Effect of dissolved NaCl, MgCl₂, and Na₂SO₄ in seawater on the optical attenuation in the region from 430 to 630 nm

M. Ravisankar, A. T. Reghunath, K. Sathianandan, and V. P. N. Nampoori

The split-pulse laser method is used to reinvestigate the optical attenuation of distilled water in the from 430 to 630 nm. The studies are then extended to ionic solutions of NaCl, MgCl₂, and Na₂SO₄, these forming the major constituents of seawater. The effect of the concentration of these constituents on a attenuation is investigated. Further, optical attenuation studies are carried out for the region from 430 nm for an aqueous solution prepared with all the major constituents in the same proportions as in m seawater. These values are then compared with values obtained for natural seawater. The relative r dissolved salts and suspended particles on optical attenuation in seawater is discussed. The lowest attion is observed at ~450 nm for all solutions and is found to coincide with that for distilled water.

I. Introduction

Optical properties of seawater have become a subject of renewed interest in recent years. The motivation for such studies is the search for an optical window for underwater communications to complement ultrasonic transducer technology. Several authors have reported the optical properties of distilled water, clear natural water, and seawater. In 1963, Sullivan¹ reported the absorption coefficient $\alpha(\lambda)$ of distilled water, artificial seawater, and heavy water in the visible region. The experimental setup consisted of a single cell for which reflection corrections were required for the cell windows. This was followed by an exhaustive review by Irvine and Pollack² covering the available literature on the optical properties of water in the region from 0.7 to $200 \,\mu m$. They tabulated the extinction coefficient $k(\lambda)$ and the Lambert absorption coefficient $\alpha(\lambda)$ collected from different papers. Zolotarev et al.³ have reported values for the optical constants of water throughout the $1-10^6$ - μ m spectral region. Hale and Querry⁴ again reviewed the subject and presented a fresh set of values of $n(\lambda)$ and $k(\lambda)$ of water in the region from 200 nm to 200 μ m.

A major deviation from the conventional experiments began when Querry *et al.*⁵ reported the attenuation coefficient of deionized filtered water by the splitpulse laser method. A tunable dye laser was used as the source and reflection losses were corrected by a compensating cell. Hass and Davisson⁶ had also de-

0003-6935/88/183887-08\$02.00/0.

termined the absorption coefficients of distilled w and deionized filtered water for wavelengths of and 514.5 nm by the laser adiabatic calorimetric unique. Tam and Patel⁷ reported the absorption of ficients of distilled water by photoacoustic spectro py for the region from 446 to 695 nm. Later, Sm and Baker⁸ reported the attenuation of very clear: ural water.

A close examination of the various experime results reveal that discrepancies of a factor of 2 common among reported values. The reasons these discrepancies have also been discussed.^{5,7} I split-pulse laser method has the design advantage eliminating many possible experimental errors. I photoacoustic method also eliminates many possi errors and has the added advantage of being m sensitive. However, the photoacoustic method can give information about the scattered light. In view the several advantages, we adopted the split-pulse ser method for the present investigations to determ the total attenuation coefficients.

Even though there are reported results⁹⁻¹² of transmission characteristics of light in seawater, detailed study has been reported on the effect of a solved constituents of seawater on optical attenuation Since the dependence of optical attenuation or a concentration of dissolved constituents is a parare of vital importance in the area of undersea laser munications, a careful and systematic study is use taken in the region from 425 to 635 nm. It is has that these studies would also reveal the relative ence of suspended particles over dissolved const ents on the total attenuation by seawater. About these studies are expected to give valuable informaon the optical window in seawater and the influenthe constituents of seawater on that optical window

The authors are with Cochin University of Science & Technology, Physics Department, Laser Division, Cochin 682 022, Kerala, India. Received 15 January 1988.

^{© 1988} Optical Society of America.

¹⁵ September 1988 / Vol. 27, No. 18 / APPLIED OPTICS 176

I. Experimental

The split-pulse laser method first used by Querry et dⁱ was adopted for the present studies. A nitrogen aser pumped dye laser was used as the source. The sees and the scanning system were built for this specficuse. The dye laser operating at 10 pps gave pulses si~3-ns duration and 0.04-nm linewidth. A 500-cm sample cell and a 15-cm reference cell both of 5-cm internal diameter were used. The glass windows of these cells were identical in thickness and reflectivity. The mirrors were also of the same reflectivity, made by simultaneously coating aluminum on two optical flats. Asemireflecting mirror was used as the beam splitter. Since the two pulses were not treated identically by the beam splitter, its nature was studied first by measuring twintensity ratio before using the cells, and this corration was applied to the final reading. A Hewlett-Packard PIN photodiode (5082-4207) was used as the detector. As the signals from the sample cell lag behind that from the reference cell by ~ 40 ns, it was possible to detect them separately by the photodiode. The signals were then fed to the two channels of a bacar averager (EG&G PARC model 162). The ratio of the intensities of the pulses was obtained from the bucar averager from which the attenuation coeffi $ient \alpha(\lambda)$ was calculated. All the measurements were arried out at $25 \pm 1^{\circ}$ C. Measurements were taken for every 2.5 nm for the entire region from 430 to 635 nm. The average of \sim 1500 pulses was noted in each scan. Every value reported here is the average of five such mans. Our values for the 540-575-nm region are not sufficiently accurate due to the lack of suitable dyes ind therefore they are not presented here.

I. Sample Preparation and Scheme of Study

Inseawater, almost all the dissolved constituents are in the ionic state. Their proportions by mass are given in Table L¹³ These proportions are reported to be constant throughout the ocean. In the sea, the variation of salinity is generally between 20 ppt (parts per thousand) and 35 ppt. Based on these figures, the alts and their concentrations are chosen for preparing the final solutions. To study the influence of the major constituents on optical attenuation, indepentent solutions of NaCl, MgCl₂, and Na₂SO₄ are investigated. A 0.25-M solution of NaCl (14.6 g/liter) will

Table I. Percentage by Mass of the Constiluents of Natural Sea Water and the Two Samples of Artificial Sea Water

	Natural	Artificial sea water			
Constituents	sea water	Sample I	Sample II		
Sodium (Na ⁺)	30.61	32.42	31.618		
Magnesium (Mg ²⁺)	3.69	3.93	3.809		
Celcium (Ca ²⁺)	1.16	_	0.036		
Potamium (K+)	1.10		1.139		
Scontium (Sr2+)	0.04		—		
Caloride (Cl-)	55.04	55.45	54.773		
Sulfate (SO ₁ ²⁻)	7.68	8.19	7.935		
Bicerbonate (HCO ₃)	0.41		0.419		
Bromide (Br-)	0.19		0.193		
Boric acid (H3BO3)	0.07		0.078		

contain sodium and chlorine of approximately the same order as is found in natural seawater. Therefore, 0.25-M solutions of the salts of NaCl, $MgCl_2 \cdot 6H_2O$, and Na_2SO_4 were first studied for comparison. NaCl being the major constituent of seawater, it was studied for different concentrations, of which three results (10, 20, and 30 g/liter) are reported here. In the case of $MgCl_2 \cdot 6H_2O$, a 0.25-M solution (50.83 g/liter) will contain a larger quantity of magnesium compared with that in natural seawater. Since magnesium is less abundant in seawater, the results of only two concentrations corresponding to the maximum and minimum in natural seawater (5 and 15 g/liter) are reported in this paper. The quantity of SO_4 in a 0.25-M solution of Na_2SO_4 (35 g/liter) is almost seven times that found in seawater. Therefore, the attenuation for a very low concentration (5 g/liter) is reported here. As there is no significant variation between the results for 5- and 25-g/liter solutions, studies on no other concentration are reported here.

Two samples of artificial seawater, both of 35-ppt salinity, are studied. The samples are prepared by adding the required salts in the proportions to match the ratios of these salts in natural seawater. The proportions by mass of the constituents of the two samples are shown in Table I. The first sample contained only the major constituents, while in the second sample minor constituents were also added, attempting to elucidate information on the influence of minor constituents on optical attenuation. Along with the above studies, two samples of natural seawater are also studied to make a comparison. The samples were collected from the Arabian Sea, one from 30 km to the west of Cochin (35.46-ppt salinity) and the other from 3 km to the west of Cochin (28.65-ppt salinity), both from a 10m depth.

For the laboratory prepared samples, doubly distilled water and Analar grade salts were used for all the experiments. Other precautions to avoid dust particles and bubbles were taken to obtain consistent results.

IV. Results and Discussions

A. Distilled Water

The values of the attenuation coefficient of distilled water for different wavelengths are presented in Table II. Figure 1 plots attenuation coefficient against wavelength with similar plots reported by earlier workers.^{1,4,5,7} One important observation is that the present $\alpha(\lambda)$ values for all wavelengths below 540 nm are higher than those reported by Tam and Patel. The values of the attenuation coefficient depend on both absorption and scattering. The values reported by Tam and Patel contain only the absorption coefficient while the present values include molecular scattering also. Thus the relatively high values obtained here compared with the reported values of Tam and Patel are due to the scattering contribution. Above 580 nm, there is a sharp increase in the value of $\alpha(\lambda)$ and all the earlier reported values coincide in this region within

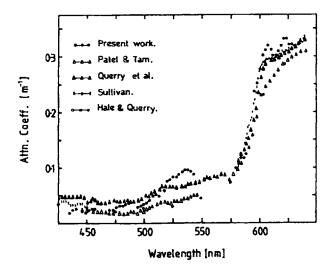


Fig. 1. Graphic comparison of the attenuation coefficient of distilled water obtained by the present investigation and some of the other reported results.

Wavelength (nm)	Attenuation coefficient	Wavelength (nm)	Attenuation coefficient		
434.9	1.8243	530.0	8.7396		
437.6	2.2168	532.8	9.1854		
440.5	2.5829	535.3	9.4161		
442.2	3.1928	537.9	9.5843		
446.2	2.0930	540.4	9.3734		
449.1	1.8300	542.8	8.8541		
451.8	2.2168	546.9	6.8053		
454.8	2.4026				
457.0	2.4026	574.4	8.2680		
		579.2	9.9630		
470.0	2.3660	581.5	10.632		
473.0	2.7899	584.0	11.727		
479.0	2.9900	586.1	11.871		
481.7	2.9900	588.2	12.383		
484.2	3.1823	590.4	12.405		
486.9	3.6060	592.8	12.746		
489.6	3.9987	595.2	23.694		
492.2	2.5438	597.5	25.148		
494.8	2.7899	599.8	27.818		
497.4	2.9877	602.3	30.227		
500.0	3.1823	604.6	31.304		
502.6	3.6062	606.9	31.921		
505.1	3.9986	609.3	31.176		
507.8	4.7057	611.5	30.262		
510.4	4.8915	613.9	30.270		
512.9	4.7293	616.2	31.068		
515.5	4.1844	618.5	31.988		
517.6	5.8697	620.8	33.148		
520.1	7.4601	623.2	33.341		
522.7	7.8373	625.5	32.213		
525.2	8.1831	627.8	32.147		
527.8	8.3434				

Table II.	Attenuation Coefficients of Distilled Water for Different
	Wavelengths (in Linits of 10^{-2} m ⁻¹)

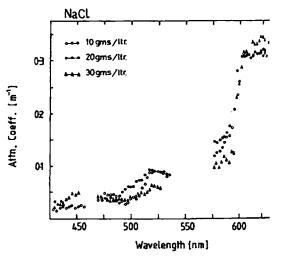
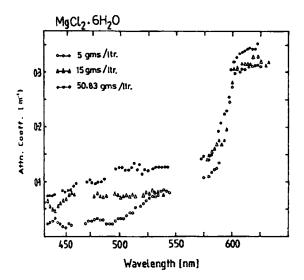


Fig. 2. Attenuation coefficient of NaCl solutions of three or trations vs wavelength.

experimental limits. This clearly demonstrates absorption is very high in this region compared to scattering, and no sensitive change could be record In our studies, the lowest attenuation coefficients is observed in the 435–480-nm region. This walk lower than the values reported by earlier workers, obtain more reliable information on this minimum scanned this region using two dyes: Coumarin 440 coumarin 450 (Exciton Chemical Co.). Becaused very low attenuation coefficient value in this region the reported values are not so accurate as the wire ported for other regions. However, there is now guity in establishing the lowest attenuation in region.

B. Sodium Chloride Solution


The attenuation for sodium chloride solutions three different concentrations (10, 20, and 30 g/s are shown in Fig. 2, and the values are given in Ti III, e.g., 30 g/liter of NaCl solution will have 11.8 sodium which is more than the maximum value sodium found in seawater. From the curves it as seen that within these concentration levels, the station atten is not much dependent on the concentration The values are close to those for distilled water there is no shift in the wavelength of the minimattenuation.

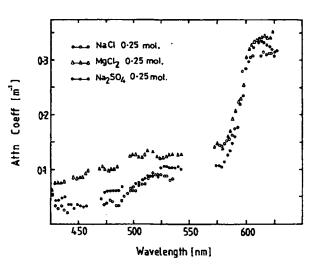

C. Magnesium Chloride Solution

Figure 3 shows the attenuation coefficient for concentrations (5, 15, and 50.82 g/liter) of magne chloride (MgCl₂ \cdot 6H₂O) in water. The corresponvalues are given in Table IV. The 15-g/liter solution MgCl₂ \cdot 6H₂O contains 1.79 g of magnesium, which almost equal to the maximum value of magnes found in 1 liter of seawater. The curves show conerable dependence on concentration. As the contration increases, the attenuation for the regional 540 nm also increases, whereas above 590 nm thet uation is almost the same for all the solutions.

Table III. Attenuation Coefficients of NaCl Solutions for Different Wavelengths (in Units of 10⁻² m⁻¹)

Wavelength (nm)	10 g/liter	20 g/liter	30 g/liter	Wavelength (nm)	10 g/liter	20 g/liter	30 g/lite
	10 g) 1001	20 5/ Hot	00 Bi mor				
429.4	1.7223	3.2136	2.2401	522.7	9.0282	9.0011	6.4735
432.0	1.5997	2.7571	2.8120	525.2	9.0040	9.0842	6.2574
434.9	2.0775	3.1980	3.0034	527.8	8.8712	8.6897	5.9707
437.7	2.3623	2.5820	3.2453	530.3	8.5771	8.7361	7.1998
440.5	2.0876		4.1204	532.8	8.3900	8.0774	9.7071
				535.3	7.3706	8.1837	—
				537.9	6.8434		
443.2	2.2440	—	4.1820	540.4	5.7383		
446.2	2.5033	<u></u>	4.8751				
449.2	1.9593	_	4.8222	572.5	13.994		—
451.8	2.2029	_	5.0729	574.4	13.185	—	—
454.5	2.5822			576.8	12.038	14.463	9.961
456.9	2.2168	_		579.2	12.492	14.137	10.737
				581.5	12.861	14.677	10.091
				584.0	13.606	15.130	11.114
470.7	3.6062		4.3322	586.1	14.533	15.618	12.004
473.4	3.8660	3.4801	4.1044	588.2	15.391	16.335	11.600
476.2	4.7504	3.7324	3.7370	590.4	15.682	17.514	10.881
479.0	4.4714	4.2422	3.7370	592.8	17.250	16.631	13.072
481.7	4.5677	3.9941	3.7370	595.2	20.864		12.746
484.7	4.4714	3.2567	3.7370	597.5	23.399	28.020	23.366
186.9	4.1602	3.3259	3.7920				
489.6	3.0900	4.3416	3.9977	599.8	26.099	31.211	25.771
405.0	3.2429	4.9380	3.4380	602.3	30.777	32.512	28.606
	2.7557	5.3880	3.8702	604.6	31.326	30.438	31.449
494.8	2.1001	9.3000	3.0704	606.9	31.144	30.859	31.462
				609.3	30.893	28.915	30.827
497.4	3.0942	5.9172	3.8702	611.5	30.519	29.601	31.028
500.0	3.7061	5.9304	4.1225	613.9	31.116	30.810	33.610
502.6	4.0915	6.0136	4.1044	616.2	31.189	31.500	33.231
505.1	4.1450	6.9506	3.9258	618.5	31.266	30.987	33.184
507.8	4.3094	7.2331	4.6909	620.8	31.271	31.221	33.758
510.4	5.8713	7.2331	4.9370	623.2	31.872	31.221	34.248
512.9	6.5596	8.2650	5.0645	625.5	32.070	30.750	34.175
515.5	7.6689	9.7070	5.2261	627.8	31.170	31.672	33.733
517.6	8.7925	9.3083	5.8645	630.1	30.653		
						_	
520.1	8.7769	8.9860	6.5782	632.6	33.305	-	

% Attenuation coefficient of MgCl₂ · 6H₂O solutions of three concentrations vs wavelength.

Fig. 4. Attenuation coefficient of $Na_2 SO_4$ solutions of two concentrations vs wavelength.

Table IV. Attenuation Coefficients of Magnesium Chloride Solutions for Different Wavelengths (in Units of 10⁻² m⁻¹)

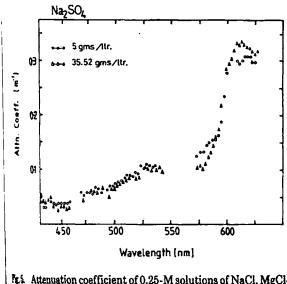
Wavelength				Wavelength			
(nm)	5 g/liter	15 g/liter	0.25 M	(nm)	5 g/liter	15 g/liter	0.25
426.4	_	_	6.3618	525.2	7.0675	8.0752	12.10
429.4	2.2169	6.4858	7.4519	527.8	7.1751	8.1564	12.32
432.0	2.5792	5.5512	7.5431	530.3	7.3473	8.1564	12.61
434.9	2.8077	5.0618	7.5709	532.8	7.6182	8.1564	12.66
437.7	3.3172	4.7137	7.7528	535.3	8.1395	8.2340	12.76
440.5	2.5638	5.7714	9.1564	537.9	8.3833	7.7941	12.80
443.2	2.1800	6.2711	9.2643	540.4	8.1605		12.84
446.2	1.6370	6.6418	8.4670	542.8	7.9382		12.67
449.2	1.6085	6.8843	8.2024				
451.8	2.1766	7.7466	8.4813	572.5	_		14.178
				574.4	10.7320	14.745	14.62
454.5	1.8961	7.7466	8.5145	576.8	9.930	14.266	14.165
456.9		7.6420	9.3227	579.2	10.968	14.893	14.057
459.7	_	_	9.6650	581.5	11.629	15.664	15.041
467.9	2.3660	—	_	584.0	12.280	16.157	15.536
470.7	2.7643	—	9.9902	586.1	12.436	16.942	17.022
473.4	2.7482	6.7461	10.6031	588.2	13.427	17.708	19.142
476.2	3.0882	7.4140	9.9018	590.4	_	16.901	20.710
479.0	3.1524	7.7673	9.6841				
481.7	3.0427	7.5950	9.8924	592.8		17.802	22.463
484.2	2.9903	7.3148	10.0376	595.2	-	19.815	23.048
486.9	2.3032	7.5057	10.6000	597.5	24.543	24.145	25.377
489.6	2.2073	6.3422	_	599.8	27.267	28.199	30.491
492.2	2.3660	6.5211	_	602.3	29.723	30.665	31.897
494.8	2.7593	7.7561		604.6	30.527	31.116	32.70
497.4	3.1777	7.7673	12.5759	606.9	30.121	29.925	33.378
500.0	3.1941	7.3686	12.6781	609.3	30.466	31.861	33.7%
	0.1011	1.0000	12.0701	611.5	30.547	31.643	33.982
502.6	3.1777	7.5751	12.7285	613.9	29.806	31.672	34.125
505.1	3.6637	7.6512	12.3590				
507.8	4.3094	7.5595	12.3457	616.2	30.987	31.609	34.58
510.4	4.2532	7.7610	12.7751	618.5	31.017	33.114	34.362
512.9	5.2451	7.4784	13.5120	620.8	31.156	32.360	34.355
				623.2	31.250	32.886	35.181
515.5	4.7480		12.3075	625.5	30.946	32.104	-
517.6	5.4688	_	13.2815	627.8	30.073	31.221	-
520.1	5.9171	7.8419	11.5916	630.1	_	31.221	-
522.7	6.6194	8.3099	12.1839	632.6		31.672	_

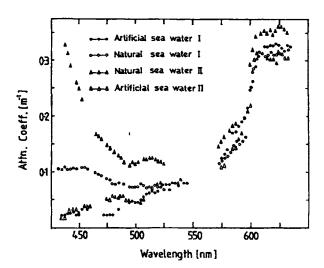
change in attenuation is predominant in the lower wavelength region. The region of minimum attenuation gets flatter at higher concentrations.

D. Sodium Sulfate Solution

Table V gives the attenuation values for two concentrations of sodium sulfate (5 and 35.51 g/liter) which are plotted in Fig. 4. The figure shows that the attenuation is not much dependent on the concentration of Na₂SO₄. There is no change for the region of minimum attenuation.

E. Equimolar Solutions


The attenuation coefficient for 0.25-M solutions of sodium chloride, magnesium chloride, and sodium sulfate are plotted in Fig. 5. The MgCl₂ solution shows higher attenuation for the region below 550 nm compared with the other two solutions. The higher value shown by Na₂SO₄ over that of NaCl is not significant when the concentration of SO₄⁻ and Cl⁻ in seawater is taken into consideration (see Table I). Another important observation is that the shapes of the curves are almost same. There are no characteristic maxima and minima in the spectrum. In water, these dissolved salts exist as ions a ions are surrounded by a very high electric field. If electric field forces the neighboring water diver orient its appropriate charged end toward their Thus a cluster of sufficient size is formed whose diver tric properties are entirely different from their medium. Such a cluster can act as a scattering can The amount of light scattered depends on the salt ing cross section which is related to the size diverse clusters formed. The cluster size is a function di ionic radius. The ionic radii of the above ions at Na⁺ = 0.95 Å, Mg²⁺ = 0.61 Å, and Cl⁻ = 1.81Å


Thus the clusters formed by Cl⁻ ions are a larger than the other two. Therefore, chlorine ions set more light.

In equimolar solutions, there will be an equal ber of solute molecules that split into ions. If MgCl₂ solution, there will be double the numb chlorine ions compared with an NaCl solution, m ing in higher scattering losses. The large attenue shown by the MgCl₂ solution may be attributed these scattering centers.

Table V. Attenuation Coefficients of Sodium Sulfate Solutions for Different Wavelengths (in Units of 10⁻² m⁻¹)

Wavelength			Wavelength		
(nm)	5 g/liter	0.25 M	(nm)	5 g/liter	0.25 M
426.4	3.9986	5.3294	520.1	9.1977	8.6375
429.4	2.9102	4.3135	522.7	10.6893	8.7838
432.0	2.9311	4.1694	525.2	10.3446	10.3508
434.9	2.3136	4.7884	527.8	10.9391	10.3870
437.7	3.8756	5.0270	530.3	10.7404	10.3750
440.5	3.8432	3.5334	532.8	10.4589	10.2806
443.2	3.4397	3.4375	535.3	10.7547	10.3095
446.2	3.6768	2.8370	537.9		10.3394
449.2	3.7224	3.3949	540.4	_	10.3881
451.8	3.8702	3.1427	542.8	_	10.0977
			572.5	12.4105	-
454.5	3.8702	3.0060	574.4	11.8833	10.7823
456.9	3.9986	3.3580	576.8	13.2209	10.7317
			579.2	13.1873	10.6093
			581.5	14.4216	11.5223
467.9	5.8684		584.0	14.9747	12.8000
470.7	5.1907	4.5058	586.1	15.4149	13.4062
473.4	5.7911	5.6408	588.2	15.5659	14.7683
476.2	5.6836	5.9398	5 90.4	15.5900	15.9146
479.0	5.5538	6.0143	5 92.8	16.2860	17.8312
481.7	6.7035	6.0463	505.0	10 0000	00 0050
484.2	6.5018	6.1169	595.2	18.6732	22.0659
486.9	5.8132	6.0036	597.5	23.4709	23.4228
489.6		6.7410	599.8	27.7182	28.5060
492.2	6.1971	5.0515	602.3	31.2888	29.7954
			604.6	31.5014	30.8008
494.8	6.9277	5.2447	606.9	31.5289	32.2829
497.4	7.0322	6.5027	609.3	30.0380	33.2932
500.0	7.407	6.7104	611.5	29.5148	33.1828
502.6	7.8527	7.1511	613.9	30.0814	33.3973
505.1	7.9338	7.5631	616.2	30.6411	33.1976
507.8	8.4472	7.8939	618.5	30.830	32.7196
510.4	8.9432	8.2821	620.8	30.6656	32.4118
510.4	9.0670	8,6567	623.2	29.7245	31.9759
515.5	8.7807	8.7841	625.5	29.6274	31.5939
517.6	9.4596	8.7878	627.8	28.8492	31.9033
911.0	J.4000	0.1010	041.0	20.0132	01.2000

 $\ensuremath{\sc kmu}$ Attenuation coefficient of 0.25-M solutions of NaCl, MgCl_2 \cdot 6H_2O, and Na_2SO4 vs wavelength.

Fig. 6. Attenuation coefficient of two samples of artificial seawater and two samples of natural seawater.

M2 APPLIED OPTICS / Vol. 27, No. 18 / 15 September 1988 181

Table VI.	Attenuation Coefficients of Artificial Seawater and Natural Seawater (in Units of 10^{-2} m ⁻¹)
-----------	---

Wavelength (nm)	Artificial seawater I	Artificial seawater II	Natural seawater I	Natural seawater II	Wavelength (nm)	Artificial seawater I	Artificial seawater II	Natural seawater I	Natu seawat
426.4	_		10.434		520.1	6.4353	8.0502	7.249	12.17
429.4	2.366	1.9398	10.504	32.753	522.7	6.2195	8.1146	7.180	11.88
432.0	2.2157	1.9957	10.674	33.018	525.2	7.6421	7.8204	6.845	11.74
434.9	2.4983	2.5137	10.578	31.595	527.8	7.7761	8.0263	7.211	11.09
437.7	2.4556	3.1714	10.456	29.143	530.3	7.7728	8.0233	6.667	-
101.1	2.4000	0.1714	10.400	23.130	532.8	7.9004	8.1142	_	
440.5	2.6486	3.1746	10.641	29.539	535.3	8.0250	8.1076	_	-
440.5	2.3104	3.1340	10.469	26.248	537.9	7.6216	8.3473		-
445.2 446.2	2.3104	2.7731	10.405	25.127	540.4	7.0158	9.0209		
	3.1823	3.5772	10.271	23.270	542.8	8.0376			-
449.2	3.1823 3.9918	3.9725	10.846	23.270	545.2	8.0376	_	_	_
451.8	3.9918	3.9120	10.040	23.210	040.2	0.0010	_		
1545	0 1004	0.0070	10 509	24.390	572.5	_		11.604	14.8%
454.5	3.1834	3.8379	10.598	24.390 25.065	574.4	12.5921	11.3321	11.957	15.60
456.9	2.3660	3.9986	10.100	25.065	576.8	13.3349	11.5179	12.506	16.2%
459.7		_	10.109	17.052	579.2	14.0913	12.9242	12.712	16.2%
462.3	_		9.687		581.5	13.9224	13.9224	13.379	17.43
465.0		_	9.476	16.777	584.0	16.9088	14.4391	14.645	18.44
467.9		-	9.367	16.351	586.1	17.2911	14.8608	15.517	18.65
470.7	2.1406		8.814	15.946					
473.4	2.1406	5.1869	8.657	14.920	58 8.2	18.2322	16.1852	15.004	-
476.2	2.1406	5.2522	8.462	14.557	590.4	19.0472	17.1942	15.428	-
479.0	2.3660	5.6415	7.784	13.451	592.8	19.6631	19.7962	16.164	-
					595.2	21.4880	21.1514	21.465	-
481.7	2.3660	5.5949	7.785	14.187	5 97.5	24.7274	22.2628	24.885	29.33
484.2	3.1823	5.6101	8.073	13.359	5 99.8	26.2044	28.1626	28.432	32.06
486.9	2.3660	5.7260	7.866	12.743	602.3	29.0429	30.4350	30.290	34.55
489.6		5.6855	7.772	12.031	604.6	30.8514	30.0490	31.406	35.48
492.2		4.9436	6.867	12.119	606.9	32.8532	31.5984	31.150	35.12
494.8	4.4857	5.0446	7.288	11.459	609.3	32.4821	30.7532	30.746	35.12
497.4	4.7293	4.6922	7.288	11.948					
500.0	4.4221	4.6922	7.180	11.874	611.5	32.5659	30.6277	30.968	34,99
502.6	4.4519	4.5670	7.339	11.919	613.9	32.6802	30.5726	31.573	35.46
505.1	5.0653	4.8356	7.718	10.603	616.2	32.6270	30.4785	30.991	34.84
-					618.5	32.9568	29.6756	30.977	35.0
507.8	5.5013	5.3354	7.552	12.415	620.8	32.7983	31.4490	31.155	36.35
510.4	5.8969	5.9671	7.036	12.582	623.2	32.2350	31.4289	31.823	36.18
512. 9	6.3704	7.3637	7.219	12.807	625.5	31.6772	30.8733	31.759	35.6 1 (
515.5	6.5794	7.4204	6.905	12.679	627.8	32.6344	30.6267	31.990	35.W
517.6	6.3667	7.5958	7.542	12.407	630.1	32.4824	_	_	- }

F. Artificial Seawater

Figure 6 shows the attenuation of two samples of artificial seawater both of 35-ppt salinity. Sample I contained only the major constituents while sample II contained the major and minor constituents (Table I). The attenuation curves of these samples overlap. It is therefore safe to conclude that the presence of minor dissolved constituents such as Ca^{2+} , K^+ , HCO_3^- , B^- , and H_3BO_3 does not influence the attenuation. The attenuation coefficient values of these two samples are given in Table VI.

G. Natural Seawater

The attenuation for two samples of natural seawater of 35.46- and 28.65-ppt salinities are also plotted in Fig. 6 along with those for artificial seawater. There is a wide variation between these curves. The values for natural seawater are higher than those for artificial seawater especially below 520 nm. The dissolved constituents of both natural and artificial seawater being almost the same, the difference in attenuation is attributed to the presence of suspended particles in natural seawater.

r.,

Among the natural seawater samples, sample I lected 3 km off the coast, showed very high attenue in the blue region compared with sample I, collects km off the coast. It has already been established this large variation cannot be due to salinity and can safely attribute it to the suspended particles is safe to conclude that the suspended particles would of considerable influence in the coastal belt while factor will be much lower as we proceed to the interregions. More systematic investigations on the cle size and its influence are not within the scoped present investigations. However, broad conclus on the influence of suspended particles present lier are justified.

V. Conclusions

The absolute values of the attenuation coefficient distilled water are determined and are compared some of the existing results in the literature. The general agreement between these values. These ation minimum is identified to be in the 435-44 region.

A detailed and systematic study on the depend

15 September 1988 / Vol. 27, No. 18 / APPLIED OPTICS 182 doptical attenuation on the dissolved constituents of sewater shows that such dependence is not signifiant. The variations in the concentrations of NaCl md Na₂SO₄ do not have any significant effect on the stenuation. But the change in concentration of MgCl₂ produces notable changes in attenuation, but within the concentration levels applicable to seawater, his effect is not significant. Thus it is concluded that the effect of dissolved constituents on optical attenuation is insignificant. The studies on two samples of sufficial seawater unambiguously show that the presnece of minor dissolved constituents does not have any influence on attenuation.

The attenuation coefficient values of natural seawaze when compared with artificial seawater are quite sigh. These high values may be because of the presnex of suspended particles that act as scattering cenzers. It may also be broadly concluded that the scatzing from suspended particles is less in the deep sea suppared to the shore. The region of minimum attenation is not affected by the presence of dissolved constituents. But in natural seawater, because of the resence of suspended particles, the minimum attenution region shifted from blue to green (490-530 nm).

M.R. and A.T.R. would like to thank DAE (India) is awarding fellowships. The financial assistance im DRDO (India) is gratefully acknowledged.

Merences

1 & A. Sullivan, "Experimental Study of the Absorption in Dis-End Water, Artificial Sea Water, and Heavy Water in the Visible Region of the Spectrum," J. Opt. Soc. Am. 53, 962 (1963).

- W. M. Irvine and J. B. Pollack, "Infrared Optical Properties of Water and Ice Spheres," Icarus 8, 324 (1968).
- V. M. Zolotarev, B. A. Mikhailov, L. I. Aperovich, and S. I. Popova, "Dispersion and Absorption of Liquid Water in Infrared and Radio-Frequency Regions," Opt. Commun. 1, 301 (1970).
- G. M. Hale and M. R. Querry, "Optical Constants of Water in the 200-nm to 200-μm Wavelength Region," Appl. Opt. 12, 555 (1973).
- M. R. Querry, P. G. Cary, and R. C. Waring, "Split-Pulse Laser Method for Measuring Attenuation Coefficients of Transparent Liquids: Application to Deionized Filtered Water in the Visible Region," Appl. Opt. 17, 3587 (1978).
- M. Hass and J. W. Davisson, "Absorption Coefficient of Pure Water at 488 and 541.5 nm by Adiabatic Laser Calorimetry," J. Opt. Soc. Am. 67, 622 (1977).
- A. C. Tam and C. K. N. Patel, "Optical Absorptions of Light and Heavy Water by Laser Optoacoustic Spectroscopy," Appl. Opt. 18, 3348 (1979).
- R. C. Smith and K. S. Baker, "Optical Properties of the Clearest Natural Waters (200–800 nm)," Appl. Opt. 20, 177 (1981).
- 9. R. W. Spinrad, J. R. V. Zaneveld, and H. Pak, "Irradiance and Beam Transmittance Measurements Off the West Coast of the Americas," J. Geophys. Res. 84, 355 (1979).
- H. T. Yura, "Propagation of Finite Cross Section Laser Beams in Sea Water," Appl. Opt. 12, 108 (1973).
- R. E. Morrison, "Experimental Studies on the Optical Properties of Sea Water," J. Geophys. Res. 75, 612 (1970).
- S. Miura, Y. Ishikawa, K. Tohma, K. Kondo, T. Matsui, and H. Nagatomo, "Undersea Transmission Characteristics of a Laser Beam in Tago Bay," J. Radio Research Laboratories (Japan), 23, 149 (1976).
- D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972), pp. 2-122.
- J. O'M. Bockris and A. K. N. Reddy, Modern Electrochemistry, Vol. I (Plenum, New York, 1973), pp. 76–80.

Peter A. Schulz of MIT Lincoln Laboratory at the 1987 OSA Annual Meeting. Photo: F. S. Harris, Jr.