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ABSTRACT

(1) The gene expression of carbonic anhydrase, a key enzyme for the production sub-embryonic fluid
(SEF), was assessed in turned and unturned eggs of the Japanese quail. The plasma membrane-
associated isoforms CA 1V, CAIX, CA XlI, CA XIV, and the cytoplasmic isoform CA Il, were
investigated in the extra-embryonic tissue of the blastoderm and in embryonic blood.

(2) Eggs were incubated at 37.6C, c. 60% R.H., and turned hourly (90°) or left unturned. From
48 to 96 hours of incubation mRNA was extracted from blastoderm tissue, reverse-transcribed to
cDNA and quantified by real-time qPCR using gene-specific primers. Blood collected at 96h was
processed identically.

(3) Blastoderm CAIV gene expression increased with the period of incubation only in turned eggs, with
maxima at 84 and 96h of incubation. Only very low levels were found in blood.

(4) Blastoderm CA Il gene expression was greatest at 48 and 54h of incubation, subsequently declining
to much lower levels and unaffected by turning. Blood CA Il gene expression was about 25-fold
greater than that in the blastoderm.

(5) The expression of CA IX in the blastoderm was the highest of all isoforms, yet unaffected by turning.
CA XII did not amplify and CA XIV was present at unquantifiable low levels.

(6) It is concluded that solely gene expression for CA IV is sensitive to egg turning, and that increased
CA IV gene expression could account for the additional SEF mass found at 84-96h of incubation
in embryos of turned eggs.

INTRODUCTION

During incubation of the avian egg the water produced by metabolism matches evaporative losses through
the shell; in consequence the correct water content of hatchling is ensured (Ar, 1991a, 1991b; Rahn,
1991). However, at lay, most of the available water is located in the albumen outside of the fertilized ovum
(Baggott, 2001). In order that embryonic tissue can access this water, it is transferred from the albumen
to the yolk sac in the early part of incubation, a process resulting in the production of sub-embryonic fluid
(SEF) by the blastoderm (Baggott et al., 2002). In the Japanese quail the bulk production of SEF started
at 48h of incubation, with a peak in mass from 84h (Babiker and Baggott, 1992). In both the domestic
fowl and Japanese quail, static incubation reduced the mass of SEF during the period of its formation
(Deeming, 1989c; Babiker and Baggott, 1992; Baggott et al., 2002).

The production of SEF by the quail blastoderm is dependent on the availability of albumen sodium (Babiker

& Baggott, 1995; Latter & Baggott, 2002), the movement of which from albumen to SEF can be inhibited

by amiloride (sodium/proton carrier-mediated exchange) and ouabain (active sodium transport) (Latter

& Baggott, 2002). The production is also dependent upon the enzyme carbonic anhydrase (CA): its

inhibition results in a dose-dependent reduction in SEF volume, with pharmacological and histochemical
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evidence indicating that this enzyme is associated with the plasma membrane (Latter & Baggott, 2002).
In turkey also, carbonic anhydrase was localised histochemically to the plasma membrane (Bakst & Holm,
2003). Based on this evidence Latter & Baggott (2002) proposed a key role for carbonic anhydrase:
located on the yolk-facing, basolateral, plasma membrane of the endodermal cell it catalyses the hydration
of carbon dioxide to form bicarbonate and hydrogen ions. The protons are exchanged passively for sodium
ions at the surface of the cell facing the albumen. Sodium ions move from albumen to cell as a sodium
ATPase, located on the basolateral membrane, pumps sodium into the lateral intercellular spaces of the
endoderm. This creates a local osmotic gradient that promotes water movement from albumen to yolk
sac.

Carbonic anhydrase enzymes are encoded by three independent gene families: a-CA found in eukaryotes,
(B-CA in prokaryotes and ~-CA in plants (Chegwidden and Carter, 2000). The o -CA are mainly cytosolic
or membrane-associated isoforms. Those currently characterized as plasma membrane-associated are CA
IV, CA IX, CA XlI and CA XIV: the isoform CA IV has been identified as a major participant in CO,
transport, and the latter three are all associated with tumours (Sly, 2000). CA IV participates in ion
transport metabolons with either the Na™/HCO3~ transporter NCB1 (Alvarez et al., 2003), or with the
ClI=/HCO3~ anion exchanger (Sterling et al., 2002). CA IX has also been shown to enhance transport by
the CI~ /HCO3~ anion exchanger (Morgan et al., 2007). CA Il is the commonest cytosolic isoform being
almost universally expressed in some cell types of all major mammalian tissues (Chegwidden and Carter,
2000). It is the CA isoform found in chicken erythrocytes, both adult (Bernstein and Schraer, 1972) and
embryonic (Dragon and Baumann, 2001).

The mechanism by which static incubation diminishes SEF secretion remains partly unresolved. Latter and
Baggott (1996) found that unincubated eggs had a low sodium concentration in the albumen adjacent
to the vitelline membranes. Egg turning increased the sodium concentration at this location by the same
magnitude throughout the period of SEF production, whereas unturned eggs retained this 'depleted layer.
Baggott et al. (2002) suggested that in unturned eggs this depleted layer would reduce the sodium available
for ion transport by endodermal cells and thus decrease SEF formation. Alternatively, or additionally, it
was suggested that the lower rate of expansion of the area vasculosa present in unturned eggs (Deeming,
1989a) might also reduce SEF mass. However, neither hypothesis provides a complete explanation of the
occurrence in turned eggs of additional fluid at the time of maximum SEF mass (Babiker & Baggott, 1992).
An increase in ion transport specifically at this time would be a potential mechanism.

The objective of this study was, then, to quantify the gene expression of the key enzyme, carbonic anhydrase,
in the extra-embryonic blastoderm and blood of turned and unturned eggs during the period of SEF
production. Quantification of all the main plasma membrane-associated carbonic anhydrases, CA IV, CA
IX, CA XIl and CA XIV, was attempted with a subsidiary aim of identifying which isoforms are likely
participants in the SEF secretion process. In addition, the gene expression of the cytoplasmic carbonic
anhydrase, CA II, was quantified; this enzyme is known to be present in avian erythrocytes (Bernstein and
Schraer, 1972; Dragon and Baumann, 2001).

METHODS

Tissue sampling. Freshly collected eggs incubated at 37.6+0.1°C, c.60% R.H., in a still-air incubator
(Brinsea Ltd., UK) were rotated hourly 90° around their long axis, or left unturned in the same incubator.
After 48, 54, 60, 72, 84 or 96 hours of incubation six embryos from turned eggs, and six unturned, were
removed from the shell. One hemisphere of the extra-embryonic blastoderm (abutting the embryo dorsal
side) was removed to Pannett and Compton Ringer (1924) at 4°C, and then washed twice in cold Ringer.
A tissue piece (c. 5 x 5bmm) was excised from the anterior quadrant, transferred to 200 uL of RNAlater,
and incubated at 4°C for 24 hours before storing at -80°C until used. In ten different embryos from turned
eggs at 96h blood was sampled into microcapillaries and placed immediately in buffer RLT for storage until
used.

RNA extraction. The blastoderm tissue was transferred to 2 mL Eppendorf tubes containing a sterile
5 mm steel bead and homogenised in RLT lysis buffer at 20 Hz for 1 minute in a TissueLyser (Qiagen,
UK). Blood (50-100 pL) was mixed 1:1 with buffer RLT, vortexed, and centrifuged at 9000g for 2 min
to pellet debris. Blastoderm lysates and blood supernatants were transferred to RNeasy spin columns
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and RNA was extracted according to the manufacturers instructions (Qiagen, UK) which included an on-
column DNase digest digestion step. RNA purity and concentration were determined using a NanoDrop
spectrophotometer (NanoDrop Technologies, USA). For all samples RNA 260/280nm absorbance ratio was
>2.0. RNA integrity was assessed by formaldehyde-agarose gel electrophoresis and densitometry of 28S
and 18S rRNA bands, which yielded ratios >1.9.

Reverse transcription. RNA (450 ng) was reverse-transcribed to cDNA according to the manufacturers in-
structions, using a Qiagen Reverse-Transcriptase PCR kit containing a mix of random and oligoDT primers.
The protocol included a second genomic DNA elimination step, prior to reverse transcription. Complemen-
tary DNA was diluted five-fold with nuclease-free water containing tRNA (50ng ml~!; Sturzenbaum, 1999)
and stored at -80°C until used.

Primer design. Messenger RNA sequences for carbonic anhydrases Il, 1V, IX, XII and XIV were obtained
for G. gallus, M. musculus, R. norvegicus, B. taurus, H. sapiens, and where available, D. rerio. For G. gallus,
the actual mRNA sequence was available only for CA Il and other CA sequences were those predicted in
the NCBI database (http://www.ncbi.nlm.nih.gov/genome/guide/build.html). These nucleotide
sequences were aligned using the online version of MAFFT v.5. (http://align.bmr.kyushu-u.ac.jp/
mafft/online/server/) and regions of high similarity were identified. The carbonic anhydrase sequences
of G. gallus were aligned using MAFFT and regions of low similarity between isoforms were identified.
Primers were designed within regions of both high interspecific similarity and low similarity between en-
zyme isoforms, and with melting temperatures of approximately 61-62°C. The primer sequences used and
accession numbers of the CA genes are reported in Table 1. These chicken primers were then tested using
quail blastoderm cDNA and the PCR conditions given below to verify amplification. With all primers,
except those for CA XllI, a single PCR product was amplified judged from agarose gel electrophoresis and
ethidium bromide staining and melting analysis on the Rotor-Gene 6000. The size of each CA PCR product
was similar to that anticipated on the basis of the position of the primers in the G.gallus CA genes.

Table 1. G. gallus primer sequences for carbonic anhydrases and M. musculus reference
gene sequences that were used to prime C. cotumix cDNA. Sequences are written 5-3'.

Forward Reverse Accession no.
Call e r R hlERCECRaRMRaRAR e P e et A et MK 205317
CAN IAGRaEAAEREMREEGEIRERAE | cropatoratartatan ot as XM_415893
CAIX SERER LT o B T R R D g LT AM_001233319
CA X =T = E T R sy 3 (o= ar ChORGRORLECHIRsILEORLEE | XM 413756
CAXIYV | SR0RIRsR0RARCEERAR CrdARARLRIRGRATRI0RS XR_02T162
Reference genes
Acth LHARARIR LS RIRARTR GG ECRIIEIIRTRERLH NM_007393
Plaz Lok ARGRARLAIRIH AR LI RALIICRTIIRS NM_023186
Sdha LHGRLHAHLRLEIRAHA R LG BACRAL LI ALELLE MK_023281

Mouse reference gene primer sequences designed using Universal Probe Library (Roche Applied Science,
UK) were aligned against the equivalent G. gallus mRNA sequences and five genes most similar to G.
gallus were selected: beta actin (Actb), beta 2-microglobulin (B2m), phospholipase A2 (Pla2), succinate
dehydrogenase subunit A (Sdha), TATA box binding protein (Tbp). Quantitative PCR assays for each of
these were established and the three most stable were identified using geNorm (Vandesompele et al. 2002;
Table 1).

Quantitative real-time PCR. 2 yL cDNA from blastoderm or blood were amplified by PCR using a
Sensimix NoRef DNA kit and SYBR green (Quantace, UK) on a Rotor-Gene 6000 (Corbett Research, UK).
PCR standards (107-101 copies uL~1), amplified and purified from blastoderm cDNA using a QiaQuick
gel extraction kit (Qiagen, UK), were included in each PCR run, as was a control reaction containing no
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template. PCR conditions were as follows: 95°C for 10 min followed by 40 cycles of 95°C for 15 s, 57°C
for 20 s and 72°C for 10 s.

Sequencing and alignment. PCR products for CA Il, CA IV and CA IX were sequenced in both direc-
tions with a 3130 Genetic Analyzer (Applied Biosystems, USA) using the dye termination method. Using
EMBOSS (http://www.ebi.ac.uk/emboss/align/index.html) the amplicon for each pair of primers,
excluding the primer sequences, was aligned against the G. gallus sequence located between the forward
and reverse primers.

Data analyses. PCR efficiencies were determined from the standard curves and were >95% for all genes.
All standard curves were linear (r* > 0.997) from 107 to 101 copies. For each reference and CA gene, the
sample threshold cycle, cT, and hence copy number uL=! cDNA, was determined from the standard curve
using the Rotor-Gene 6000 series software v1.7 (Corbett Research, UK). The ratio of the copy number
pL=! cDNA and the normalisation factor of the reference genes (obtained from geNorm) was determined
for each sample. This measure was analysed by a two-way factorial Anova using a General Linear Model
in Minitab v14.2 (Minitab Inc.) and means were compared using Tukeys pairwise test. Where datasets did
not meet the assumptions for GLM values were log-transformed before the analysis. All reported values
are meanztstandard error and the level of significance was taken as P<0.05.

RESULTS

The CA IV gene expression in blastoderm samples increased with the period of incubation (2-way ANOVA,
F1,5=7.05 P<0.001), whereas turning alone did not change gene expression (Fi 60=3.48, P=0.067), al-
though there was a significant interaction (Fs5 60=2.56, P=0.036). Thus, by 84 and 96h of incubation CA
IV gene expression was markedly greater in turned eggs than at earlier times (48-60h), whereas gene expres-
sion in unturned eggs had not changed (Figure 1). There was no effect of turning on CA Il gene expression
(F1,59=0.18, P=0.67) in blastoderm samples and no interaction (F5 59=0.61, P=0.69). However, overall
CA 1l gene expression diminished substantially over the period of incubation investigated (F; 5=10.18,
P<0.001), levels from 60 to 96h being about half those at 48 and 54h of incubation (Figure 2). Similarly,
there was no effect of turning on CA IX gene expression (Fi 60=0.24, P=0.62) in blastoderm samples and
no interaction (F5 go=1.54, P=0.19). The period of incubation did affect gene expression (F5 0=2.70,
P=0.03) but the effect was discernable only as levels at 84h exceeding those at 48h of incubation (Figure 3).
Although an amplicon was obtained for CA XIV, it was below the quantifiable range (data not presented).
No amplification of CA XlI was observed.

CA Il exhibited the lowest levels of gene expression in blastoderm samples: for example, in turned eggs
at 48-56h CA Il was approximately four-fold lower than the levels for CA IV and reached a c. 40-fold
difference at 84 and 96h of incubation. CA IX had the highest levels of gene expression in the blastoderm
ranging from approximately 400 to 2000-fold greater than for CA Il and 50 to 100-fold for CA IV. In blood,
CA 11 levels of gene expression were almost 100-fold greater than that for CA IV (744.2+211.1 copies
pL=! cDNA /normalisation factor for CA 1l and 8.5+1.5 copies L~ cDNA/normalisation factor for CA
IV; n=10). Compared to CA I, CA IX was also expressed at a low level in blood (13.8+4.5 copies puL~!
cDNA/normalisation factor, n=10). As for the blastoderm samples, CA XIV was present in blood but
unquantifiable and CA XII did not amplify.

The quail amplicons for CA Il and CA IX (excluding primers) exhibited high % similarity compared with G.
gallus, 100% in case of CA Il (Table 2). The missing nucleotides for the quail CA IV amplicon reduced the
similarity to a lower figure, even though the remaining 26 known nucleotides included only 2 mismatches.
Reliable sequence data could not be obtained for CA XIV due to low amounts of amplicon
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Figure 1. The expression (mean £ SEM, n=6) of carbonic anhydrase IV mRNA by the blastoderm of the
Japanese quail in turned and unturned eggs from 48 to 96 hours of incubation. For turned eggs, means
sharing lower case superscripts differ (P<0.05); for unturned eggs means sharing upper case superscripts
differ (P<0.05).
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Figure 2. The expression (mean + SEM, n=6) of carbonic anhydrase || mRNA by the blastoderm of the
Japanese quail in turned and unturned eggs from 48 to 96 hours of incubation. For turned and unturned eggs
combined, and for each period of incubation, means sharing the same superscript differ (P<0.05).
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Table 2. Sequences of C. coturmix (Cot) PCR products (excluding primers) aligned against
G. gallus (Gal) sequences. Sequences are written 5'-3". Mismatches between two

sequences are underlined. For CA IV, two nucleotides represented by 'n’ could not be
determined as the signal was too low.
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Figure 3. The expression (mean + SEM, n=6) of carbonic anhydrase IX mRNA by the blastoderm of
the Japanese quail in turned and unturned eggs from 48 to 96 hours of incubation. For turned and
unturned eggs combined, and for each period of incubation, means sharing the same superscript differ

(P<0.05).
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DiscussIioON

Of the five carbonic anhydrase isoforms investigated, quantitative data were obtained for only three: CA
[I, CA IV and CA IX. As anticipated, CA Il gene expression was greater (c. 25-fold) in blood than in
blastoderm tissue from turned eggs at the equivalent time period. Blood expressed much lower levels of
CA IV than CA 11, as has been reported for human erythrocytes (Wistrand et al., 1999), providing further
evidence that these primers were indeed isoform-specific. Although amplification was achieved for CA XIV
in tissue and blood, the amount of amplicon was below the quantifiable range; hence, this isoform appears
to be either amplified inefficiently with the primers used or is present, but in very low amounts at the times
investigated. As no amplification of CA XIlI was observed either the primers used were unsuitable for quail,
or this isoform was not present in quail blastoderm or blood. As all the other primer pairs amplified quail
cDNA with high efficiency, suggesting that the quail and chicken mRNA sequences are sufficiently similar
to be primed with identical primer pairs, we suggest that CA XIl was indeed not present in the tissues
used.

The isoform CA IX was expressed at uniformly high levels in the extra-embryonic blastoderm tissue with a
maximum at 84h of incubation. CA IX has been well-characterised for a variety of tumours and is a marker
of tissue hypoxia during vascular growth (Beasely et al., 2001). Indeed, at this time during incubation
oxygen transport is diffusion-limited in the fowl (Meuer and Baumann, 1987) suggesting that the high
level of gene expression for CA IX may reflect a hypoxia associated with the extensive vasculogenesis and
angiogenesis proceeding in the blastoderm at this time (Vico et al., 1998; Baggott, 2001). In contrast
gene expression for blastoderm CA |l was greatest at 48 and 54h of incubation, decreasing later to lower
levels. Whilst quantification of CA IV and CA IX within erythrocytes resident within the blastoderm tissue
should be of negligible magnitude due to the low expression in blood, this was likely not the case for CA
Il. The relatively high levels of CA |l gene expression in blood could, we suggest, contribute substantially
to CA Il expression quantified in blastoderm samples. This would, indeed, be most evident at 48 and 54h
of incubation, as in the fowl the percentage of blood in extra-embryonic tissues is highest at the beginning
of the period of SEF formation, having decreased by a third after 4 days (Romanoff, 1967). Thus, the
levels found from 60 to 96h of incubation are most probably those representative of blastodermal CA Il
gene expression.

In the domestic fowl static incubation of eggs during the critical period of 3-7 days of incubation (0.14 -
0.33 as fraction of incubation period) reduces hatchability and embryonic growth even if eggs are turned
at other times (Deeming, 1989b). SEF mass is also reduced if eggs are unturned during this critical period
(Deeming et al., 1987; Deeming, 1989c; Baggott et al., 2002). In the blastoderm samples only gene
expression for CA IV was affected by egg turning, with maxima at 84 and 96h of incubation (0.20 and
0.24 of the incubation period), times located approximately in the middle of the critical period. This
is also the time of peak SEF mass in the Japanese quail (Babiker and Baggott, 1992). If, as seems
probable, enhanced CA IV gene expression results in increased enzyme activity and endodermal cell ion
transport, these changes could account for the additional fluid mass observed in turned eggs at 84 and 96h of
incubation (Babiker and Baggott, 1992). In unturned eggs gene expression for CA IV at these times did not
differ from earlier sampling times: presumably permitting continued SEF formation yet without forming the
additional fluid mass produced with egg turning (Deeming, 1989c; Babiker and Baggott, 1992). Carbonic
anhydrase localized to the endodermal cells has also been reported for the turkey blastoderm (Bakst and
Holm, 2003). In this species, cold storage of eggs for 21d prior to incubation did not alter CA activity,
assessed histochemically, in eggs incubated for up to 72h (Bakst and Holm, ibid.). However, in view of
the time-specific increase in CA IV gene expression reported here an assessment for specific isoforms later
in incubation might repay investigation; particularly as egg storage produces lower growth rates, as well as
higher embryonic mortality (Fasenko, 2007).

Recent evidence for transporting epithelia indicates that CA Il, CA IV and CA IX can enhance ion transport
rates. CA Il has been shown to increase Na+/H+ exchanger activity (NHE1; Li et al., 2001, 2006),
an exchanger known to participate in SEF secretion (Latter and Baggott, 2002), and to enhance the
transport capacity of the Na* /bicarbonate co-transporter (NBCel; Becker and Deitmer, 2007). CA IV
has also been found to increase NBC1 activity in conjunction with CA Il (Alvarez et al., 2003). Similarly,
interactions with CI?/HCO3? anion exchangers can require both CA Il and CA IV (Sterling et al., 2001,
2002). And additionally, CA IX has also been demonstrated to enhance CI~/HCO3~ anion exchange
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(AE1, AE2 and AE3), binding AE2 to the catalytic domain and being co-localized with AE2 in human
gastric mucosa (Morgan et al, 2007). In those studies where a membrane-associated CA participated
in ion transport activity, CA Il was shown to be necessary for maximal effect (except, so far, for CA
IX). However, in blastoderm tissue CA Il gene expression was reduced by the time of maximal CA IV
expression in turned eggs, a consequence, we suggest, of quantifying both endodermal and erythrocyte CA
Il expression in blastoderm tissue samples. Also, although Babiker and Baggott (1995), using inhibitors
found no evidence for participation of CI~/HCO3~ anion exchange in the formation of SEF, secretion of
this fluid is accompanied by increased fluid bicarbonate due to a metabolic alkalosis (Babiker and Baggott,
1991).

On balance, the effect of turning in stimulating fluid transport and CA IV gene expression in combination
with the types of ion transporters known to be essential for SEF secretion, argues strongly for a blastoderm
transport metabolon involving CA IV and an ion exchanger. Whether CA |l participates in such a metabolon
first requires a clearer demonstration of the presence, and quantities, of CA Il in the extra-embryonic tissues,
excluding blood. Conceivably, CA IV and CA IX could contribute to separate ion exchange metabolons: for
example, one incorporating CA IV and sensitive to egg turning, possibly using an exchanger other than AEs
or NBC1; another for anion transport incorporating CA IX with one these exchangers. Evidently, the role
of anion exchangers in SEF formation by blastoderm requires further clarification, particularly with regard
to NBC1, a co-transporter not investigated in previous studies.

In summary, CA I, CA IV and CA IX gene expression were quantifiable in both extra-embryonic blastoderm
tissue and blood up to 96h of incubation. Of these three isoforms only CA IV expression was stimulated
by egg turning at a time coincident with additional SEF formation in turned eggs. This is, we believe, the
first demonstration of a change in gene expression in the extra-embryonic tissues induced by an alteration
of a factor in this case egg turning - essential to successful incubation.
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