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Summary Oscillatory flow of a micropolar fluid in an annular tube is investigated. The outer
wall of the tube is taken to be elastic and the variation in the diameter of the elastic wall due to
pulsatile nature of pressure gradient is assumed to be small. The wall motion is governed by
a tube law. The nonlinear equations governing the fluid flow and the tube law are solved using
perturbation analysis. The steady-streaming phenomenon due to the interaction of convected
inertia with viscous effects is studied. The analysis, is carried out for zero mean flow rate. It
presents the effects of the elastic nature of the wall combined with micropolar fluid parameters
on the mean pressure gradient and wall shear stress for different catheter sizes and frequency
parameters. It is found that the effect of micropolarity is of considerable importance for small
steady-streaming Reynolds number. Also, it is observed that the relationship between mean
pressure gradient and the flow rate depends on the amplitude of the diameter variation, flow rate
waveforms and the phase difference between them.

Keywords: Oscillatory flow, Annular tube, Steady-streaming, Oscillatory pressure gradient,
Micropolar fluid

1
Introduction
In clinical procedures, catheters are widely used for the purpose of measuring arterial pressure.
The insertion of a catheter would modify the pressure distribution, hence, the pressure re-
corded by the transducer would differ from that in uncatheterized artery, however small the
size of the catheter may be. Accordingly, the effect of the presence of catheter in the physio-
logical arterial flows needs to be studied. Various experimental and analytical studies have been
reported in the literature with respect to blood flow in catheterized artery. Paper [1] studied the
extent to which a catheter insertion in the canine aorta influences the pressure which it records.
An analysis of pulsatile blood flow in an annular region was presented in [2] to study the
magnitude of error involved in the measurement of pressure distribution using catheter. Paper
[3] estimated the increase of the mean flow resistance during coronary artery catheterization.
In the above analytical studies, arterial wall was taken to be rigid. However, blood vessels are
elastic in nature. It is observed that due to pulsatile blood pressure the artery diameter changes
nearly 5–10%, and so artery can be treated as a thin-walled elastic tube see [4] where the
nonlinear flow of a newtonian fluid was analysed in an elastic tube subjected to an oscillatory
pressure gradient. The steady streaming phenomenon was discussed which is a characteristic of
secondary flow due to wall motion and hence nonlinear convective acceleration. The results
were applied to blood flow in an artery. By restricting the analysis to for zero mean-flow rate
the authors of [4] indicated that the steady-streaming effect depends on the amplitude of the
diameter variation, flow rate waveforms and the phase difference between them, which is an
indicator of the influence of wave reflection. Subsequently the analysis was extended to nonzero
mean flow rate also, [5].

In a recent analysis, paper [6] considered a mathematical model to study the combined effect
of the introduction of a catheter and elastic properties of the arterial wall on the pulsatile nature
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of blood flow. The authors provided a relationship between mean pressure gradient and the
flow rate assuming zero mean flow rate and the newtonian fluid model for blood. It is well
known that blood is a suspension of red and white blood cells and other smaller constituents in
electrolytic aqueous solution of plasma. It imparts thus a non-newtonian behaviour to the
rheology of blood. Various models have been suggested to account for such behaviour of blood.
In particular, micropolar fluid theory, [7], [8], has been applied to physiological fluids,
including blood, to account for the suspension nature of the fluid [9]. The micropolar fluid
model characterizes suspension of neutrally buoyant rigid spherical particles in a viscous fluid,
where the individuality of substructures affects the flow. Basically, these fluids support couple
stresses and body couples and exhibit microrotational effects. Analyses presented in [8] and
[10] compared theoretical velocity profiles for blood flow, using micropolar fluid model, with
the experimentally determined profiles, both in steady and pulsatile cases. The comparison was
found to be in good agreement.

In view of this, an attempt has been made to assess the magnitude of mean pressure gradient
and mean wall shear stress in the flow of micropolar fluid in an annular tubular region with
elastic outer wall. The equations of the fluid motion supplemented by the response of the wall
are solved by perturbation technique, assuming small wall-diameter variation. The analysis is
carried out for zero mean flow rate and is restricted to small steady-streaming Reynolds
number.

2
Formulation of the problem
We consider a fully developed unsteady flow of an incompressible micropolar fluid in the
annular region between the catheter and the flexible elastic wall. The geometry is shown in
Fig. 1 with respect to the cylindrical coordinate system ðR;H; ZÞ. The outer boundary is taken
as an isotropic, thin-walled elastic circular cylindrical tube moving in the radial direction at
negligible axial deformation. Let R0 be the mean radius of the elastic tube, which corresponds
to the original undisturbed tube. The catheter is modelled by a co-axial tube with radius kR0,
k < 1.

Following [4], the elastic nature of the boundary wall movement under excessive internal
fluid pressure ðP� PoÞ can be described by the following tube law (pressure-radius relation-
ship):

RsðPÞ
R0
¼ 1þ 1

2
�DDðP� P0Þ þ � � � : ð1Þ

Here, R ¼ RsðZ; sÞ is the instantaneous radius of the tube at the instant s, P is the pressure, P0

the mean pressure and �DD is the distensibility of the tube wall.
As we consider here the flow to be oscillatory, this will have an influence, however small, on

the instantaneous position of the flexible catheter. Though there may be very little movement
away from the center of the artery, there would be axial movement of the catheter. In other
words, the wave propagating in the fluid is transmitted to the catheter as well. It is considered
that the axisymmetric motion of the catheter is periodic along the Z axis and it is in phase lead

Fig. 1. Geometry of a catheterized artery with wall movement
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over the flow rate with small constant amplitude. This leads to the boundary conditions for
velocity components U and W (in R and Z directions, respectively) as

U ¼ 0; W ¼ WcðsÞ at R ¼ kR0 ; ð2Þ

where WcðsÞ describes the movement of the flexible catheter influenced by the oscillatory
nature of flow, with frequency x. The boundary conditions on the wall are prescribed by the
no-slip condition as

U ¼ oRs

os
; W ¼ 0 at R ¼ RsðZ; sÞ : ð3Þ

Further, it is assumed that due to the fluid-solid interaction at both boundaries, the micro-
structure does not rotate relative to the catheter surface as well as relative to the elastic
boundary, [11] which gives

G ¼ 0 at R ¼ kR0 at R ¼ RsðZ; sÞ ; ð4Þ

where G is the nonvanishing component of the microrotational velocity vector ð0;GðR;Z; sÞ; 0Þ.
Now, for the axisymmetric flow of a micropolar fluid, the governing equations using cylindrical
coordinates can be written in nondimensional form as follows:
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under the nondimensional scheme as given below:

r ¼ R

R0
; z ¼ xZ

C0
; t ¼ sx; p ¼ P� P0

qC2
0

; u ¼ U

R0x
; w ¼ W

C0
; ~ww ¼ Wc

C0
;

g ¼ G

C0=R0
; j ¼ J

R2
0

; l1 ¼
j
l
; M ¼ R2

ol
c
; N ¼ l1

2þ l1

� �1
2

; � ¼ Rmax � R0

R0
;

a ¼ R0
xq
l

� �1
2

; St ¼
xR0

C0
; rsðz; tÞ ¼

RsðZ; sÞ
R0

; C0 ¼
1

ðq�DDÞ

1
2

;

where q is the density of the fluid; J is the microinertia constant; l, j and c are the viscosity
coefficients of micropolar fluids, called dynamic viscosity, vortex viscosity and material con-
stant, respectively; Rmax is the maximum radius attained by the tube wall due to the oscillatory
pressure on the elastic wall of the tube and C0 is the wave speed.

In the above equations, a is the Womersley parameter, parameters l1 and M are non-
dimensional quantities due to micropolar fluid flow, l1 denotes the ratio of the viscosity
coefficient corresponding to micropolar fluids to the classical viscosity coefficient, M depends
upon the size of the microstructure. It can be noted that when j and c are zero, that is, when l1

becomes zero and M tends to infinity, Eqs. (5) to (8) reduce to the one which describes the
behaviour of the classical newtonian fluid flow. Remember j is the nondimensional form of the
microinertia constant J.
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The boundary conditions become

g ¼ 0; u ¼ 0 and w ¼ ~ww at r ¼ k ; ð9Þ

g ¼ 0; u ¼ ors

ot
and w ¼ 0 at r ¼ rsðz; tÞ ð10Þ

and the tube law is given by

rs ¼ 1þ 1

2
pþ Oðp2Þ þ � � � : ð11Þ

Hereafter, we restrict ourselves to the case where St ¼ xR0=C0 is small, which amounts to
considering the long-wavelength approximation. In view of this, the terms involving S2

t are
neglected in the following analysis. Also, following Refs. [12] and [13], it is reasonable to
assume that the nondimensional microinertia parameter is small j� 1, and accordingly we
neglect this term in Eq. (8). Thus, the nondimensional governing equations reduce to
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with the boundary conditions as mentioned before.
To transform the problem of moving boundary to an immovable domain, we apply an affine

transformation
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� �
; where 0 < k < 1 :

Thus, Eqs. (12)–(15) reduce to the following:
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where n1 ¼ ðrs � kÞðn� 1Þ þ rsð1� kÞ. The corresponding boundary conditions are

g ¼ 0; u ¼ 0 and w ¼ ~ww at n ¼ k ; ð20Þ

g ¼ 0; u ¼ ors

ot
and w ¼ 0 at n ¼ 1 : ð21Þ
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We take ~ww ¼ wc cosðt � t0Þ, where wc � 1 is the maximum amplitude of the catheter move-
ment and t0 is the phase lead of this motion over the flow. In general, wc will depend on the
elastic properties of the catheter material as well as on the tangential stress exerted by the fluid
flow. However, here we treat wc as a constant.

3
Analysis
The governing equations are coupled and nonlinear in nature and are not amenable to an
analytic solution. Thus, we attempt for an approximate analytic solution using regular per-
turbation method with perturbation parameter �, denoting the diameter variation parameter of
the elastic wall due to pulsatile flow, which is small. It amounts to solving the problem for a
slowly varying cross section of the annular region. Now, to solve Eqs. (16)–(21) for the flow
field we assume

p ¼ �p11 þ �2ðp20 þ p21 þ p22Þ þ Oð�3Þ ; ð22Þ

rs ¼ 1þ �rs11 þ �2ðrs20 þ rs21 þ rs22Þ þ Oð�3Þ ; ð23Þ

where pij represents the jth harmonic (in terms of t) of the ith order term in the expansion of p,
and rsij is defined analogously. The flow variables u, w and g are also assumed in a similar
manner.

It may be remarked that the above perturbation forms in Eqs. (22)–(23) are sought on the
basis of zero mean-flow rate. It means that flow rate as the input to the annulus is purely
sinusoidal and the flow rate does not contain any steady component at z ¼ 0 in the Oð�Þ case.
Solution for the second-order case contains nonlinear interactions and will have both steady
and oscillatory components.

The steady-streaming Reynolds number for micropolar fluid flow is defined as

Rst ¼ �2�aa2; where �aa2 ¼ 2a2

2þ l1

:

Further, as �� 1, it allows to take moderate values of Rst of order one for appropriate values of
a. Thus, applying the arguments of Ref. [4] to the micropolar fluid flow, it may be noted that
only the steady components, that is u20, w20 and g20 alone contribute to the steady streaming up
to Oð�2Þ. Therefore, while solving equations up to Oð�2Þ, we shall determine u20, w20 and g20

only. Thus, our solutions are valid for small values of Rst and arbitrary values of a.
Substituting the perturbed form of the flow variables in Eqs. (16)–(21) and in the tube law,

and collecting coefficients of similar powers of � on both sides of the equations, we obtain the
following sets of the governing equations and boundary conditions for u11, w11, g11, u20, w20,
g20:
(1) equations corresponding to the case Oð�Þ
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with boundary conditions yielding

g11 ¼ 0; u11 ¼ 0 and w11 ¼ ~ww at n ¼ k ; ð28Þ

g11 ¼ 0; u11 ¼
ors11

ot
and w11 ¼ 0 at n ¼ 1 ; ð29Þ
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and the tube law gives
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2
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(2) equations corresponding to the case Oð�2Þ

ou20

on
þ u20

n
þ ow20

oz
¼ G�2ðn; zÞ ; ð31Þ

op20

on
¼ 0 ; ð32Þ

ð2þ l1Þ
2a2

o2w20

on2 þ
1

n
ow20

on

� �
þ l1

a2

og20

on
þ g20

n

� �
¼ op20

oz
þ G�1ðn; zÞ ; ð33Þ

o2g20

on2 þ
1

n
og20

on
� g20

n2 � l1M
ow20

on
þ 2g20

� �
¼ G�3ðn; zÞ ; ð34Þ

where

G1ðn; z; tÞ ¼ w11
ow11

oz
� n2

ors11

ot
� u11

� �
ow11

on
þ l1

a2

1

1� k

og11

on
þ n2

n2 g11

� �

þ rs11ð2þ l1Þ
2a2

2

1� k

o2w11

on2 þ
2n� k

n2ð1� kÞ
ow11

on

� �
;

G2ðn; z; tÞ ¼ n2
ors11

oz

ow11

on
� rs11

1� k

ow11

oz
� krs11

n2ð1� kÞ
u11 ;

G3ðn; z; tÞ ¼ rs11
2

1� k

o2g11

on2 þ
2n� k

n2ð1� kÞ
og11

on
� 2 n2

n3 g11

� �
� l1M

rs11

1� k

ow11

on

� �
:

with boundary conditions

g20 ¼ 0; u20 ¼ 0 and w20 ¼ 0 at n ¼ k ; ð35Þ

g20 ¼ 0; u20 ¼ 0 and w20 ¼ 0 at n ¼ 1 : ð36Þ

Here, the quantities G�1, G�2 and G�3 are time-averaged quantities of G1; G2 and G3 respectively

n2 ¼
n� k

1� k
:

3.1
Solution for the Oð�Þ case
Since the fluid motion is oscillatory with frequency x, we assume

op11

oz
¼ Reff ðzÞei tg ¼ 1

2
f ðzÞei t þ f ðzÞe�i t
n o

; ð37Þ

where f is an unknown function of z only, to be determined from the tube law and the axial
boundary conditions; Re indicates the real part of a complex variable and the overline denotes
complex conjugate. Similarly, for g11, u11, w11 and rs11 we assume the following forms:

g11 ¼ RefG11ðn; zÞei tg; u11 ¼ RefU11ðn; zÞei tg ; ð38Þ

w11 ¼ RefW11ðn; zÞei tg and rs11 ¼ RefBðzÞei tg : ð39Þ
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On substituting these forms in Eqs. (24) to (29), we get the expressions for G11 and W11 in the
following form:

G11ðn; zÞ ¼ c1ðzÞI1ða11nÞ þ c2ðzÞK1ða11nÞ þ d1ðzÞI1ða12nÞ þ d2ðzÞK1ða12nÞ ; ð40Þ

W11ðn; zÞ ¼ ~aa11½c1ðzÞI0ða11nÞ � c2ðzÞK0ða11nÞ� þ ~aa12½d1ðzÞI0ða12nÞ
� d2ðzÞK0ða12nÞ� þ i f ðzÞ ð41Þ

where I0, I1 and K0, K1 denote Bessel functions, and
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p

:

Here, a11; a12; ~aa11; ~aa12 are known constants and c1ðzÞ, c2ðzÞ, d1ðzÞ and d2ðzÞ are unknown
functions, to be determined by the linear system of equations, which is obtained on using the
boundary conditions Eqs. (28) and (29). Using the equation of continuity (24) and boundary
condition (28) for u11, we get U11 as
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where the superscript within parenthesis indicates derivative with respect to z. The other
boundary condition,

u11 ¼
ors11

ot
at n ¼ 1

gives the expression for the wall amplitude as

BðzÞ ¼ �iU11ð1; zÞ :

Further using the tube law, Eq. (30), the unknown function f is determined as
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and

m2 ¼ 1

1� k2
;

while A11 and A12 are constants to be determined.
The nondimensional flow rate q is given by
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q ¼
Z1

k

nw11ðn; z; tÞdn : ð44Þ

We assume that the flow rate is in the following form:

qðz; tÞ ¼ 1
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n o

; ð45Þ

where Q1 = const is the contribution to the flow rate due to the catheter movement and Q2ðzÞ is
the amplitude of the flow rate in the absence of catheter oscillations. The phase-difference angle
b can be thought of as an indicator of the impedance to flow. Equation (44) along with Eq. (41)
gives
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Thus f ðzÞ is completely known, if we know B, Q2 and b at z ¼ 0. It may be noted that if wc ¼ 0
then Q1 ¼ 0. For nonzero values of wc, the contribution of the catheter movement to the flow
rate is estimated by finding the difference between the flow rates which are calculated for
wc ¼ 0 and wc 6¼ 0.

3.2
Solution for the Oð�2Þ case
Our main purpose of the study is to analyze the steady-streaming velocity components w20, u20

and the microrotation component g20, due to the oscillatory fluid flow, as given by Eqs. (31)–
(36).

Thus, solving for w20ðn; zÞ and g20ðn; zÞ, we get
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where,

H1ðn; zÞ ¼
Zn

1

n

Zn

nG�1dn

0
@

1
Adn; a2

13 ¼ a2ð1� N2Þ;H2ðn; zÞ ¼
Zn

nG�1ðn; zÞdn ;

V11ðn; zÞ ¼ �
Zn

I1ða13nÞH2ðn; zÞdn; V12ðn; zÞ ¼
Zn

K1ða13nÞH2ðn; zÞdn ;

V21ðn; zÞ ¼ �
Zn

nI1ða13nÞG�3ðn; zÞdn; V22ðn; zÞ ¼
Zn

nK1ða13nÞG�3ðn; zÞdn :

while c3ðzÞ, c4ðzÞ, d3ðzÞ and d4ðzÞ are unknown functions of z to be determined.
The continuity equation corresponding to the case Oð�2Þ and the boundary condition at

n ¼ k for u20 give

nu20 ¼
Zn

k

nG�2dn�
Zn

k

n
ow20

oz
dn : ð48Þ

Now, u20 ¼ 0 at n ¼ 1 gives the following differential equation:

dp20

dz
T4 ¼

Zz

0

Z1

k

nG�2dn

0
@

1
Adz� d3ðzÞT1 � d4ðzÞT2 � c3ðzÞT3 � c4ðzÞT

�
Zz

0

Z1

k

n
oF

oz
dn

0
@

1
Adzþ D2 ; ð49Þ

where

T1 ¼
Z1

k

nb1dn; T2 ¼
Z1

k

nb2dn; T3 ¼
Z1

k

nb3dn; T4 ¼
Z1

k

nb4dn and T ¼ k2 � 1

2
;

while D2 is determined by using the condition

dp20ð0Þ
dz

¼ 0

due to the assumption that zero mean flow rate is at z ¼ 0. This gives

D2 ¼ d3ð0ÞT1 þ d4ð0ÞT2 þ c3ð0ÞT3 þ c4ð0ÞT : ð50Þ

Boundary conditions (35) and (36) are used to obtain a linear system of equations in c3ðzÞ,
c4ðzÞ, d3ðzÞ, d4ðzÞ and dp20=dz. We solve this system along with Eq. (49) numerically, for each
axial location z ð0 � z � 2pÞ and get the solution for w20ðn; zÞ, u20ðn; zÞ and g20ðn; zÞ, where
k � n � 1.

This completes our solution procedure which is valid up to the order of �2 for the calculation
of the time-averaged pressure gradient and velocity components. However, it may be noted that
we need c1ðzÞ, c2ðzÞ, d1ðzÞ, d2ðzÞ and their derivatives for evaluating f ðzÞ.

This is being done numerically. To start with, initial values of f are assumed at each axial
location z. In our calculation, we have specified f ¼ 1, 8z 2 ½0; 2p�. Functions c1ðzÞ, c2ðzÞ, d1ðzÞ,
and d2ðzÞ are calculated through an iterative process. The tolerance value for the convergence
is fixed as 10�5. Finally, the microrotation and velocity components for the Oð�Þ case are
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calculated from Eqs. (40), (41) and (42). Using these values, flow variables for the order of �2

are obtained numerically. Further, the axial velocity values are differentiated numerically for
getting the wall shear stress. It may be mentioned that the calculations involving Bessel
functions are made using polynomial approximation expressions as given in [14].

4
Results and discussion
We present were the results based on the above steady-streaming analysis. It may be noted that,
apart from the usual dimensionless parameters a (Womersley parameter), b (phase difference
between flow-rate and pressure gradient) and k (catheter size), which describe the newtonian
flow in a catheterized artery, [6], the steady-streaming analysis in this study also depends upon
l1 and M. In the following, we discuss the effects of these parameters on the three important
outcomes of the analysis, namely, (i) the mean velocity distribution, (ii) the mean pressure
gradient, and (iii) the mean wall shear stress.

In all these cases, we have fixed the amplitude of the flow rate at z ¼ 0 as Q2ð0Þ ¼ 0:5 and the
amplitude of the wall variation at z ¼ 0 as Bð0Þ ¼ 0:05. These amplitude values correspond to
the flow rate and the wall motion described in the Oð�Þ case, on which steady streaming
depends. The maximum amplitude of the catheter oscillation, is wc ¼ 0:2, and the phase lead t0

of the catheter over the flow is taken zero, due to the fact that t0 does not have considerable
influence on the pressure gradient, [6].

It may be recalled that l1 and M characterize the coefficient of vortex viscosity j and the
coefficient of gyroviscosity c of the micropolar fluids respectively. An increase in j is reflected
as an increase in the parameter l1, while an increase in c results in decreasing values of M. It
may be mentioned here that in the context of blood flow studies the viscosity ratio l1 repre-
sents a polar effect which occurs between blood corpuscles and fluid, [10]. The microstructure
size effect parameter M means the ratio of corpuscle to the radius of the annular region. Also, it
may be noted that the expression for w20ðn; zÞ reduces to the newtonian case as l1 ! 0 and
M !1. In our discussion, the values of the micropolar fluid parameters are taken as
l1 ¼ 0:1; 1:0 and M ¼ 1:0; 10:0.

4.1
Mean velocity distribution
The mean velocity distribution can be calculated using w20ðn; zÞ given in Eq. (46). The effect of
micropolar parameters on the velocity profile across the annular region (k � n � 1:0) is seen
by fixing the axial location z ¼ p for various values of Womersley parameter a and phase
difference b between the flow rate and the pressure gradient. They are shown in Fig. 2 for
k ¼ 0:3 and b ¼ p=3 and in Fig. 3 for k ¼ 0:3 and a ¼ 0:5, respectively.

Figure 2 shows that the mean velocity distribution has a parabolic profile similar to the
annular flow in a rigid tube. As a increases, the effect of elastic tube wall on the flow brings mild
kinks in the neighbourhood of boundary walls. This shows an increased interaction of wall and
the oscillatory flow. In the core of annular region, maximum value of mean velocity has a mixed
trend as a increases. Higher values of a imply that either the newtonian viscous effect becomes
negligible or frequency of flow oscillation is more dominant. Thus the mean velocity profile
reacts to the oscillatory nature of flow and the magnitude of mean velocity becomes small. The

Fig. 2. Distribution of w20 (k ¼ 0:3,
b ¼ p

3, wc ¼ 0:2, z is fixed at p)
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result is similar to the study [6]. An increase in the viscosity coefficient corresponding to
micropolar fluid l1 ¼ 0:1 to l1 ¼ 1:0 implies an increase in mean velocity profile. This indi-
cates the effect of enhanced viscous effect due to viscosity coefficient of micropolar fluid j.
There is no significant change in the mean velocity profile for higher values of a, when l1 ¼ 1:0.
The influence of microstructure on mean flow is observed through parameter M. An increase in
M clearly implies a decrease in mean velocity values for l1 ¼ 1:0.

The effect of the phase difference angle b on the velocity profile is shown in Fig. 3. Varying b
from 0 to p=2, we see an increase in the mean velocity and it is enhanced for large values of l1.
This indicates the importance of considering the phase difference and the micropolar viscosity
coefficient j in our study. It is observed that the parameter M does not significantly influence
w20 for small values of l1 but it does so for large values of l1. It is to be noted that mean
velocity w20 is a correction to the velocity component w, up to order of �2 calculation, due to
steady-streaming.

4.2
Mean pressure gradient
We now discuss pressure gredient dp20=dz wich is the correction to dp=dz. Let us denote
dp20=dz ¼ p020. One of the basic interest in this investigation is to understand the time-mean
pressure gradient p020, a characteristic of steady streaming in a distensible tube. It is a correction
to the pressure gradient calculated from the theories which neglect convective acceleration
effect. Figures 4 to 6 show the mean pressure gradient values across the axial direction z.

Figure 4 displays the effect of the presence of catheter on p020, where z ranges from zero to 2p,
a ¼ 10:0 and b ¼ p=3. The catheter radius k takes values 0.3 and 0.5. The oscillatory nature of
mean pressure gradient is observed. As expected, an increase in k produces higher mean
pressure gradient since flow rate amplitude is fixed at z ¼ 0. This increase in p020 can bring
more resistance to flow. Further, the mean pressure gradient is increased as a result of an
increase in the viscosity ratio l1. This is because the viscosity coefficient j for micropolar fluid

Fig. 3. Distribution of w20 (k ¼ 0:3,
a ¼ 5:0, wc ¼ 0:2, z is fixed at p)

Fig. 4. Distribution of p20 (a ¼ 10:0,
b ¼ p

3, wc ¼ 0:2)
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contributes to higher resistance to the mean flow. An increase in the other micropolar
parameter M reduces this effect.

Figure 5 depicts the influence of parameter a on p020. Here, we have fixed k ¼ 0:3 and
b ¼ p=3. As a increases the magnitude of p020 increases. This can be interpreted as an increase
in interaction of the wall and the unsteady nature of flow which induces higher mean pressure
gradient. Increasing l1 promotes change in p020, and increasing M reduces that effect.

Figure 6 shows the effect of the phase angle b on p020. It may be seen that the oscillatory
nature of the pressure gradient is preserved and there is a change in p020, enhanced by varying
l1. Mean pressure gradient decreases when the size of the microstructure reduces. These results
imply the importance of micromotions of micropolar fluid particles in the flow, particularly in
the presence of wave reflection b.

4.3
Mean wall shear stress
We define the dimensionless mean wall shear stress for micropolar fluid flow from the order of
�2 calculation as

s20 ¼
ow20

on

���
n¼1

:

Figures 7 and 8 illustrate the nature of mean wall shear stress along the axial direction. In all
considered cases, a wavelike pattern of the mean wall shear stress is observed, due to the
interaction of the fluctuating flow with the elastic wall. Influence of micropolar parameters on
s20 is noted for different values of catheter radius k Fig. 7. An increase in k shows an increase in
the absolute value of the mean wall shear stress. This is because the reduction in the annular
gap increases the wall shear stress. Further, increasing micropolar viscosity coefficient brings
out significant change in the mean shear stress. Thus, the polar character of micropolar fluid

Fig. 5. Distribution of p20 (k ¼ 0:3,
b ¼ p

3, wc ¼ 0:2)

Fig. 6. Distribution of p20

(k ¼ 0:3, a ¼ 10:0, wc ¼ 0:2)
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enhances the mean wall shear stress. A decrease in the size of the microstructure relatively
reduces the effect of l1, especially at l1 ¼ 1:0.

The combined influence of a and the micropolar fluid parameters on s20 can be seen in Fig. 8.
Here, we fix k ¼ 0:3 and b ¼ p=3. As a increases, the unsteady nature of the flow increases, and
thus the amplitude of the wavelike behaviour of s20.

5
Conclusion
The present paper considers the micropolar nature of a blood flow in a catheterized artery. The
steady-streaming phenomenon yields nonzero mean pressure gradient along the axial direc-
tion. The influence of the elastic wall on the mean velocity profile is shows in the presence of
polarity. Mean wall shear stress and mean pressure gradient show wavelike patterns along the
axial direction due to oscillatory flow conditions. The results obtained for various values of the
Womersley parameter and the catheter size show a strong increase in the mean quantities with
an increase of the magnitude of l1. However, the analysis also shows that M has little influence
on these results.
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