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Effect of disorder on quantum phase transitions in anisotropic XY spin chains

in a transverse field

J. E. Bunder and Ross H. McKenzie*
School of Physics, University of New South Wales, Sydney 2052, Australia

~Received 31 December 1998!

We present some exact results for the effect of disorder on the critical properties of an anisotropic XY spin

chain in a transverse field. The continuum limit of the corresponding fermion model is taken and in various

cases results in a Dirac equation with a random mass. Exact analytic techniques can then be used to evaluate

the density of states and the localization length. In the presence of disorder the ferromagnetic-paramagnetic or

Ising transition of the model is in the same universality class as the random transverse field Ising model solved

by Fisher using a real-space renormalization-group decimation technique ~RSRGDT!. If there is only random-

ness in the anisotropy of the magnetic exchange then the anisotropy transition ~from a ferromagnet in the x

direction to a ferromagnet in the y direction! is also in this universality class. However, if there is randomness

in the isotropic part of the exchange or in the transverse field then in a nonzero transverse field the anisotropy

transition is destroyed by the disorder. We show that in the Griffiths’ phase near the Ising transition that the

ground-state energy has an essential singularity. The results obtained for the dynamical critical exponent,

typical correlation length, and for the temperature dependence of the specific heat near the Ising transition

agree with the results of the RSRGDT and numerical work. @S0163-1829~99!07125-8#

I. INTRODUCTION

An important feature of many low-dimensional models of

strongly interacting electrons is that they exhibit quantum

phase transitions, i.e., they undergo a phase transition at zero

temperature as some parameter is varied.1 Experimental re-

alization of this occurs in heavy fermion materials such as

CeCu62xAux which undergo an antiferromagnetic-

paramagnetic phase transition induced by pressure.2,3 Near

the critical point unconventional metallic behavior is ob-

served and is enhanced by the presence of disorder.2,4 It has

also been proposed that a quantum critical point plays an

important role in cuprate superconductors.5 Quantum phase

transitions in the presence of impurities or disorder also oc-

cur in 4He and 3He absorbed in porous media,6

superconductor-insulator transitions in dirty thin films,7 the

delocalization transition in the quantum Hall effect, and the

metal-insulator transition in doped semiconductors.8

Compared to thermal phase transitions in disorder-free

systems, these transitions are poorly understood because

many of the theoretical methods ~e.g., exact solutions, the

renormalization group and e expansions! that have proven so

useful for pure systems at nonzero temperatures9 are difficult
to implement for disordered systems.10 These phase transi-
tions are associated with particularly rich physics such as
large differences between average and typical ~i.e., most
probable! behavior, new universality classes, logarithmic
scaling, and ‘‘Griffiths phases,’’11 in which susceptibilities
diverge even though there are only short-range correlations.
Low-energy properties of the system are dominated by ex-
tremely rare configurations of the system. It has recently
been proposed that Griffiths phases can lead to unconven-
tional metallic behavior.4,12

Fisher recently made an exhaustive study of the effect of
randomness on what is arguably the simplest model to un-

dergo a quantum phase transition: the transverse field Ising
spin chain.13 He used a real-space renormalization-group
decimation technique ~RSRGDT!, originally developed by
Dasgupta and Ma,14 which he claimed is exact near the criti-
cal point. Fisher found the phase diagram ~which included a
Griffiths phase near the critical point!, all of the critical ex-
ponents ~some of which are irrational, as shown in Table I!,
and scaling functions for the magnetization and correlation
functions in an external field. It is striking that the latter have
never been derived for the disorder-free case but can be de-
rived in the presence of disorder because distributions be-
come extremely broad near the critical point. Many of Fish-
er’s results have been confirmed by numerical work.15–17

The RSRGDT has now also been used to study the effect of
disorder on dimerized18 and anisotropic spin- 1

2 chains, spin-1
chains,19–21 chains with random spin sizes,22 quantum Potts
and clock chains,23 and diffusion in a random
environment.24,25 Possible experimental realizations of ran-
dom spin chains are given in Table I. There is a direct con-
nection between the critical behavior of the random trans-
verse field Ising chain and random walks in a disordered

TABLE I. Experimental realizations of random spin chains.

These chains all involve antiferromagnetic exchange except for

Sr3CuPt12xIrxO6 which involves both ferromagnetic and antiferro-

magnetic exchange.

Material Spin per site Reference

Quinolinium~TCNQ!2
1
2 63

Sr3CuPt12xIrxO6
1
2 72

MnTPP-TCNE~solvent! Alternating
1
2 and 2 73

MgTiOBO3 ~warwickite! 1
2 74

MgVOBO3 ~warwickite! 1 75

Cu~3-methylpyridine!2Cl2
1
2 76
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environment.24–28 Fisher’s results have also been related to
the Kondo lattice in one dimension.29

An important question is whether some of the same inter-
esting physics occurs in higher dimensional models. Senthil
and Sachdev did find this to be the case in a dilute quantum
Ising system near a percolation transition.30 It is particularly
interesting that some of the most striking features that Fisher
found in the one-dimensional model ~a variable dynamical
critical exponent which diverges at the critical point and the
average and typical correlations are associated with different
critical exponents! have recently been found in the two-
dimensional random transverse field Ising model.31

The outline of the paper is as follows. In Sec. II we intro-
duce the model, an anisotropic XY spin chain in a transverse
field, where all the exchange integrals and transverse field
are random. A similar model was also recently studied nu-
merically using the density-matrix renormalization group.32

A Jordan-Wigner transformation is then used to map the
model onto a noninteracting fermion model. Section III con-
tains a brief summary of the known properties of the
disorder-free model that are needed to understand the rest of
the paper. In Sec. IV we take the continuum limit of the
fermion model for various cases. The Ising transition and the
anisotropy transition with only randomness in the anisotropy
that results in a Dirac equation with a random mass. The
isotropic XX chain in a transverse field with randomness in
the exchange and/or transverse field reduces to a Dirac equa-
tion with a random complex mass. Mapping the spin chain to
these Dirac equations has the advantage that a number of
different exact analytic techniques can then be used to evalu-
ate the density of states and the localization length. The
properties of the solutions corresponding to the universality
class of the random transverse field Ising model are then
discussed in Sec. V. By examining the energy dependence of
the density of states we evaluate the dynamical critical ex-
ponent, show the existence of a Griffiths’ phase near the
transition, and show that the ground-state energy has an es-
sential singularity at the transition. We also present results
for thermodynamic properties and the typical correlation
length. The results obtained for the dynamical critical expo-
nent, typical correlation length, and for the temperature de-
pendence of the specific heat near the Ising transition agree
with the results of the RSRGDT and numerical work. Since
our approach is explicitly exact our results are consistent
with Fisher’s claim that the RSRGDT gives exact results for
critical properties. In Sec. VI, we point out that the properties
of the incommensurate solution are such that it implies that
the anisotropy transition is destroyed in a non-zero trans-
verse field if there is randomness in the isotropic exchange or
in the transverse field. A brief report of some of the results
presented here appeared previously.33

II. THE MODEL

The Hamiltonian to be considered is that of an anisotropic
XY spin chain in a transverse field:

H52 (
n51

L

~Jn
xsn

xsn11
x

1Jn
ysn

ysn11
y

1hnsn
z !. ~1!

The sn
a , (a5x ,y ,z), are Pauli spin matrices. This is a quan-

tum model because the Pauli matrices do not commute with

one another. The interactions, Jn
x , Jn

y , and transverse fields,

hn , are independent random variables with Gaussian distri-
butions. All the results given in this paper are for this ferro-
magnetic case but also hold for the antiferromagnetic case.

By means of a spin rotation Jn
x and hn can always be chosen

to be non-negative. We shall assume that Jn
y is also non-

negative so that there is no frustration in the system. The
average values will be denoted

^Jn
x&[Jx, ^Jn

y&[Jy, ^hn&[h . ~2!

The deviation of the random variables from their average
values is assumed to be small, relative to the average value.
We can write our three parameters in terms of a random part
and an averaged part,

Jn
a
5Ja

1dJn
a ~a5x ,y !, hn5h1dhn . ~3!

The random variables are uncorrelated between sites and
have variances

^~Jn
a
2Ja!2&[~dJa!2~a5x ,y !, ^~hn2h !2&[dh2. ~4!

For Jn
y
50 the model is the random transverse field Ising

spin chain which is the quantum analog of the two-
dimensional Ising model with random coupling in one direc-
tion, introduced by McCoy and Wu,34 and studied by Shan-
kar and Murthy.35

At zero temperature and in the absence of disorder the
model undergoes two distinct quantum phase transitions.36

Both transitions are second order. The phase diagram is
shown in Fig. 1. The transition at Jx

1Jy
5h from a para-

magnetic to a ferromagnetic phase will be referred to as the
Ising transition.37 The transition at Jx

5Jy for h,(Jx
1Jy)

from a ferromagnet with magnetization in the x direction to

FIG. 1. Phase diagram for the anisotropic XY spin chain in a

transverse field at zero temperature and in the absence of disorder.

The heavy lines represent second-order phase transitions. The hori-

zontal line will be referred to as the anisotropic transition and the

vertical line as the Ising transition. PM denotes a paramagnetic

phase and FMx denotes an Ising ferromagnet with magnetization in

the x direction. To the right of the dashed line the energy gap in the

excitation spectrum always occurs at the Brillouin-zone boundary

~compare Fig. 2!. To the left of the dashed line gap occurs at a wave

vector that is incommensurate with the lattice.
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one with magnetization in the y direction will be referred to
as the anisotropic transition.38,39 This paper considers the
effect of disorder on these transitions.

Mapping to a fermion model

We perform a Jordan-Wigner transformation which maps
the Pauli spin matrices in Eq. ~1! onto spinless fermions.39,40

The Pauli spin matrices

sx
5S 0 1

1 0
D sy

5S 0 2i

i 0
D sz

5S 1 0

0 21
D ~5!

satisfy the algebra

@sa,sb#52ieabcs
c, ~sa!2

51. ~6!

Define the following new operators on each site as

an
†
5

1

2
~sn

x
1isn

y !, an5

1

2
~sn

x
2isn

y !. ~7!

The inverse transformation is

sn
x
5an

†
1an , sn

y
5i~an2an

†!, sn
z
5122anan

† . ~8!

Using these definitions the following relations can be ob-
tained:

$an
† ,an%51, an

2
5an

†
50,

@am
† ,an#5@am

† ,an
†#5@am ,an#50, mÞn , ~9!

which show that the an’s and an
†’s are neither fermion opera-

tors nor boson operators. The Hamiltonian ~1!, in terms of
these new operators is

H52 (
n51

L

@~Jn
x
1Jn

y !~an
†an111a ian11

† !

1~Jn
x
2Jn

y !~an
†an11

†
1anan11!

1hn~122anan
†!# . ~10!

Now consider a second transformation,

cn5expS pi (
j51

n21

a j
†a jD a i ,

cn
†
5an

† expS 2pi (
j51

n21

a j
†a jD . ~11!

The cn’s and cn
†’s are fermion operators satisfying the fol-

lowing anticommutation relations:

$cm ,cn
†%5dmn , $cm ,cn%5$cm

† ,cn
†%50. ~12!

These fermions can be viewed as kinks or domain walls in
the local magnetization.36 The Hamiltonian is now

H52 (
n51

L

@~Jn
x
1Jn

y !~cn
†cn112cncn11

† !

1~Jn
x
2Jn

y !~cn
†cn11

†
2cncn11!1hn~cn

†cn2cncn
†!# .

~13!

The boundary terms have been neglected since they do not
contribute to the thermodynamic limit.

III. SOLUTION OF THE DISORDER-FREE CASE

The model in the absence of disorder has been solved
previously.41,42,36 We now highlight certain aspects of the
solution that will turn out to be particularly relevant to the

effect of disorder. In the disorder free case Jn
x
5Jx, Jn

y
5Jy,

and hn5h so that

H52 (
n51

L

@~Jx
1Jy!~cn

†cn112cncn11
† !

1~Jx
2Jy!~cn

†cn11
†

2cncn11!

1h~cn
†cn2cncn

†!# . ~14!

The case h50 corresponds to the anisotropic XY spin chain
and was first solved by Lieb, Schultz, and Mattis.39 The case
Jy

50 is the transverse field Ising chain and was first solved
by Pfeuty.37

We introduce the Fourier transform of the fermion opera-
tors

cn5

1

AL
(

k
cke ink,

cn
†
5

1

AL
(

k
ck

†e2ink. ~15!

Periodic boundary conditions (cn5cn1L) require the wave
vector, k, to take the following discrete values:

k5

2pm

L
, m52

1

2
L , . . . ,0,1, . . . ,

1

2
L21, ~16!

assuming L to be even. Substituting Eq. ~15! in the Hamil-
tonian ~14! gives

H52(
k

$2@~Jx
1Jy!cos k1h#ck

†ck

1i~Jx
2Jy!sin k~ck

†c
2k
†

1ckc2k!2h%. ~17!

This Hamiltonian may be diagonalized by the Bogoliubov
transformation,

ck
†
5cos f~k !bk

†
1i sin f~k !b2k ,

ck5cos f~k !bk2i sin f~k !b
2k
† , ~18!

where the bk’s and bk
†’s are operators with fermion statistics,

and
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tan„2f~k !…5
~Jx

2Jy!sin k

~Jx
1Jy!cos k1h

. ~19!

This gives

H52(
k

E~k !@bk
†bk21/2# , ~20!

where

E~k !52@h2
1~Jx

2Jy!2
12h~Jx

1Jy!cos k

14JxJycos2 k#1/2, ~21!

and we have used, (k cos k50.
The energy gap will occur at a wave vector k0 such that

dE~k5k0!

dk
50. ~22!

We shall always take k0 to be the positive solution of the
above equation. Because the energy is symmetric in k there
will be two energy gaps at 6k0. To describe the solutions of
this equation it is convenient to define

a52

h~Jx
1Jy!

4JxJy
, ~23!

which is always negative for non-negative Jx, Jy, and h. The
energy gap wave vector k0 is given by

cos k05a , a.21,

k05p , a,21. ~24!

Typical dispersion curves for these two cases are shown in
Fig. 2. If we define

g[
Jx

2Jy

Jx
1Jy

, ~25!

and express a as

a52

h

~Jx
1Jy!~12g2!

, ~26!

then, the boundary between the two cases may be defined by

h

Jx
1Jy

512g2. ~27!

This boundary is shown as a dashed line in Fig. 1. The two
cases correspond to a commensurate (a,21) and an in-
commensurate (a.21) phase.36 It will turn out that the
effect of disorder on these two phases is very different.

The energy gap at k5k0 is 2D where

D5E~k0!. ~28!

The system is at criticality when the gap vanishes, D50.
When a,21 (k05p) the gap vanishes along the line h

5Jx
1Jy. We shall refer to the corresponding phase transi-

tion as the Ising transition. When a.21 the energy gap
vanishes along the line Jx

5Jy, providing h,Jx
1Jy. We

shall refer to this transition as the anisotropic transition. The
lines along which the gap vanishes are shown as solid lines
in Fig. 1.

The critical behavior is determined by those low-energy
states near the energy gap where k;k0. If k2k0 is small the
energy can be written as a Taylor series

E~k !2
5D2

1v0
2~k2k0!2

1••• , ~29!

where

v052@4JxJy
2h~Jx

1Jy!cos k028JxJy cos2 k0#1/2,

D52@h2
1~Jx

2Jy!2
12h~Jx

1Jy!cos k014JxJy cos2 k0#1/2.
~30!

FIG. 2. Typical dispersion relations for the excitation spectrum

of the Hamiltonian ~1! in the absence of disorder. The two cases

shown correspond to when the quantity a , defined in Eq. ~23!, is ~a!

larger than negative one and ~b! less than negative one. Note that

for ~b! the energy gap always occurs at the Brillouin-zone boundary

whereas for ~a! it occurs at a wave vector that is incommensurate

with the reciprocal-lattice vectors. The cases ~a! and ~b! occur in

regions of the phase diagram to the left and right of the dashed line

in Fig. 1. ~The commensurate case also occurs on the vertical line

h50: then k05p/2).
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A. The ground-state energy

The ground-state energy, e , of the Hamiltonian ~14! is the
energy of the filled Fermi sea

e~D !52E
2p

p dk

2p
E~k !, ~31!

where E(k) is given by Eq. ~21!. To discover the nature of
the singularity at D50 we differentiate the above integral
with respect to D2. For small D the differentiated integral is
dominated by those low energys states close to the energy
gap. Hence, we need only consider those states determined
by the low-energy dispersion relation ~29!

]e

]D2
5E

k02kc

k01kc dk

4p

1

AD2
1v0

2~k2k0!2
~32!

52

1

2pv0

lnF D

2v0kc
G , ~33!

where kc is a cutoff wave vector. Integrating with respect to
D2 gives

e~D !2e~0 !5

D2

4pv0
S 122 lnF D

2v0kc
G D . ~34!

The singularity of the ground-state energy is thus logarith-
mic. The critical exponent a , defined by e(D);D22a, is a
501. This critical exponent corresponds to the specific-heat
critical exponent of the corresponding two-dimensional clas-
sical Ising model.

B. The magnetization and correlation length

Barouch and McCoy41 calculated the magnetization and
correlation functions for the disorder-free model. Its et al.

considered the case d50.43 Further analysis was done by

Damle and Sachdev.42 The magnetization, M x[^sn
x&, and

the correlation length j are defined by the asymptotic behav-
ior (r→`) of the correlation function

^sn
xsn1r

x &→~M x!2
1

A

r2exp~2r/j !, ~35!

where A is a constant. If h.Jx
1Jy the system is a paramag-

net and the magnetization is zero. If h,Jx
1Jy and Jx

.Jy

the system is a ferromagnet in the x direction, and the mag-
netization is

~M x!2
5~21 !r

2g1/2

11g F12S h

Jx
1Jy D 2G1/4

. ~36!

This implies that the critical exponent b is 1/8 for the Ising
transition ~approaching the transition as a ferromagnet! and
1/4 for the anisotropic transition.

The correlation length j is given by

expS 21

j
D;ul2u22, ~37!

where

l25

h/Jx
1Jy

2@~h/Jx
1Jy!2

2~12g2!#1/2

12g
. ~38!

This quantity is real ~complex! outside ~inside! the circle,

S h

Jx
1JyD 2

1g2
51. ~39!

As a result

expS 21

j
D;H l2

22 , outside circle

12g

11g
, inside circle.

~40!

The Ising transition is outside the circle and the anisotropic
transition is inside the circle. This implies that the critical
exponent n51 for both the Ising and anisotropy transitions.

On the Ising critical line

^sn
xsn1r

x &;
1

r1/4
~41!

and the critical exponent h55/4. On the anisotropic critical
line at h50,

^sn
xsn1r

x &;
1

r1/2
~42!

and the critical exponent h53/2. The anisotropic transition
has the same critical behavior as a pair of decoupled Ising
models. The critical exponents for the Ising transition are
summarized in Table II.

IV. THE CONTINUUM LIMIT

We shall now look at the effect of disorder on the critical
behavior. To do this we take the continuum limit of the dis-
ordered Hamiltonian written in terms of Fermi operators, Eq.
~13!, when the system is near criticality. We will assume
that, for weak disorder, the phase transitions of the disor-
dered system are close to the phase transitions of the

TABLE II. Critical exponents for the transition in the transverse

field Ising chain, without and with disorder. D is a measure of the

deviation from the critical point. The exponents for the random case

were calculated by Fisher ~Ref. 13!. Some exponents are expressed

in terms of the golden mean, f[
1
2 (11A5). H is an external field

in the x direction, i.e., the same direction as the magnetization. The

exponents a and g are not defined ~n.d.! in the random model due

to the presence of the Griffiths phase. With disorder d5` because

^s i
x&;@ ln(1/uHu)#2b.

Exponent Definition No disorder With disorder

a e;D22a 01(ln) n.d.

b ^sn
x&;Db 1/8 22f

g xxx;Dg 7/4 n.d.

d ^sn
x&;H1/d (D50) 15 `

n jav
;D2n 1 2

h ^sr
xs0

x&;r12h (D50) 5/4 f21

z t;jz 1 `
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disorder- free system. Those fermion states most effected by
the addition of disorder will be those low-energy states near
the energy gap, that is, those with wave vectors near 6k0.

The Hamiltonian may be broken into slowly and rapidly
varying parts. This is done by replacing the Fermi operator
cn with two slowly varying functions, cR(n) and cL(n),
which describe right and left movers, respectively,

cn5

1

A2
@e2ik0ncR~n !1e ik0ncL~n !# . ~43!

The exponential terms represent the rapidly varying part of
cn . From the anticommutation relations of the Fermi opera-

tors, cn and cn
† , it is possible to derive anticommutation re-

lations for the slowly varying functions,

$cR
† ~n !,cR~m !%5$cL

†~n !,cL~m !%5dnm , ~44!

and all other combinations are zero.

A. Ising transition

When k056p , Eq. ~43! may be simplified to

cn5~21 !nc~n ! ~45!

with

$c†~n !,c~m !%5dnm . ~46!

After substituting this into Hamiltonian ~13!, we take the
continuum limit. To do this we transform the discrete vari-
able, n, into a continuous variable, x, and we write

c~n !5c~x5n !, c~n11 !5c~x !1]xc~x !. ~47!

The function c is slowly varying and so its derivative is very
small. Where appropriate we can neglect these derivative
terms. The disorder is assumed to be small, hence terms
combining both derivative terms and disordered terms may
be neglected. Substituting these approximations into the
Hamiltonian and replacing the sum over n with an integral
over x gives

H5 (
n51

L

~c†,c !$iJ2sy]x1@J1~x !2h~x !#sz%S c

c†D ,

~48!

where

J6~x !5Jn5x
x

6Jn5x
y , h~x !5hn5x . ~49!

By performing the following rotation into a new set of Pauli
spin matrices, with k056p

sy
5

DJ1sin k0

2J2~J1
1h cos k0!

s1
1

v0~h1J1cos k0!

2J2~J1
1h cos k0!

s3,

sz
52

D cos k0

2~J1
1h cos k0!

s1
1

v0 sin k0

2~J1
1h cos k0!

s3,

sx
5s2, ~50!

where D and v0 are defined in Eq. ~30!, the Hamiltonian
becomes

H5

1

2
E dx C~x !†@2iv0s3]x1V~x !s2#C~x !, ~51!

where

V~x !52uJ1
2hu62@dJ1~x !2dh~x !# , ~52!

and dJ1(x) and dh(x) are the random parts and J1 and h

are the average parts of J1(x) and h(x), respectively. The
function V(x) is real and its average value is D , the energy
gap of the pure system. For the case of no disorder ~51! was
derived by Shankar.44 The case of the transverse field Ising
chain with randomness only in Jx or h was derived by
Balents and Fisher.45 The fact that the Ising transition is
described by the same equation for any anisotropy shows
that it will be in the same universality class as the random
transverse field Ising chain studied by Fisher.

B. Anisotropic transition

Near the anisotropic transition we must use the more gen-
eral decomposition of the Fermi operators shown in Eq. ~43!.
As was done near the Ising transition we replace the discrete
variable n, with a continuous variable x, and replace discrete
differences with derivatives. Next, we remove those disor-
dered terms which are negligible. We shall make one ap-
proximation which was not necessary near the Ising transi-
tion. We will neglect all rapidly varying terms. A rapidly
varying term may be neglected because its integral will van-
ish. Terms involving the product of two rapid terms may not
be neglected since the two rapid variations may produce a
slowly varying part. The exponential terms are rapidly vary-
ing and the random terms may have slowly and rapidly vary-
ing parts. Combining all these approximations gives the fol-
lowing Hamiltonian:

H52E dxF1

2
@J1~x !cos k01h~x !#~cR

† cR1cL
†cL!

1iJ2~x !sin k0cL
†cR

†
2

h~x !

2
1

J1

2
e2ik0cR

† ]xcR

1

J1

2
e ik0cL

†]xcL1

J2

2
e2ik0cR

† ]xcL
†
1

J2

2
e ik0cL

†]xcR
†

1e2ik0x@dJ1~x !e ik01dh~x !#cR
† cLG1H.c. ~53!

When k052p/2, Jx(x)5Jy(x)5tx/2 and h(x)50, this
Hamiltonian is equivalent to that obtained by Balents and
Fisher.45 The Hamiltonian in Eq. ~53! can be simplified in
two particular cases.

1. Case I „dJn
x
52dJn

y , dhn50…

If the only randomness is in the anisotropy, which must
be equal but opposite „dJ1(x)5dh(x)50…, the Hamiltonian
reduces to
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H52E dx~cR
† ,cL!@~J1cos k01h !sz

2J2~x !sin k0sy

1i~J1sin k0sz
1J2cos k0sy!]x#S cR

cL
† D . ~54!

On performing the rotation in Eq. ~50!, the Hamiltonian can
be simplified to

H5

1

2
E dx~cR

† ,cL!@2iv0s3]x1V~x !s1#S cR

cL
† D . ~55!

We have used the definition of k0 on the anisotropic critical
line, cos k052h/J1, and defined

V~x !52uJ2usin k062dJ2~x !sin k0 . ~56!

Note that, like the Ising transition, V is real and its average
value is D . Hence, in this case the anisotropy transition is in
the same universality class as the random transverse field
Ising chain.

2. Case II „Jn
x
5Jn

y …

Another special case of the Hamiltonian in Eq. ~53! is
when there is no anisotropy @J2(x)50#. Note that, in the
absence of disorder, this restricts the model to the anisotropic
critical line. It shall also be assumed that any disorder is
rapidly varying. The new Hamiltonian is

H52

1

2
E ~cR

† ,cL
† !@22iJ1sin k0sz]x1j~x !*s1

1j~x !s2#S cR

cL
D , ~57!

where j(x)52e22ik0x@dJ1(x)e2ik01dh(x)# and s6

5
1
2 (sx

6isy). Since k0 is incommensurate with the lattice
j(x) is complex. We have neglected a term involving the
sum over the magnetic field since it is a constant. Consider
the following rotation:

s3
52sz,

s1
5sx,

s2
52sy. ~58!

With this rotation,

H5

1

2
E C~x !†@2iv0s3]x1j~x !s1

1j~x !*s2#C~x !,

~59!

where s6
5

1
2 (s1

6is2). The complex function, j(x)
52e22ik0x@dJ(x)1e2ik01dh(x)# , has the following proper-
ties:

^j~x !&50,

^j~x !j~x8!&50,

^j~x !j~x8!*&5gd~x2x8!, ~60!

where g54@(dJ1)2
1(dh)2# .

In summary, all three Hamiltonians ~51!, ~55!, and ~59!,
can be written in the form46

H5

1

2
E dx C~x !†@2iv0s3]x1V~x !s1

1V~x !*s2#C~x !.

~61!

Note that the structure of the spinor C , is quite different in
all three cases. The function V(x) satisfies

^V~x !&5D ,

^V~x !V~x8!*&5D2
1gd~x2x8!. ~62!

The anisotropic case II (J2
50) has D50. The fact that

V(x) is complex for the anisotropic case II will lead to quali-
tatively different behavior. In fact, in that case the disorder
removes the phase transition. We refer to the case where
V(x) is real as the commensurate case ~that is, the Ising
transition and the anisotropic case I!. The case where V(x) is
complex is the incommensurate case. The case of real V(x)
also describes dimerized XX spin chains46–48 and spin
ladders.49,50 The case of complex V(x) also describes an XX

spin chain in a transverse field with a modulation of the
exchange with wave vector 2k0.

V. EXACT SOLUTIONS

It is useful to define an energy D and a dimensionless
parameter d which are measures of the disorder strength and
the deviation from criticality, respectively,

D[
g

v0

, d[
D

D
. ~63!

Note that for the Ising transition with Jy
50, to leading order

in D/Jx, for a Gaussian distribution this parameter d agrees
with the d defined by Fisher13 and Young and Rieger,16

d[
^ln h&2^ln Jx&

^~ ln h !2&2^ln h&2
1^~ ln Jx!2&2^ln Jx&2

. ~64!

The advantage of casting the problem in the form of the
Hamiltonian ~61! is that the latter has been studied exten-
sively previously, and exact analytic expressions given for
the energy dependence of the disorder-averaged density of
states ^r(E)& and the localization length l(E). The exact
results have been found by Fokker-Planck equations,51,52

supersymmetry,53,54,45 the replica trick,55–57 S-matrix
summation,58 and the Dyson-Schmidt method.59

Due to the one-dimensionality all the states are localized
by the disorder. The localization length can be found because
in one dimension it is related to the real part of the one-
fermion Green’s function.60,53

The density of states and the localization length are re-
lated to the one-electron Green’s function G(x ,x ,E) and can

be written in terms of f d8(u), the derivative of a dimension-

less function f d(u)

Tr G~E ,x ,x !5

d

dE

1

l~E !
1ipr~E !5pr0 f d8~E/D !,

~65!
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where r0[1/(pv0) is the value of the density of states at
high energies (uEu@D ,D). The function f d is different for
the commensurate and incommensurate cases,

f d~u !5H 2u
]

]u
ln@Hd

(2)~u !# commensurate

d
]

]d
ln@I iu~d !# incommensurate,

~66!

where Hd
(2) is a Hankel function of order d and I iy is a

modified Bessel function with imaginary index.

Solution using a Fokker-Planck equation

To demonstrate how an exact solution may be found we
will derive the density of states for the commensurate case

@V(x) real# by using Fokker-Planck equations. Many authors
have studied mathematically equivalent systems.51,58,61 Con-
sider a general Dirac-type equation,

2iv0

]c1

]x
1V~x !c25Ec1 ,

iv0

]c2

]x
1V~x !c15Ec2 . ~67!

The function V is a real and random function of the form

V~x !5D1j~x !, ~68!

where D is a constant and j is a random field which obeys
the following statistical averages:

^j~x !&50, ^j~x !j~y !&5gd~x2y !. ~69!

We reduce the Dirac equation into a system of equations for
two real functions by the following transformations:51

S C

C*
D 5S c11c2

*

c21c1
*D , S F

2F*
D 5S c12c2

*

c22c1
*D , ~70!

then we let

f 15Re C , f 25Im C , f152Im F , f25Re F .
~71!

It can be shown that ( f 1 , f 2) and (f1 ,f2) satisfy the same
equations:

S V~x ! v0

]

]x

2v0

]

]x
2V~x !

D S f 1

f 2
D 5ES f 1

f 2
D . ~72!

Define the following function:

z52

f 2

f 1

. ~73!

By differentiating the dynamic variable z with respect to x

and using Eq. ~72! a dynamic equation for z may be con-
structed,

v0

]z

]x
52~E2D !2z2~E1D !2j~z2

21 !. ~74!

This equation allows us to write down a Fokker-Planck equa-
tion for the random variable z

]P~z ,x !

]x
5

1

v0

]

]z
S ~E2D !1z2~E1D !

1

D

2
~z2

21 !
]

]z
~z2

21 ! D P~z ,x !. ~75!

The function P(z ,x) is the probability density distribution
function of the random variable z at the point x. It is the
derivative ~with respect to x) of the probability that z is less
than x. Since the probability of z being less than infinity is
unity we expect

E
2`

`

P~z ,x !dx51. ~76!

This is an important concept when dealing with probability
densities.

We create a stationary Fokker-Planck equation by taking
the limit as x goes to infinity. The limit of the probability
density is

lim
x→`

P~z ,x !5p~z !. ~77!

The stationary Fokker-Planck equation is

05

1

v0

]

]z
S ~E2D !1z2~E1D !

1

D

2
~z2

21 !
]

]z
~z2

21 ! D p~z !. ~78!

This equation can be integrated and Ovchinnikov and
Érikhman51 showed that the constant of integration is N(E),
the number of states below the energy E,

N~E !52

1

v0
S ~E2D !1z2~E1D !

1

D

2
~z2

21 !
]

]z
~z2

21 ! D p~z !. ~79!

To simplify the solution of the above differential equation
we perform two transformations.

The first transformation is defined by the following func-
tion:

cot
a~x !

2
5z52

f 2

f 1

. ~80!

Because of the nature of the cotangent, we can obtain all
possible values of the ratio, 2 f 2 / f 1, by restricting a to some
interval of length 2p . We will restrict a to the interval

@2p/2,3p/2# . We are only interested in the case where x

→` . As in Eq. ~76!, the integral of all probability densities
of a at large x, p(a), must equal unity,
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E
2p/2

3p/2

p~a !da51. ~81!

The relationship between p(z) and p(a) is

p~z !522p~a !sin2
a

2
. ~82!

The second transformation is

cos a56 sech f ,

sin a56 tanh f . ~83!

The upper sign refers to aP@2p/2,p/2# and the lower sign,
aP@p/2,3p/2# . It can be shown that p(a)5p(f)cosh f so
that Eq. ~81! becomes

E
2`

`

p1~f !df1E
2`

`

p2~f !df51, ~84!

where the 6 subscript on p refers to the different signs in Eq.
~83!. After performing the two transformations Eq. ~79! be-
comes

F2E cosh f62D12D
]

]f Gp~f !5v0N~E !. ~85!

This first-order differential equation can be solved with the
boundary condition that p(f) vanishes as f→` ,

p~f !5

v0N~E !

2D
E

f

`

dx expF E

D
~sinh f2sinh x !6

D

D
~f2x !G .

~86!

To find the number of states we recall that the probability
density must be normalized so that the integral over all pos-
sible values of the random variable f is unity. After some
rearranging

2Dv0
21N~E !21

5E
2`

`

dfE
f

`

dx expF E

D
~sinh f2sinh x !1

D

D
~f2x !G

1E
2`

`

dfE
f

`

dx expF E

D
~sinh f2sinh x !2

D

D
~f2x !G . ~87!

If these two integrals are combined and we let 2y5x2f , d5D/D , and u5E/D , we obtain, after changing the order of
integration

2Dv0
21N~E !21

54E
0

`

dy cosh 2dyE
2`

`

df exp@u sinh f2sinh~2y1f !# . ~88!

Now we let z5f1y ,

2Dv0
21N~E !21

54E
0

`

dy cosh~2dy !E
2`

`

dz exp@22u sinh y cosh z#58E
0

`

dy cosh~2dy !E
0

`

dz exp@22u sinh y cosh z#

58E
0

`

dy cosh~2dy !K0~2u sinh y !5p2@Jd~u !2
1Y d~u !2# , ~89!

where Jd(u) is a Bessel function of index d and Y d(u) is a
Bessel function of the second kind of order d . The number of
states with energy less than E is

N~E !5

2D

p2
v0@Jd~E/D !2

1Y d~E/D !2#
. ~90!

To find the density of states r(E), we differentiate N(E)

r~E !52

4

p2
v0

Jd~u !Jd8~u !1Y d~u !Y d8~u !

@Jd~u !2
1Y d~u !2#2

. ~91!

This is the density of states from which we obtain our re-
sults.

VI. PROPERTIES OF THE COMMENSURATE SOLUTION

A. The density of states

Figure 3 shows the energy dependence of the density of
states from Eq. ~91! for a range of values of d with r0

51/(pv0). In the low-energy limit ~small u) we can take the
following approximation of Eq. ~91!,

r~E !

r0

52

4

p

Y d8~u !

Y d~u !3
~92!

since the Bessel functions of the first kind remain finite for
small u whereas those of the second kind become infinite, as
shown in the following small u approximations:
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Y d~u !;H 2

p
ln

u

2
d50

2

1

p
G~d !S 1

2
u D 2d

dÞ0.

~93!

These low-energy limits are substituted into Eq. ~92! and
then the dominant terms are retained, that is, the smallest
powers of u

r~E !

r0

;5
2pD

E@ ln~E/2D! #3
d50

2pd

G~d !2 S E

2D
D 2d21

dÞ0.

~94!

The divergence in the density of states at E50 is sometimes
referred to as the Dyson singularity.

The function Y d(u) is continuous as u and d approach
zero. This property is not apparent from Eq. ~94!. To avoid
this problem we take the small d ~close to criticality! limit of
Eq. ~92! before we take the small-u limit. Before we take any
limits we write the Bessel function of the second kind in
terms of the Bessel function of the first kind,

Y d~u !5

Jd~u !cos~dp !2J2d~u !

sin~dp !
. ~95!

We can find a small d approximation to Jd(u) from its series
expansion,

Jd~u !5S 1

2
u D d

(
k50

`
@2~1/4!u2#

k!G~d1k11 !
;S 1

2
u D d

J0~u !.

~96!

So now we have a small d approximation for a Bessel func-
tion of the second kind

Y d~u !5J0~u !
@~1/2!u#d

2@~1/2!u#2d

dp
. ~97!

When u is small we set J0(u)51 and Eq. ~92! becomes

r~E !

r0

52pd3S E

2D
D 2d21 @11~E/2D !2d#

@12~E/2D !2d#3
. ~98!

This agrees with the scaling form obtained by Balents and
Fisher.45 By taking appropriate limits it can be shown that
this formula agrees with Eq. ~94!. For d50 we use

lim
d→0S d

12S E

2D
D 2dD 5 lim

d→0

d

12@112d ln~E/2D !#

52

1

2 ln~E/2D !
, ~99!

and for d becoming small we use, in Eq. ~92!, G(d);1/d .
The low-energy (uEu!D) dependence of the density of

states contains some important physics. The density of states
diverges at E50 for d,1/2 and is zero at E50 for d.1/2.
These two cases lead to qualitatively very different behavior.
In the former case some susceptibilities will diverge as the
temperature approaches zero. This corresponds to a Griffiths
or weakly ordered phase.11 Hence, for the Ising transition
there will be four phases: ferromagnet, weakly ordered fer-
romagnet, weakly ordered paramagnet, and paramagnet13

~see Fig. 4!.

FIG. 3. Energy dependence of the disorder-averaged density of

states for the commensurate case for various values of the dimen-

sionless parameter d @see Eq. ~64!#, which is a measure of the

deviation from criticality. The density of states is symmetrical about

the Fermi energy (E50) and diverges at (E50) when d,
1
2 . This

parameter range corresponds to a Griffiths phase. Note that only far

from criticality (d@1) is there effectively a gap in the system. This

contrasts with the disorder-free case, for which there is always a

gap except at the critical point.

FIG. 4. Phase diagram of the Ising transition in a random trans-

verse field. The horizontal axis is a measure of the deviation from

criticality in the nonrandom model. The vertical axis is the amount

of disorder. The four phases are ferromagnet ~FM!, weakly ordered

ferromagnet ~WO-FM!, weakly ordered paramagnet ~WO-PM!, and

paramagnet ~PM!. The weakly ordered phases are Griffiths phases

in which the linear susceptibility diverges but there is only short-

range order. Note that the dashed line does not represent a true

phase transition and that higher-order susceptibilities will diverge in

larger regions of the phase diagram.
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B. Ground-state energy

The dependence of the ground-state energy of the disor-
dered commensurate system on d can be shown to be infi-
nitely differentiable, but not analytic. To show this we follow
a procedure similar to that used by McCoy and Wu34 and
Shankar and Murthy35 who considered the analogous two-
dimensional classical system. To find the ground-state en-
ergy in the presence of disorder we use

e~d !52E
0

`

r~E !E dE . ~100!

We make use of expression ~98!, for the density of states at
low energies, which we assume is accurate up to an energy
Ec , which is less than 2D,

e~d !52pr0D28d3E
0

Ec/2DE2d~11E2d!

~12E2d!3
dE

2E
Ec

`

r~E !E dE . ~101!

By integrating by parts

8d3E
0

Ec/2DE2d~11E2d!

~12E2d!3
dE

5F 4d2E112d

~12E2d!2G
0

Ec/2D

2F 2dE

~12E2d!
G

0

Ec/2D

12dE
0

Ec/2D dE

12E2d
. ~102!

As for the disorder free case ~see Sec. III A! we subtract off
the ground-state energy at d50. To calculate the d50
ground-state energy we require the limit in Eq. ~99! with
which we obtain

2

e~0 !

pr0D2
5

Ec

2D@ ln~Ec/2D !#2
1

Ec

2D ln~Ec/2D !

2E
0

Ec/2D dE

ln E
1 lim

d→0

1

pr0D2
E

Ec

`

r~E !E dE .

~103!

By subtracting the zero d case from the small d case and
combining those terms analytic in d in a function f (d), we
obtain

e~d !2e~0 !52pr0D2E
0

Ec/2D

dEF 2d

12E2d
1

1

ln EG1 f ~d !

52pr0D2E
0

`

dj e2j/2d@~12e2j!21
2j21#

1 f ~d !, ~104!

where we have made the substitution E5e2j/2d and set Ec

52D , because this does not affect the analytic properties of
the integral. This integral can be solved in terms of Euler’s c
function62

e~d !2e~0 !5pr0D2 ln 2d1pr0D2cS 1

2d D1 f ~d !

52pr0D2d2pr0D2 (
n51

`

B2n~2d !2n~2n !21

1 f ~d !, ~105!

using the small d approximation for the c function.62 The
Bernoulli numbers B2n are proportional to 2n!/(2p)2n for
large n. Because of this, the ground-state energy has zero
radius of convergence about the point d50. Thus the
ground-state energy is infinitely differentiable but is not an
analytic function of d . The critical exponent, a , defined in
Table II cannot be defined in this case.

C. Thermodynamic properties

1. Free energy

For any particular configuration of the disorder the free
energy per site of the system is

F52kBT(
k

lnF2 coshS Ek

2kBT
D G , ~106!

where $Ek% denotes the eigenvalues of the Hamiltonian ~61!.
This simple formula holds because the eigenstates of the
Hamiltonian are noninteracting fermions. It then follows that
the disorder-averaged free energy is

^F&52kBTE
0

`

dE^r~E !&lnF2 coshS E

2kBT
D G . ~107!

The low-temperature behavior of the specific heat and the
transverse susceptibility ~for the anisotropic transitions! fol-
lows from the energy dependence of the disorder-averaged
density of states.63,64 We now show this in detail.

2. Specific heat

The disorder-averaged specific heat is

^C~T !&52T
]2^F~T !&

]T2
5

1

T
E

0

`

dE E2^r~E !&
] f

]E
,

~108!

where f (T) is the Fermi distribution function. For the com-
mensurate case with dÞ0 the mean specific heat is
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^C~T !&5

2pdr0

kBT2G~d !2~2D !2d21
E

0

Ec

dE
E2d11e2E/kBT

~11e2E/kBT!2
1

1

T
E

Ec

`

dE r~E !
] f

]E
5

2pdr0kB
2d11T2d

G~d !2~2D !2d21
E

0

Ec /kBT

dy
y2d11e2y

~11e2y!2

1

1

T
E

Ec

`

dE r~E !
] f

]E
. ~109!

As the temperature becomes very small the limit of the integral, Ec /kBT , becomes very large. The first integral will dominate
the specific heat and will be evaluated from zero to infinity. By using integral tables62 it can be shown that

E
0

`

dy
y xe2y

~11e2y!2
5G~x11 !(

k51

`
~21 !k11

kx
, x.21

5G~x11 !~12212x!z~x !. ~110!

where z is the Riemann zeta function. The mean specific heat is then

^C~T !&5

4pdr0kBDG~2d12 !~12222d!z~2d11 !

G~d !2 S kBT

2D
D 2d

. ~111!

For small d , ^C(T)&;d3T2d, in agreement with Fisher13 and the numerical work of Young.17

The specific heat in the commensurate case with d50 is

^C~T !&52

pDr0

kBT2
E

0

Ec

dE
Ee2E/kBT

@ ln~E/2D !#3~11e2E/kBT!2
1

1

T
E

Ec

`

dE r~E !
] f

]E

52pDr0kBE
0

Ec /kBT

dy
ye2y

@ ln~kBTy /2D !#3~11e2y!2
1

1

T
E

Ec

`

dE r~E !
] f

]E
. ~112!

To simplify this equation we note that the term ye2y/(1
1e2y)2 is appreciable only for values of y of order unity.
Since we are taking a low-temperature limit, T!D , we may
approximate the term, @ ln(ykBT/D)#3, to simply @ ln(kBT/D)#3

when y;1. As in the previous case, the second integral is
negligible as the temperature approaches zero and the limits
of the first integral are zero and infinity. The specific heat for
d50 is

^C~T !&52

pkBDr0

@ ln~kBT/2D !#3
ln 2, ~113!

which has the same temperature dependence as found by
Fisher.13

3. Transverse susceptibility

The mean transverse field susceptibility is, for the aniso-
tropic transition,64

^xzz~T !&5E
0

`

dE^r~E !&
] f

]E
. ~114!

For the commensurate case with dÞ0 and the temperature
approaching zero the calculation of the susceptibility is simi-
lar to the calculation of the specific heat with dÞ0. The
mean transverse susceptibility is

^xzz~T !&5

2pdr0G~2d !~122222d!z~2d21 !

G~d !2 S kBT

2D
D 2d21

.

~115!

If d,
1
2 and T→0 the susceptibility becomes infinite. This is

the Griffiths phase region. We cannot take the limit as d goes
to zero of the susceptibility since the condition on the inte-
gral in Eq. ~110! is x.21 which means, in this case, d
.0. If we try to take this limit we see that it does not exist.
The critical exponent g is not defined.

Similarly to the specific-heat calculation with d50 it can
be shown that when d50 the mean susceptibility at low
temperatures is

^xzz~T !&52

pr0D

kBT
E

0

`

dy
e2y

y~ ln@ykBT/2D# !3~11e2y!2
.

~116!

The integrand is large at y51 and y50 so we can approxi-
mate the integral to an integral from zero to some cut off A

of order unity. We also notice that, for y!1,

e2y

y~ ln@ykBT/2D# !3~11e2y!2
;

1

y~ ln@ykBT/2D# !3
.

~117!

Using these approximations the susceptibility is
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^xzz~T !&52

pr0D

kBT
E

0

A

dy
1

y~ ln@ykBT/2D# !3

5

pDr0

kBT F 1

F lnS ykBT

2D
D G2G

0

A

5

pDr0

kBT@ ln~AkBT/2D !#2
.

~118!

This susceptibility is finite when d50 unless T50. A com-
parison with the dÞ0 result shows that the susceptibility is
not continuous at the phase transition which is at d50.

D. Dynamic critical exponent z

This relates the scaling of energy ~or time! scales to
length scales. We can make the following crude scaling ar-
gument to extract z from the low-energy behavior of the
density of states. The total number of states ~per unit length!
with energy less than E, N(E) scales with the inverse of any
length scale l . By definition E;l2z. This implies that

^r(E)&;E1/z21. Thus for the commensurate case, to leading
order in d ,

z5

1

2d
, ~119!

in agreement with the renormalization group results of
Fisher13 and the numerical results of Young and Rieger.16

Igloi and Rieger also found the exact form of the dynamical
exponent in the random transverse-field Ising spin chain by
using a mapping to the Sinai-walk problem.28 Expression
~119! is a particularly striking result because it shows that ~i!
z is not universal and ~ii! z diverges at the critical point. The
latter implies logarithmic scaling and activated dynamics.65

E. Finite-size scaling

Monthus et al.66 studied an equation equivalent to Eq.
~61! with V(x) real and D50.56 They have shown that on a
line of length L, for a typical potential V(x) the lowest ei-

genvalue E0 scales like E0
2;exp(2cL1/2), where c is a con-

stant. This is consistent with the scaling of lnE0 with L1/2 at

the critical point found numerically.16 The average ^E0
2&

;exp(2dL1/3) where d is a constant,66 showing the discrep-
ancy between average and typical values. Fisher and
Young24 recently derived the distribution function for the
energy gap from the RSRGDT and compared it to numerical
results. The distribution function they derived gives average
and typical values in agreement with the above results.

F. Correlation lengths

Fisher13 stressed the distinction between average and typi-
cal correlations. If C i j[^A iA j& denotes a correlation func-
tion of a variable A i then the average correlation function

Cav(r)[(1/L)( i51
L C i ,i1r is what is measured experimen-

tally. Away from the critical point Cav(r);exp(2r/jav)
where jav is the average correlation length. However, Cav(r)
is dominated by rare pairs of spins with C i j;1. In contrast,
with probability one C i ,i1r;exp(2r/jtyp) where j typ denotes
the typical correlation length. It is distinctly different from

jav (j typ!jav), having a different critical exponent. The lo-
calization length is useful because it is proportional to the
typical correlation length for quantities that are diagonal in
the fermion representation.67

The localization length is obtained from integrating equa-
tion ~65!,

1

l~E !
5

D

v0

Re„f d~u !…1const. ~120!

In the commensurate case the following approximation holds
for small u:

Re„f d~u !…52

uY d8~u !

Y d~u !
. ~121!

Equations ~93! and ~97! give, for small energy,

l~E !5H v0

Dd
, dÞ0,

2

v0

D
ln

E

2D
, d50.

~122!

The localization length is infinite only when d50 and E

50.
For both the pure system and the random system, j typ

;l(0)21;D21, indicating that n typ51 and that this critical
exponent is not modified by the presence of disorder. This
result also agrees with the RSRGDT. Balents and Fisher
studied the same Dirac equation and examined the decay of
the average Green function. Hence, they found the critical
exponent associated with the average correlation length, jav

;D22.

VII. PROPERTIES

OF THE INCOMMENSURATE SOLUTION

It was shown in Sec. IV B 2 that the incommensurate so-
lution with d5D/D50 describes the XX chain which has no
anisotropy. We can use Eq. ~65! to find the density of states.
Alternatively, using Fokker-Planck equations, or a number of
other methods,53,58,68,69 it can be shown that the number of
states below E is

N~E !5

Dr0

p

sinh~pu !

uI iu~d !u2
, ~123!

where u5E/D . The density of states r may be found by
taking the derivative of N(E). The density of states for small
u is

r~E !

r0

5

1

I0~d !2
. ~124!

When d50, for any u,

r~E !5r0 . ~125!

Hence, the incommensurate density of states is always finite.
When d50 the density of states is constant. Thus, for an XX

random chain in a nonzero transverse field there is no Dyson
singularity. This agrees with the results of Smith.64
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To find the localization length we take the real part of Eq.
~65! and integrate over E. For small u, the localization length
for the incommensurate case is

l~E !5

4v0

D
F11

4dI1~d !

I0~d !
G21

. ~126!

The constant of integration must be evaluated by deriving the
localization length from other methods.70 The most impor-
tant property of this result is that unlike for the commensu-
rate case the localization length is always finite. This means
that the typical correlation length of the corresponding spin
model does not diverge when the pure system is at criticality.
Hence, in a nonzero transverse field the anisotropy phase
transition does not occur if there is randomness in the trans-
verse field or the isotropic exchange.

VIII. CONCLUSIONS

We presented some exact results for the effect of disorder
on the quantum critical properties one of the simplest models
to undergo quantum phase transitions: an anisotropic XY

spin chain in a transverse field. By taking the continuum
limit of the corresponding noninteracting fermion model we
were able to map various cases of the model onto a Dirac
equation with a random mass. This mapping has the distinct
advantage that a number of different techniques can then be
used to obtain exact analytic results for the density of states
and the localization length. In the presence of disorder the
Ising transition of the model is in the same universality class
as the random transverse field Ising model. If there is only

randomness in the anisotropy then the anisotropy transition

is also in this universality class. However, if there is random-

ness in the isotropic part of the exchange or in the transverse

field then in a nonzero transverse field the anisotropy transi-

tion is destroyed by the disorder. By examining the energy

dependence of the density of states we showed that the dy-

namical critical exponent, show the existence of a Griffiths’

phase near the transition, and show that the ground-state en-

ergy has an essential singularity at the transition. The results

obtained for the typical correlation length, the dynamical

critical exponent, the finite-size scaling of the energy gap,

and for the temperature dependence of the specific heat near
the Ising transition agree with the results of the RSRGDT
and numerical work. Since our result is explicitly exact, this
agreement is consistent with Fisher’s claim that the
RSRGDT gives exact results for critical behavior. The real
challenge is whether the mapping to the fermion model used
here can be used to obtain results for distribution functions
and spin-correlation functions. Recently some has been done
on distribution functions associated with the zero energy
eigenstates of the random Dirac equation.45,50,48,71
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