularly 2- and 4-cell stages, to the uterus (see Adams, 1979). Before the 8-cell stage, human
embryos are confined to the oviducts in vivo (Croxatto, Ortiz, Diaz & Hess, 1979). Improved
culture media and techniques and survival rates of different cleavage stage embryos are presently
being investigated to determine the optimum procedures for maximum pregnancy rates.

In conclusion, it would appear that a relatively short period of culture in vitro following
recovery of human follicular oocytes is beneficial for the completion of oocyte maturation and to
allow for high rates of fertilization and embryonic development in vitro. This procedure
overcomes the present deficiencies of predicting the exact time of ovulation and results in the
production of at least a proportion of normal embryos that have the capacity for normal fetal
development.

We thank the Ford Foundation and National Health and Medical Research Council of
Australia, for financial support and J. Webb, D. Jessup, J. Wood, C. Caro, Dr  . Buttery,
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