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With propagating through a dispersive medium, the temporal–spectral profile of optical pulses should be inevi-
tably modified. Although such dispersion effect has been well studied in classical optics, its effect on a single-
photon wave-packet has not yet been entirely revealed. In this paper, we investigate the effect of dispersion on
indistinguishability between single-photon wave-packets through the Hong–Ou–Mandel (HOM) interference.
By dispersively manipulating two weak coherent single-photon wave-packets which are prepared by attenuating
mode-locked laser pulses before interfering with each other, we observe that the difference of the second-order
dispersion between two optical paths of the HOM interferometer can be mapped to the interference curve, in-
dicating that (i) with the same amount of dispersion effect in both paths, the HOM interference curve must be
only determined by the intrinsic indistinguishability between the wave-packets, i.e., dispersion cancellation due to
the indistinguishability between Feynman paths; and (ii) unbalanced dispersion effect in two paths cannot be
canceled and will broaden the interference curve thus providing a way to measure the second-order dispersion
coefficient. Our results suggest a more comprehensive understanding of the single-photon wave-packet and pave
ways to explore further applications of the HOM interference. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.421180

1. INTRODUCTION

Similar to procedures for analyzing its classical counterpart,
i.e., the electromagnetic wave, properties of single photons have
been investigated through interference [1,2]. Exciting demon-
strations, which certify the genuine quantum nature of single
photons, have been realized [3–5]. One important genuine
quantum nature is the indistinguishability between single-
photon wave-packets, which has been characterized through
Hong–Ou–Mandel (HOM) interference in different degrees
of freedom of single-photon wave-packets, such as in spatial
mode [6], temporal mode [7], polarization mode [8], spectral
mode [9–11], and orbital angular momentum mode [12].
Moreover, the HOM interference is also applied to quantum
communications with dispersive quantum channels, such as
quantum teleportation [13,14] and measurement device inde-
pendent quantum key distribution [15–17]. Generally, the
dispersion distortion should take place after a single-photon
wave-packet propagating through dispersive environment.

For instance, the dispersion-induced temporal-mode broaden-
ing has been investigated with single-photon wave-packets in
Ref. [18]. More importantly, the dispersion effect would also
change the indistinguishability between single-photon wave-
packets in the spectral–temporal profile, which has not yet been
revealed so far.

In this work, we investigate the effect of dispersion on in-
distinguishability between single-photon wave-packets via the
HOM interference and implement two proof-of-principle
demonstrations with attenuated coherent single-photon
wave-packets which are prepared by attenuating mode-locked
laser pulses. Our analyses show that the difference of dispersion
effect between the propagation paths of the two single-photon
wave-packets can be mapped into the HOM interference curve.
In one case, the mode-locked laser pulses propagate through a
dispersion module, and then are separated into two parts which
are attenuated to single-photon levels before sending them to
a balanced HOM interferometer. Our results show that the
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width of the HOM interference curve is independent with the
dispersion from the dispersion module, i.e., dispersion cancel-
lation [19–21] due to the indistinguishability between
Feynman paths [22,23], thus restoring the original temporal
width of the wave-packets. In another case, two attenuated co-
herent single-photon wave-packets are sent into an unbalanced
HOM interferometer, i.e., different dispersion between optical
interference paths. The unbalanced dispersion cannot be can-
celed and will modify the HOM interference curve. By meas-
uring the change of the interference curve, we can obtain the
second-order dispersion coefficient of the unbalanced
dispersion, thus providing a new method for measuring it.

2. THEORETICAL MODEL AND ANALYSIS

Figure 1(a) gives the conceptual illustration of our proposed
method. We consider two single-photon wave-packets with
the pulse width of T 0, which propagate along path A and path
B, respectively. Two dispersion modules are utilized to manipu-
late the spectral–temporal profiles of two wave-packets. Then
the wave-packets are input into an HOM interferometer, con-
sisting of a 50:50 beam splitter, two single photon detectors,
and a coincidence circuit. To observe the HOM interference
curve, an optical delay line is introduced in path B. The effect
of dispersion on indistinguishability between two single-
photon wave-packets is measured by comparing the HOM in-
terference curves with different dispersive manipulations.

Assuming the two single-photon wave-packets propagating
along paths A and B are both in coherent state, we can present
their initial quantum state as [24]

jψ0iA,B � jαA,B�t�i, (1)

satisfying

aA,B�t 0�jαA,B�t�iA � αA,B�t 0�jαA,B�t�i (2)

and

αA,B�t� � �T 0

ffiffiffi

π
p

�−1∕2e
−

t2

2T 2
0 , (3)

where aA,B�t� is the annihilation operators of fields in modes A
or B, and the temporal amplitude function αA,B�t� is assumed
to be Gaussian. The coincidence count per trial P�τ� without
any dispersion can be expressed by (see the derivations in
Appendix A)

P�τ� � 1 −
1

2
e
−

τ2

2T 2
0 , (4)

where τ is the relative time delay between two optical paths.
According to Eq. (4), Fig. 1(b) gives a conceptual HOM inter-
ference curve without dispersive manipulation and shows the
cartoon process of how to obtain the HOM interference, in
which the fixed single-photon wave-packet is indicated by solid
lines (only shown with relative time delay being zero and omit-
ted with other cases), while the moving one is indicated by

Fig. 1. Conceptual illustration of the HOM interference to reveal the dispersion effect on the indistinguishability between single-photon wave-
packets. (a) HOM interferometer with dispersive manipulation modules. Two identical single-photon wave-packets are manipulated with dispersion
modules along two optical paths, i.e., path A and path B, and then are sent into an HOM interferometer; (b) HOM interference curves without the
second-order dispersion along two paths; (c) with the same second-order dispersion along two paths, i.e., balanced HOM interferometer; (d) with
unbalanced second-order dispersions along two paths. To obtain the HOM interference curve, the travel time of the wave-packet in path A is fixed,
and that in path B is varied and the time axis is in reference to the center of the pulse in path A. To guide eyes, envelopes of three sub-wave-packets
are depicted with solid and dashed lines in red, green, and blue, respectively, and the black envelope covering the three sub-wave-packets is used to
illustrate the widths of the wave-packets.
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dashed lines. The HOM interference curve with a full width at
half-maximum (FWHM) which is

ffiffiffi

2
p

times of the FWHM of
the two single-photon wave-packets can be obtained by scan-
ning τ from −t1 to t1 in the axis of relative delay.

After the dispersive manipulation of a single-photon wave-
packet, one may expect the interference curve to be changed
due to the group-velocity time delay and the second-order
dispersion effect, respectively. Ignoring the third- and
higher-order dispersion effects, we can obtain the coincidence
count per trial P 0�τ�, as given by (see the derivations in
Appendix A)

P 0�τ� � 1 −
T 2

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4T 4
0 � α2

p e
−

2�τ−δτ�2
4T2

0
��α∕T 0�2 , (5)

where δτ � β
�1�
A �0�LA − β

�1�
B �0�LB and α � β

�2�
A �0�LA−

β
�2�
B �0�LB represent the difference of group-velocity time delay

and the difference of the group-velocity dispersion introduced
by two optical paths respectively, with β

�1�
A �0� or β

�1�
B �0�,

β
�2�
A �0� or β

�2�
B �0�, and LA or LB being the inverse group-

velocity, group-velocity dispersion parameter, and the length
of the dispersive path A or B.

Equation (5) gives the possible phenomena that would take
place with dispersive manipulation. Such phenomena are fur-
ther depicted in Figs. 1(c) and 1(d). In our cartoonish picture,
the single-photon wave-packets are composed of three fre-
quency components which are shown in red, green, and blue
lines, respectively. Figure 1(c) indicates the situation that the
two single-photon wave-packets experience the same amount
of dispersion. Although for each wave-packet, different compo-
nents in frequency are separated in the time domain after the
dispersive manipulation—temporal broadening, the HOM in-
terference only occurs with components in the same color,
i.e., with the relative time delay from −t1 to t1— the same
as the case shown in Fig. 1(b), which corresponds to the origi-
nal width of the wave-packets. On the other hand, the situation
for two wave-packets experiencing different amounts of
dispersion is given in Fig. 1(d). In this case, both of them are
also broadened in the time domain with different amounts, re-
sulting in being partially distinguishable. The HOM interfer-
ence can still happen due to the residual indistinguishability
between them when the components in the same frequency
are overlapping, leading to a wider HOM interference curve

with a smaller visibility. The corresponding changes of the
HOM interference curve are determined by the different
amount of dispersion experienced by the two wave-packets,
given by Eq. (6):

α � T 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d 2∕2 ln 2 − 4T 2
0

q

, (6)

where d is the FWHM of the HOM interference curve (see the
derivations in Appendix A). Therefore, the different amount of
dispersion can be obtained by measuring the width of the
HOM interference curve.

3. PROOF-OF-PRINCIPLE DEMONSTRATIONS

Our proof-of-principle experimental setup is shown in Fig. 2
(see more details in Appendix B). In the demonstrations, single-
photon wave-packets are attenuated from mode-locked laser
pulses (PFL-200 M, Alnair Labs), with a mean photon number
of 0.007 per pulse. The pulse width is 1.12� 0.01 ps, mea-
sured by a second-order autocorrelator (FEMTOCHROME,
FR-103XL), and the repetition period T is 25 ns. The disper-
sive manipulation is realized by using pieces of fiber as
dispersion modules.

We first measure the HOM interference curve at the output
port of a mode-locked laser as shown in Fig. 2, which is used as
a reference for our demonstrations. The HOM interference
curve is obtained as shown in Fig. 3(a). The blue dots are the
normalized measured data, and the solid lines are the Gaussian
fitting curves obtained by the Monte Carlo method [25], in
which 1000-time random sampling is performed around the
measured data assumed to be Poissonian. By averaging
the FWHM of the 1000 fitting curves, we obtain that the
FWHM of the HOM-dip is 1.31� 0.01 ps with the visibility
of 50.2%� 0.2%, suggesting a width of 0.93� 0.01 ps for
laser pulses.

Next, we connect a dispersion module (50 km long single-
mode fiber spool, Yangtze Optical Fibre and Cable Co., Ltd.,
G.652.D ULL) at the output port of our mode-locked laser.
After propagating through this dispersive environment, the
laser pulses would be broadened to about 3.0 ns with a sec-
ond-order dispersion coefficient of 17.0 ps∕�km · nm�. We
employ a superconducting nanowire single photon detector
(SNSPD, Photon Technology Co., P-CS-6) [26] and a time

Fig. 2. Experimental setup. The setup consists of attenuated mode-locked laser pulses, HOM interferometer, and photon detection with a
dispersion module. VOA, variable optical attenuator; SMC, single-mode fiber coupler; PBS, polarization beam splitter; PMC, polarization-main-
taining fiber coupler; PC, polarization controller; SNSPD, superconducting nanowire single photon detector; TDC, time to digital convertor.
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to digital converter (TDC, ID Quantique, ID900) to measure
the width of the broadened laser pulses after being attenuated
to single-photon level. After the dispersive manipulation, the
measured pulse width is 3.4� 0.3 ns including a time jitter
of the SNSPD and TDC (see more details in Fig. 5 in
Appendix B). However, the width of the measured HOM in-
terference curve is 1.31� 0.01 ps with the visibility of
47.2%� 0.2%, as shown in Fig. 3(b), which is nearly the same
as that without the dispersive manipulation. The degraded vis-
ibility could be attributed to the unbalanced mean photon
number in two paths of HOM interferometer. This phenome-
non would be explained as dispersion cancellation, i.e., the re-
sult of HOM interference is immune to the dispersion effect on
the individual wave-packet. The dispersion cancellation—in-
cluding the dispersion related chirp effect [27,28]—has also
been demonstrated with correlated photon pairs, in which
the dispersion cancellation is attributed to the nonlocal prop-
erty of entanglement. In our case, the dispersion cancellation
phenomenon is related to the HOM interference-based en-
tangled N00N state generation [29–33], and can also be ex-
plained with the Feynman diagram, i.e., we cannot tell
which Feynman path the single-photon wave-packet is from
even with dispersive manipulation. Therefore, the HOM inter-
ference must recover the original width of the dispersively

manipulated wave-packet, offering us a dispersion immune
method to measure the original width of laser pulses.
Although the HOM interference scheme has been used to mea-
sure the width of ultrashort laser pulses since 1993 [34], the
dispersion influence on such a measurement has not yet been
discussed, which is addressed in this work.

The pulse width from the HOM interference is
0.93� 0.01 ps, which is smaller than 1.12� 0.01 ps ob-
tained from the second-order autocorrelation measurement
[35]. This would be caused by the dispersive broadening before
the second-order autocorrelation measurement. It is worth not-
ing that the total time jitter from the SNSPDs and TDC is
remarkably shorter than the width of pulses after dispersion.
Thus, our coincidence detection system is capable of working
in a time-resolved manner and revealing the detailed structure
in coincidence counts versus photon detection time delay
[36,37]. In our experiment, we set the width of the coincidence
window wider than the dispersed pulse width to obtain the
coincidence counts for the HOM interference curve as shown
in Fig. 3(b), i.e., our HOM interference curve is measured in a
time-unresolved manner.

Then, we use another dispersion module (80 m long single-
mode fiber, SMF-28) to serve as the unknown optical material,
which is inserted in one arm of the HOM interferometer as
shown in Fig. 2. One may think that an extra optical path
should be added in the other arm to balance transmission times
in two arms. Fortunately, the extra optical path can be removed
according to the result reported in Ref. [38], i.e., the HOM
interference can occur between periodically delayed mode-
locked laser pulses. In our experiment, the HOM interference
curves are measured between laser pulses with a 16-period de-
lay. The measured results are shown in Fig. 4. The FWHM of
HOM interference curves is 3.76� 0.08 ps with the visibility
of 16.6%� 0.3%, which is consistent with our theoretical pre-
dictions, 3.96 ps and 16.5%, respectively. According to Eq. (4),
the second-order dispersion coefficient of our measured 80 m
long fiber is 16.3� 0.5 ps∕�km · nm�, which is in consistence
with the dispersion parameter from the manufacturer within
errors, i.e., 17.0 ps∕�km · nm�.

Fig. 3. HOM interference curves (a) without a dispersion module,
and (b) with 50 km long fiber as the dispersion module at the output
of the mode-locked laser, respectively. The blue dots are experimental
results. The solid purple lines are Gaussian fitting curves obtained via
Monte Carlo method with 1000-time random sampling around each
measured data assumed as Poissonian distribution.

Fig. 4. HOM interference curves with a 80 m long single-mode
fiber inserted in one path, which corresponds to 16 periods of
mode-locked laser pulses.
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4. DISCUSSION AND CONCLUSIONS

Several methods have been demonstrated to measure the sec-
ond-order dispersion coefficient of optical media, for instance,
the time of flight [39], phase shift [40], and interferometric
methods [41]. In the former two methods, the response time
or time jitter of electronics limits the measurement precision
[42]. As for the interferometric methods, the second-order
dispersion coefficient is obtained from the first-order interfer-
ence, which is phase sensitive. In our method, the second-order
dispersion is measured by the HOM interference, which is in-
sensitive in phase [43]. One may concern that the statistical
properties of the HOM method would influence the precision
of our measurement. To address this, in our demonstration the
measured results are not straightly extracted from the photon
counting results, but the Monte Carlo method fitted curves.
The results are shown in Figs. 3 and 4; the solid purple lines
indicate 1000-time Monte Carlo fitting curves. It can be seen
that such a method achieves a precision of 10 fs for the pulse
width and a precision as high as 0.5 ps∕�km · nm� for the sec-
ond-order dispersion coefficient measurement.

In summary, we have investigated the effect of dispersion on
indistinguishability between single-photon wave-packets via
HOM interference. From the perspective of Feynman paths,
the indistinguishability is independent of the same dispersive
manipulation and only related to the unbalanced dispersion ef-
fect in two optical paths of the HOM interferometer. Our proof-
of-principle demonstrations have proved that such a scheme can
be used to measure the original pulse width of ultrashort laser
pulses even after propagating through the dispersive environ-
ment, i.e., dispersion immunity, and to measure the second-or-
der dispersion coefficient of an unknown optical material. The
results show that the measurement precision can reach 10 fs and
0.5 ps∕�km · nm� for the measurement of the pulse width and
the second-order dispersion, respectively. Furthermore, our study
provides a deeper understanding for single-photon wave-packets
and opens up new applications for HOM interference.

Note added: A similar dispersion effect on single-photon
wave-packets has recently been reported for single photons
generated from the spontaneous parametric downconversion
process [44].

APPENDIX A: THEORETICAL MODEL

The paths A and B in Fig. 1(a) are defined as spatial modes A
and B, respectively. Assuming the single-photon wave-packets
in spatial modes A and B are both in coherent state, we can
present their initial quantum state as [24]

jψ0iA,B � jαA,B�t�i, (A1)

satisfying

aA,B�t 0�jαA,B�t�i � αA,B�t 0�jαA,B�t�i, (A2)

and
Z

dtjαA,B�t�j2 � jαA0,B0j2, (A3)

where aA,B�t 0� is the annihilation operator of field in modes A
or B, and jαA0,B0j2 is the averaged photon number in each
wave-packet. After passing through the dispersive media in
the propagation pathways, the coherent state evolves from
Eq. (A1) into

jψ1iA,B � jαA1,B1�t�i, (A4)

where

αA1,B1�t�

� �2π�−1∕2
Z

dΩA,BαA,B�ΩA,B�e−i�ω0�ΩA,B�t�iβA,B�ΩA,B�LA,B ,

(A5)

with αA,B�ΩA,B� � �2π�−1∕2
R

dtαA,B�t�ei�ω0�ΩA,B�t and the
central angular frequency of the two wave-packets both assumed
to be ω0. In Eq. (A5), LA,B and βA,B are the length of the dis-
persive medium on path A or B, and the corresponding propa-
gation constant at angular frequency of ω0 �ΩA,B. Before being
incident on the beam splitter in Fig. 1(a), the wave-packet in
mode B is delayed by τ and its quantum state turns into

jψ2iB � jαB1�t � τ�iB : (A6)

Introducing spatial modes C and D corresponding to the two
output ports of the beam splitter, we can obtain the annihilation
operators aC ,D�t� of fields in the two modes via the transforms

aC �t� � 2−1∕2�aA�t� � aB�t��, (A7)

aD�t� � 2−1∕2�aA�t� − aB�t��: (A8)

The second-order correlation between fields in modes C and D
can be obtained as

G�2�
C ,D�t, t � τc�
� Ahψ1jBhψ2ja†C �t�a

†
D�t � τc�aD�t � τc�aC �t�jψ2iBjψ1iA,

(A9)

where τc is the time delay introduced in calculating the second-
order correlation function. Then, we can calculate the coincidence
counts between the photons detected in modes C and D as

nCD�τ� � ηCηD

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτcG
�2�
C ,D�t, t � τc�, (A10)

where ηC ,D summarize the collection and detection efficiencies of
the photons; T 1 and T 2 are the start and stop times of the coinci-
dence counting measurement; andΔτc0 is the width of the coinci-
dence counting window. After substituting Eqs. (A7)–(A9) into
Eq. (A10), nCD�τ� comprises eight terms possible to be nonzero.
We can list them as

(i)

nCD;1�τ� �
ηCηD

4

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτcAhψ1jBhψ2ja†A�t�a
†

A�t � τc�aA�t � τc�aA�t�jψ2iBjψ1iA

� ηCηD

4

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτc jαA1�t�j2jαA1�t � τc�j2 ≈
ηCηD

4
jαA0j4· (A11)
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(ii)

nCD;2�τ� �
ηCηD

4

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτcAhψ1jBhψ2ja†B�t�a
†
B�t � τc�aB�t � τc�aB�t�jψ2iBjψ1iA

� ηCηD

4

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτc jαB1�t�j2jαB1�t � τc�j2 ≈
ηCηD

4
jαB0j4· (A12)

At the last step in Eq. (A12), we assume that T 2 − T 1 and Δτc0 are both remarkably larger than the temporal width of the
dispersion-broadened wave-packets, and this is easily satisfied in our experiment. It is obvious that nCD;1�τ� and nCD;2�τ� originate
from the second-order autocorrelation of the two wave-packets, respectively. In fact, in a Hanbury–Brown–Twiss experiment, the
normalized second-order autocorrelation function of the two wave-packets is

g �2�A,B�τc� �
R T 2

T 1
dt

R τc�Δτc0∕2
τc−Δτc0∕2

dτ 0cA,Bhψ1,2ja†A�t�a
†

A�t � τ 0c�aA�t � τ 0c�aA�t�jψ1,2iA,B
�

R T 2

T 1
dtA,Bhψ1,2ja†A�t�aA�t�jψ1,2iA,B

�

2
: (A13)

Thus, general forms of nCD;1�τ� and nCD;2�τ� are

nCD;1�τ� �
ηCηD

4
g �2�A �0�

�
Z

T 2

T 1

dtAhψ1ja†A�t�aA�t�jψ1iA
�

2

, (A14)

and

nCD;2�τ� �
ηCηD

4
g �2�B �0�

�
Z

T 2

T 1

dtBhψ2ja†B�t�aB�t�jψ2iB
�

2

· (A15)

Since we assume the single-photon wave-packets are in coherent state, g
�2�
A,B�0� � 1 and therefore the results in Eq. (A11) [Eq. (A12)]

and Eq. (A14) [Eq. (A15)] are consistent with each other.

(iii)

nCD;3�τ� � −

ηCηD

4

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτcAhψ1jBhψ2ja†A�t�a
†

A�t � τc�aB�t � τc�aB�t�jψ2iBjψ2iA

� −

ηCηD

4

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτcα
	
A1�t�α	A1�t � τc�αB2�t � τc�αB2�t�

� −

ηCηD

4
�2π�−2e−i2ω0τ

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτc

Z

dΩA

Z

dΩ 0
A

Z

dΩB

Z

dΩ 0
B

× α	A�ΩA�α	A�Ω 0
A�αB�ΩB�αB�Ω 0

B�
× ei�ΩA�Ω

0
A
−ΩB−Ω

0
B�t�i�Ω 0

A
−ΩB�τc−i�βA�ΩA�LA�βA�Ω 0

A
�LA−βB�ΩB�LB−βA�Ω 0

B�LA �

� −

ηCηD

4
e−i2ω0τ

�
Z

dΩAα
	
A�ΩA�αB�ΩA�e−i�βA�ΩA�LA−βB�ΩA�LB �

�

2

· (A16)

(iv)

nCD;4�τ� � −

ηCηD

4

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτcAhψ1jBhψ2ja†B�t�a
†
B�t � τc�aA�t � τc�aA�t�jψ2iBjψ1iA

� −

ηCηD

4

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτcα
	
B2�t�α	B2�t � τc�αA1�t � τc�αA1�t�

� −

ηCηD

4
�2π�−2e−i2ω0τ

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτc

Z

dΩA

Z

dΩ 0
A

Z

dΩB

Z

dΩ 0
B

× α	B�ΩB�α	B�Ω 0
B�αA�ΩA�αA�Ω 0

A�ei�ΩB�Ω
0
B−ΩA−Ω

0
A
�t�i�Ω 0

B−ΩA�τc �βB�ΩB�LB�βB�Ω 0
B�LB−βA�ΩA�LA−βA�Ω 0

A
�LA �

� −

ηCηD

4
ei2ω0τ

�
Z

dΩAα
	
B�ΩA�αA�ΩA�e−i�βB�ΩA�LB−βA�ΩA�LA �

�

2

· (A17)

It is obvious that the terms nCD;3�τ� and nCD;4�τ� oscillate quickly with variable τ, and their sum is

nCD;3�τ� � nCD;4�τ� � −

ηCηD

2
cos�2ω0τ�Re

�
Z

dΩAα
	
B�ΩA�αA�ΩA�e−i�βB�ΩA�LB−βA�ΩA�LA �

�

2

: (A18)
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The oscillating period of the term cos�2ω0τ� is smaller than 1 fs for the light field used in our experiment. In our experimental system,
especially the one with optical fiber devices, the fluctuation of optical depth makes τ vary quickly with respect to the time scale of
T 2 − T 1 and therefore nCD;3�τ� � nCD;4�τ� in Eq. (A18) turns to be zero.

(v)

nCD;5�τ� �
ηCηD

4

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτcAhψ1jBhψ2ja†A�t�a
†
B�t � τc�aB�t � τc�aA�t�jψ2iBjψ1iA

� ηCηD

4

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτc jαA1�t�j2jαB2�t � τc�j2 ≈ jαA0j2jαB0j2· (A19)

(vi)

nCD;6�τ� �
ηCηD

4

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτcAhψ1jBhψ2ja†B�t�a
†

A�t � τc�aA�t � τc�aB�t�jψ2iBjψ1iA

� ηCηD

4

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτc jαA1�t � τc�j2jαB2�t�j2 ≈ jαA0j2jαB0j2· (A20)

At the last step in Eq. (A12), the assumption that T 2 − T 1 and Δτc0 are remarkably larger than the temporal width of the
dispersion-broadened wave-packets is used again.

(vii)

nCD;7�τ� � −

ηCηD

4

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2
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4
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Z
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Z
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−Δτc0∕2

dτcα
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� −

ηCηD

4
�2π�−2

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτc

Z

dΩA

Z

dΩ 0
A

Z

dΩB

Z

dΩ 0
Bα

	
A�ΩA�α	B�ΩB�αA�Ω 0
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× ei�ΩA−Ω
0
B�ΩB−Ω

0
A�t�i�ΩB−Ω

0
A�τc�i�ΩB−Ω

0
B�τ−i�βB�Ω 0

B�LB−βB�ΩB�LB�βA�Ω 0
A�LA−βA�ΩA�LA �
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ηCηD

4

�

�

�

�

Z

dΩα	A�Ω�αB�Ω�e−iΩτ�i�βA�Ω�LA−βB�Ω�LB �
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�

�

�

2

· (A21)

(viii)

nCD;8�τ� � −

ηCηD

4

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτcAhψ1jBhψ2ja†B�t�a
†

A�t � τc�aB�t � τc�aA�t�jψ2iBjψ1iA

� −

ηCηD

4
�2π�−2

Z

T 2

T 1

dt

Z

Δτc0∕2

−Δτc0∕2

dτcα
	
B2�t�α	A1�t � τc�αB2�t � τc�αA1�t�

� −

ηCηD

4

�

�

�

�

Z

dΩα	A�Ω�αB�Ω�e−iΩτ�i�βA�Ω�LA−βB�Ω�LB �
�

�

�

�

2

· (A22)

After summing Eqs. (A11), (A12), and (A16)–(A22) up, we can finally get

n�τ� � ηCηDjαA0j2jαB0j2
4

�

jαA0j2
jαB0j2

� jαB0j2
jαA0j2

� 2 −
2

jαA0j2jαB0j2

×

�

�

�

�

Z

dΩα	A�Ω�αB�Ω�e−i�Ωτ�βA�Ω�LA−βB�Ω�LB �
�

�

�

�

2
�

· (A23)

Now, we introduce some assumptions for conveniently comparing Eq. (A23) to the experiments. First, the averaged photon numbers
in the two single-photon wave-packets are both 1, i.e., jαA0j2 � jαB0j2 � 1. For convenience, αA0 and αB0 are treated as 1. Second,
the single-photon wave-packets before passing through the dispersive medium are indistinguishable, and their temporal profile is
Gaussian, i.e.,

αA,B�t� � �T 0

ffiffiffi

π
p

�−1∕2e
−

t2

2T 2
0 : (A24)

Third, the effect of higher-order dispersions is negligible, and βA,B�Ω� can be approximated by truncating the Taylor expansion to the
second order, i.e.,

βA,B�Ω� ≈ βA,B�0� � β
�1�
A,B�0�Ω� β

�2�
A,B�0�Ω2, (A25)
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where β
�1�
A,B�0� and β

�2�
A,B�0� are the inverse group-velocity and

group-velocity dispersion parameter of the dispersive path A
(B), respectively.

Under the three assumptions above, Eq. (A23) gets

n�τ� � ηCηD

�

1 −
T 2

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4T 4
0 � α2

p e−2�τ−δτ�
2∕�4T 2

0��α∕T 0�2 �
�

,

(A26)

where δτ � β
�1�
A �0�LA − β

�1�
B �0�LB and α � β

�2�
A �0�LA−

β
�2�
B �0�LB . It is obvious that the coincidence count per trial

P�τ� can be obtained by normalizing n�τ� in Eq. (A26), i.e.,

P�τ� � 1 −
T 2

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4T 4
0 � α2

p e−2�τ−δτ�
2∕�4T 2

0��α∕T 0�2 �. (A27)

In Eq. (A27), the P�τ� versus τ forms the HOM interference
curve and shows a dip centering at τ � δτ. The FWHM of this
dip is

d � 2
ffiffiffiffiffiffiffi

ln 4
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T 2
0 � �α∕2T 0�2

q

: (A28)

The visibility of the HOM-dip is given by

V � Pmax�τ� − Pmin�τ�
Pmax�τ�

� T 2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4T 4
0 � α2

p , (A29)

where P�τ�max or P�τ�min is the maximum or minimum of ver-
sus τ.

When the two wave-packets experience identical dispersion,
i.e., δτ � 0 and α � 0, Eq. (A16) degrades to

P�τ� � 1 −
1

2
e−τ

2∕�2T 2
0�: (A30)

Thus, the FWHM of the HOM-dip is

d � 2
ffiffiffiffiffiffiffi

ln 4
p

T 0 �
ffiffiffi

2
p

T FWHM, (A31)

where T FWHM is the FWHM of the wave-packets, and the vis-
ibility equals 0.5. If we let βA,B�Ω� � 0, i.e., there does not
exist dispersion along the propagation pathways of the two
wave-packets, we can get an expression of P�τ� identical to
Eq. (A30). This indicates that the HOM interference curve will
not be affected by the balanced dispersion experienced by the
two wave-packets. Therefore, we can obtain the original width
of the single-photon wave-packet as 1∕

ffiffiffi

2
p

times the HOM

interference curve even though the wave-packets have been
broadened significantly by the dispersive manipulation.
According to Eq. (A28), when the dispersive manipulation
in two paths is unbalanced, the difference of the second-order
dispersion effect between two paths can accurately be mapped
to the HOM interference curve by

α � T 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d 2∕2 ln 2 − 4T 2
0

q

, (A32)

which can be utilized to measure the second-order dispersion
effect of an unknown optical material.

APPENDIX B: DETAILS OF THE EXPERIMENTAL

SETUP

In the experiment setup shown in Fig. 2, the pulsed light source
is selected as a passively mode-locked fiber laser (PFL-200M,
Alnair Labs) with the central wavelength of 1548.74 nm, pulse
duration of 1.12� 0.01 ps measured by the second-order au-
tocorrelation method, repetition rate of 40 MHz, and 3 dB
spectral bandwidth of 3.48 nm, as shown in Fig. 5(a). The laser
pulses are attenuated to single-photon level with the mean pho-
ton number of 0.007 per wave-packet through a variable opti-
cal attenuator (VOA1, VOA2, and VOA3). To create two
single-photon wave-packets, a 50:50 single-mode fiber coupler
is used to divide the attenuated laser pulses into two parts
propagating along two paths. Two wave-packets are injected
into an HOM interferometer, which consists of the two vari-
able optical attenuators (VOA2 and VOA3), two polarization
beam splitters (PBS1 and PBS2), a 50:50 polarization-main-
taining fiber coupler, and a fiber pigtailed variable optical delay
line (Delay), as shown in Fig. 2. We can adjust the VOA2 and
VOA3 in the two arms of the HOM interferometer to ensure
that the mean photon numbers in the two paths are the same.
The two PBS1 and PBS2 are used to ensure the polarization
indistinguishability between the two wave-packets. A relative
time delay between the two arms in the HOM interferometer
is introduced by an optical delay line (MDL-002, General
Photonics) with the accuracy of 10 fs and maximum time delay
of 560 ps. Two output ports of the HOM interferometer are
connected with two SNSPDs with detection efficiency of 68%.
The electronic signals generated in photon detection events are
input into a TDC (ID 900, ID Quantique) to obtain the

Fig. 5. (a) Output of a mode-locked pulse laser, measured by a second-order autocorrelator. (b) Output of a mode-locked pulse laser after the
dispersive manipulation, recorded by the single-photon detection and a TDC.
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coincidence counts. The HOM-dip can be observed in the
HOM interference curve, i.e., coincidence counts versus the
relative time delay between two arms of the HOM interfer-
ometer.

To demonstrate the ability of HOM interference in meas-
uring the original width of laser pulses after dispersive manipu-
lation, we insert a 50 km long fiber spool between the mode-
locked laser and the VOA1 in Fig. 2 to introduce a remarkable
dispersion before the laser pulses entering the HOM interfer-
ometer. The pulse width after such dispersive manipulation is
directly measured through the single-photon detection and a
TDC. The measured results are shown in Fig. 5(b). It shows
that after propagating along a 50 km long fiber, the laser pulses
have been broadened to 3.4� 0.3 ns, including a time jitter of
the SNSPD and TDC.
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