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ABSTRACT: It is shown that the effect of electrostatic interactions on the liquid crystal phase transition 
in solutions of rodlike polyelectrolytes can be characterized by two parameters, one describing the increase 
of the effective diameter and the other the twisting action. The dependence of these parameters on the charge 
density and the salt concentration is studied both for weakly charged polyelectrolytes, for which the De- 
byeHucke1 approximation applies, and for highly charged polyelectrolytes, for which the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfull Poisson-Boltzmann 
equation has to be used. The isotropic-nematic phase transition cannot be described solely in terms of an 
effective diameter as has always been done before but one must also take the twisting effect into account. 
This effect, which enhances the concentrations at the transition, is particularly marked for weakly charged 
polyions. 

I. Introduction 

Above a critical concentration solutions of rodlike par- 
ticles undergo a phase separation into an isotropic phase 
and an anisotropic phase, coexisting in equilibrium. In the 
latter phase, which is usually referred to as a lyotropic 
liquid crystal, the particles have a preferred orientation. 
This phase separation was first explained by Onsagerl as 
the result of the competition between the orientational 
entropy favoring orientational disorder and the entropy 
effect associated with the orientation-dependent excluded 
volume of the rodlike particles which favors orientational 
order. Onsager calculated explicitly the concentrations of 
the coexisting phases for the case of monodisperse hard 
rigid rods. However, many of the particles that form 
lyotropic liquid crystals are in fact polyelectrolytes, e.g., 
V205,2 -pA100H,384 TMV,”g DNA,l0J1 cellulose micro- 
crystals,12 Schizophyllan,13 Scler~glucan,’~ and sickel cell 
hemoglobin.15J6 The electrostatic repulsion between the 
particles influences strongly the formation of the aniso- 
tropic liquid crystal phase, as has been particularly well 
documented for the case of TMV.6-8 For example, Oster6 
noted that whereas an aqueous solution of TMV freshly 
purified by ultracentrifugation will separate into isotropic 
and anisotropic phases if the virus concentration exceeds 
2.3%, salts at  ionic strengths above 0.005 M cause the 
system to be fully isotropic. Onsagerl already indicated 
that the effect of the electrostatic repulsion will be 
equivalent to an increase of the effective diameter. This 
effective diameter will be dependent on the thickness of 

+ A  preliminary version of this paper was reported at the Faraday 
Discussion on Polymer Liquid Crystals, Cambridge, April 1985. 
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the electric double layer and thus on the ionic strength. 
However, the electrostatic repulsion also depends on ori- 
entation and thus the effect of the electrostatic repulsion 
will be different in the isotropic phase from that in the 
anisotropic phase. Actually the electrostatic interaction 
favors perpendicular orientation of the particles. 

In this paper we take this twisting effect quantitatively 
into account in the calculation of the isotropic-liquid 
crystal phase equilibria in solutions of rodlike polyelec- 
trolytes. From our calculations it follows that the im- 
portance of the twisting effect is determined by the ratio 
of the thickness of the electric double layer and the ef- 
fective diameter of the rods as defined by Onsager. 

This paper is organized as follows. In section I1 we 
present the relevant theoretical framework that is applied 
in section I11 to calculate numerically the concentrations 
of the coexisting phases. To analyze the results we present 
in section IV an analytic perturbation treatment of the 
influence of the twisting effect, and in section V we apply 
our calculations to some representative systems. The 
conclusions that can be drawn from this work are collected 
in section VI. 

11. Formalism 

We consider a solution of N rodlike polyelectrolytes of 
length L and diameter D interacting not only electro- 
statically but also via the hard-core repulsion. There is 
an excess of 1-1 electrolyte present. The electrostatic 
interaction between two rods can be written approximately 
in the f ~ r m ’ J ~ - ’ ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- = -  w Ae-uX 
k,T sin 4 

0 1986 American Chemical Society 
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Here, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx is the shortest distance between the center lines 
of the polyion cylinders, 6’ is the Debye screening length, 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 is the angle between the rods. The sin-’ 4 term 
signifies that the rods want to twist toward mutually 
perpendicular directions, a fact that we shall take into 
account explicitly. We defer discussion of the propor- 
tionality constant A and its dependence on the polyelec- 
trolyte parameters to section V because the precise nature 
of A need not be specified in a calculation of polyelectrolyte 
nematics. The connection between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw and the second viral 
coefficient is also outlined in section V. Here we simply 
give the expression for the Helmholtz free energy, which 
is identical with Onsager’s except for the fact that we have 
A‘ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Ae-& instead of his A. 
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where u = (In (47rf)),, 

(11) 

and 

df) = @/“)((-sin $J In (sin 4)) ) a  - [In 2 - 7 M f )  (12) 

Furthermore, the parameter h is the ratio of the Debye 
length K - ~  and the effective diameter Deff 

PO = ( 4 / ~ )  ( (sin 4)  ) a  

- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAF F(so1ution) - F(so1vent) -- - 
NkBT NkBT 

y - In (sin 4)) (sin 4) f (Q) f (Q’ )  dQ dQ’ (2) 

Here y = 0.577215665 ... denotes Euler’s constant, po(T,po) 
represents the standard chemical potential of the particles 
at  the temperature T in  a solvent with chemical potential 
bo, and c’ = N/ V is the number density. 

In the isotropic state fi(Q) = 1 / ( 4 ~ )  and taking into 
account that 

((sin I $ ) ) ~  = J]fi(Q)fi(Q’) sin 4 dQ dQ’ = 7r/4 (3) 

I 

((-sin 4 In (sin 4))) i  = 

we obtain 

1 + In c ’ +  

%Z2D 1 + 

@i bo 

NkBT kBT 
-- - - -  

) (5) 
lnA’+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy + In 2 -  yz 

KD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 ( 

The second term in the parentheses on the right-hand side 
of eq 5 represents the effect of the electrostatic interaction 
on the free energy. We see that this contribution can be 
interpreted as an increase of the diameter of the rods in 
the isotropic phase by a factor 

lnA’+ y + In 2 -  Yz 
KD (6) 6 =  

Introducing the effective diameter 

Deff = D( l  + 6) (7) 

and the effective excluded volume 

(8) 4 

we can write the free energy in the isotropic phase as 

beff = ZLZDeff 

In the anisotropic phase we have 

In the isotropic state p = 1 and 71 = 0 and thus we recover 
from eq 10 the free energy in the isotropic state (9) if we 
put f = 1/(4a). Note that whereas in the isotropic phase 
the effect of the electrostatic interaction can be taken into 
account by an increase of the effective diameter, leading 
to an effective excluded volume, in the anisotropic phase 
the angular dependence of the electrostatic interaction 
explicitly plays a role in the form of the term beffc %?lo. 
This contribution we shall refer to as the twisting effect. 
Evidently the parameter h is a very important one. Its 
behavior for some representative systems will be consid- 
ered in section V. 

The orientation distribution function f ( Q )  is determined 
by minimizing the free energy with respect to variations 
in this distribution. This leads to the integral equation 

In (47rf(~)) = c - - ~ c ’  J[I + h(-ln (sin 4) - [In 2 - 

1/21)l(sin b)f(Q’)  dQ’ (14) 

where C is a constant that is determined by applying the 
normalization condition 

8 
7T 

Once the minimization problem has been solved, the 
concentrations of the coexisting phases are found by ap- 
plying the coexistence conditions, i.e., the equality of the 
osmotic pressure II’ and the chemical potential p’ in the 
two coexisting phases 

po + kBT(ln c’ +- u + 2beffc’[p + h ~ ] )  (17) 

At this point it is convenient to introduce dimensionless 
variables. In the following c denotes the dimensionless 
concentration be% ’, II the dimensionless osmotic pressure 
(beffII’/kBT), and p the dimensionless chemical potential 
((p’ - po)/kBT + In beff?. 

111. Calculations of the Coexisting 
Concentrations 

In order to calculate the coexisting concentrations we 
expand sin $J and -sin 4 In (sin 4) in terms of Legendre 
polynomials P,,(cos $1. 

(18) 

(19) 

Substitution of the above expansions in the integral 
equation (14) yields, using the addition theorem for 
spherical harmonics, 

(20) 

m 

sin $J = CcZnP2,,(cos 4) 

-sin 4 In (sin 4) = CcZf l ’PZf l (co~ 4) 

f l=O 

m 

n=O 

m 

f(n) = exp[ C aZnf‘2n(COS @I/z 
n=O 
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Table I 
Coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcZn and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcg' Appearing in the Expansion of sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a5 and -sin a5 In (sin a5) in Terms of Leaendre Polynomials zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n C2n CP"' 

co[ln 2 - 1/21 
c2[ln 2 - 5/41 
cJn 2 - 1/12] 
cJn 2 + 3/81 
c,[ln 2 + 27/40] 
cIo[ln 2 + 5299/5880] 
cIz[ln 2 + 30041/27720] 
c,,[ln 2 + 1961633/1585584] 

where 2 is the normalization constant. The form of f (Q)  
is determined by the coefficients aZn that follow from the 
consistency equations 

8 
aZn = - - ~ ( f ' 2 n ) [ ~ Z n  + h(cZn' - [In 2 - ' /Z ]~z, ) l  (21) 

7r 

The quantities 

(f '2n) = $PZ~(COS 0) f ( f i )  dQ (22) 

are zero in the isotropic phase and positive in the aniso- 
tropic phase. 

The consistency equations (21) have a trivial solution 
aZn = 0, (P2,)  = 0, n = 1, 2, ... for all concentrations. 
However, for sufficiently high concentrations c the con- 
sistency equations (21) also have a nontrivial solution aZn 
> 0, (Pzn) > 0, n = 1,2, .... This solution corresponds to 
the anisotropic phase, where the orientation distribution 
function is peaked around 0 = 0 and 0 = T .  In order to 
find the coexisting concentrations ci and c, in the isotropic 
and anisotropic phases, one has to solve the coexistence 
equations 

ni = n, (23) 

CLi = Fa (24) 

In terms of the dimensionless quantities introduced at the 
end of section 11, the coexistence equations can be written 
as 

C i ( 1  + cil = c a { l  + ca[Pa + hqall (25) 

In ci + 2ci = In ca + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu + 2ca[pa + hq,] (26) 

We note again that the only parameter causing the twisting 
effect is h (and not other combinations of D, K ,  and A f ) .  
The accuracy with which the phase transition can be lo- 
cated is essentially determined by the number of terms 
used in the expansions (18) and (19), because this deter- 
mines how accurate the functions sin 4 and -sin 4 In (sin 
4) are represented. For the case h = 0, i.e., the hard-rod 
model, effectively full covergence was reached for n = 7.20 
We investigated whether for the present case this number 
of terms is also sufficient. 

The coefficients cZn and cznf, which can be calculated by 
standard techniques, are collected in Table I. The results 
of the calculations with respectively 1, 2, ..., 7 terms in the 
expansions (18) and (19) are presented in table I1 for h = 
0.25, which is a reasonable value for h as will become 
apparent in section V. Although the covergence is less fast 
than in the case for hard rods without electrostatic in- 
teraction, taking into account terms up to P14 leads to 
satisfactory convergence. 

In Table I11 we present the results for the phase tran- 
sition for values of h up to 0.50. The values for h = 0 have 
been added for the sake of reference. All calculations were 
done with terms up to PI4 in the expansions for sin 4 and 
-sin 4 In (sin 4). It is clear that the twisting term, which 
hinders th  phase transition, leads to higher coexisting 

Table I1 
Convergence of the Concentrations, Order Parameter, and 

Orientation-Dependent Free Energy Terms of the 
Coexisting Isotropic and Anisotropic Phase, Using the 
Expansion of sin 6 in Legendre Polynomials P,,(cos 9) 

Truncated at Different Values of n , for h = 0.25 

n ci ca (P,) Q P V n P  

1 4.348 4.675 0.543 0.674 0.816 0.138 23.26 10.17 
2 4.056 4.791 0.748 1.384 0.622 0.251 20.51 9.51 
3 3.986 4.951 0.813 1.727 0.537 0.286 19.87 9.35 
4 3.966 5.052 0.838 1.894 0.499 0.298 19.69 9.31 
5 3.960 5.101 0.848 1.965 0.483 0.302 19.64 9.30 
6 3.958 5.120 0.851 1.992 0.478 0.304 19.63 9.29 
7 3.958 5.126 0.853 2.000 0.476 0.304 19.63 9.29 

Table I11 
Composition, Concentration, Order Parameters, and 
Orientation-Dependent Free Energy Terms in the 

Coexisting Isotropic and Anisotropic Phase for h Values up 
to 0.50 

h C: c. (P,) u D n 

0.00 3.290 
0.05 3.410 
0.10 3.536 
0.15 3.669 
0.20 3.810 
0.25 3.958 
0.30 4.114 
0.35 4.275 
0.40 4.441 
0.45 4.610 
0.50 4.782 

4.191 
4.340 
4.506 
4.690 
4.895 
5.126 
5.385 
5.676 
5.996 
6.335 
6.682 

, 

0.792 
0.800 
0.811 
0.823 
0.837 
0.853 
0.870 
0.889 
0.908 
0.924 
0.938 

1.602 
1.650 
1.711 
1.787 
1.882 
2.000 
2.146 
2.321 
2.522 
2.738 
2.953 

0.565 
0.554 
0.540 
0.522 
0.50 1 
0.476 
0.446 
0.412 
0.376 
0.340 
0.307 

0.278 
0.283 
0.289 
0.296 
0.304 
0.312 
0.318 
0.323 
0.325 
0.325 

Table IV 
Increase of the Coexisting Concentrations c i  and c ,  as a 

Function of the Parameter h 

0.10 0.245 
0.15 0.379 
0.20 0.520 
0.25 0.668 
0.30 0.823 
0.35 0.984 
0.40 1.150 
0.45 1.320 
0.50 1.492 

0.315 
0.499 
0.704 
0.935 
1.194 
1.485 
1.805 
2.144 
2.491 

2.45 3.15 
2.52 3.32 
2.60 3.52 
2.67 3.74 
2.74 3.98 
2.81 4.24 
2.88 4.51 
2.93 4.17 
2.98 4.98 

concentrations (when scaled with respect to beff). 
In Table IV we present the increase of ci and c, with 

respect to the values ci,o and c,,~, the values of the coexisting 
concentration for h = 0. We see that the increase is ap- 
proximately proportional to h. Using an analytic theory 
we shall investigate this in the next section, where we 
devise a perturbation theory for the proportionality con- 
stan ts. 

IV. Analytical Theory 

The best way to proceed analytically is to choose a trial 
function for f that is physically reasonable yet simple 
enough. We shall use Onsager's original choice,' which is 
still one of the best, although others have also proved 
~onven ien t .~ ' -~~  This normalized function f o  depends on 
the adjustable parameter cy. 

Note that this function can easily accommodate isotropic, 
weakly anisotropic, or fully anisotropic states (see in this 
regard also note 12 of ref 20). In view of the numerical 
results of the previous section, we anticipate that for the 
nematic phase the a values ought to be quite high. In that 
case we already know the following asymptotic expansions 
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for the anisotropic entropic terms calculated with the use 
of eq 27:l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- In a - 1 (28) 

(29) 

The term q containing the awkward logarithmic function 
can likewise be expanded for large a by a suitable extension 
of the calculations in he appendix to ref 1. Onsager was 
able to show that for any function H depending on sin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
only and for which H(0) = 0, one has 

( (H(sin x ) )  ), = 2e-zU cosh (2a cos ‘ /2x)  dH(sin x )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL O  
(30) 

For He = -(4/?r)(sin x )  In (sin x )  eq 30 yields 

( ( H e )  )a  N -~(a)  - (8/?r)e-z“I(2a) (31) 

where the integral I is defined by 

Z(y) 1”cosh (y cos ‘/x)(cos x )  In (sin x )  dx (32) 

In order to perform the asymptotic expansion of Z(y) for 
large y, one starts with the substitution cos l/zx = 1 - z 
and expands the slowly varying functions occurring in the 
integrand in powers of z. In the explicit calculation of the 
resulting integrals one notes that the presence of a loga- 
rithmic singularity is no problem at all because of a 
well-established theorem.25 Furthermore, several prop- 
erties of the Psi and Gamma functionsz6 greatly simplify 
the analysis. The final result is 

0 

105 

128y2 1024y3 2Y 16y2 256y3 

Accordingly, eq 12,29, 31, and 32 yield the twisting term 
q valid for large a 

105 
512~’  8192a3 2a 32az 1024a3 

We have also calculated q(a) numerically by expanding He 
in terms of Legendre polynomials just as in the previous 
section. As can be seen from Table V, the difference be- 
tween eq 34 and qnum(a) from numerical analysis is always 
less than for 10 < a < 40. This incidentally proves 
the adequacy of our earlier expansions of the logarithm. 
For a > 40, it is clear that eq 34 increases considerably in 
accuracy whereas the expansion of He up to only P14 starts 
becoming dubious as is evidenced by the enhanced di- 
vergence between q(a) and qn,(a). We have remarked 
beforez3 on the possibility of an increasingly poor con- 
vergence of Legendre polynomial expansions as a attains 
higher and higher values. 

Obviously the presence of the In a term in eq 34 pre- 
cludes a series solution of the coexistence equations like 
the one discussed in ref 1. Bearing in mind that in practice 
h is relatively small (see next section), we can profitably 

Table V 
Comparison of the Approximate Numerical and Analytical 

Calculation of p ( a )  and ?(a) 

a numerical analytical numerical analytical 

5 0.82873 0.82861 0.12575 0.12613 
10 0.64823 0.64823 0.24158 0.24158 
15 0.54682 0.54682 0.29159 0.29159 
20 0.48123 0.48123 0.31573 0.31573 
25 0.43457 0.43457 0.32813 0.32813 
30 0.39925 0.39925 0.33452 0.33452 
35 0.37131 0.37130 0.33750 0.33750 
40 0.34852 0.34851 0.33850 0.33848 
45 0.32948 0.32944 0.33826 0.33822 
50 0.31324 0.31319 0.33726 0.33717 
70 0.26640 0.26613 0.32989 0.32936 

100 0.22456 0.22357 0.31729 0.31535 
150 0.18608 0.18312 0.30049 0.29465 
200 0.16416 0.15882 0.28870 0.27809 

P 9 

try a perturbation theory. From eq 10 we know that the 
term proportional to the second virial coefficient B2” can 
be expressed as 

C B Z ”  = c ( p ( a )  + €(a ) )  (35) 

€(a)  hq(a) (36) 

If the driving or twisting term €(a)  were zero, we would 
just have the Onsager calculation for hard rods, identified 
by the parameter set ao, u(ao), p(a0) ,  q0, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,,~. When 
we hypothetically switch on the effect of electrostatic 
twisting forces (h > 0), we modify a, u, and p as well as 
ci and c,. Therefore it is natural to set up the following 
perturbation scheme: €(a)  = €(ao) + O(hz), a = a. + 6a 

O(h2), etc., where we suppose all &type terms to be pro- 
portional to h. Insertion of these expansions in eq 25 and 
26 and systematic linearization lead to two sets of 
equations-a zero-order set previously established and 
solved by Onsagerl and one of first order consisting of two 
equations that connect the perturbation terms 

with 

+ O(h2), p ( a )  = p(ao) + p ’ ( ~ ~ o ) G a  + O(hz), C, c,,O + 6c, + 

(q0-l + 2)6Ci = 
+ 2c,,Op’(a0))8a + (Ca,o-l + 2~(a0))6ca + 2ca,o€(ao) 

(37) 

ca,ozp’(ao)6a + (1 + ~ c , o P ( ~ o ) ) ~ c ~  + ca,;4ao) (38) 

(1 + 2ci,0)6ci = 

The minimization of AF, must lead to another expression 
relating to 6-type terms. We require 

(39) 

A perturbation expansion of eq 39 is straightforward d(a) 
= u’(ao) + a”(ao)6a + O(h2) and so forth. Of course, the 
zero-order equation holds automatically 

~ ’ ( a o )  + Ca,op’(ao) = 0 (40) 

Taking note of the identity AF4{(ao) = d’(ao) + ~ ~ ~ p ” ( a ~ ) ,  
with AF4,”(ao) > 0 pertaining to the hard-rod nematic, we 
obtain the following first-order expression: 

a’(@) + c,(p’(a) + €’(CY)) = 0 

A F a , o ” ( ~ o ) 8 ~  + p’(~ro)Gc, + C,,OC’(CX~) = 0 (41) 

The values of the zero-order parameters can be found in 
ref 1: c , , ~  = 4.4858, c , , ~  = 3.3399, cy = 18.584, p(ao )  = 
0.49740, and u(ao) = 1.9223. Equations 29, 35, 36, and 40 
can be employed to get the other coefficients in eq 37,38, 
and 41: AFa,,”(ao) = 0.00096042, p’(ao) = -0.011996, €(a0) 
= 0.31047h, &(ao) = 0.0040780h. We can now derive the 
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modification of the composition at the phase transition by 
solving eq 37, 38, and 41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6ci zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2.37h (4%) 

6c, = 3.01h (4%) 

These values agree rather well with the numerical results 
shown in Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIV. As an extra check we have also per- 
formed computer calculations of 6c,/h and 6ci/h, starting 
from the trial function given by eq 27. For small h these 
functions converge nicely to eq 42. Apparently, this per- 
turbation theory works better than the zero-order or 
hard-rod theory of ref 1. This phenomenon is perhaps 
ubiquitous when one recalls the huge success of pertur- 
bation theories of the liquid state.27 

As yet, we have failed to mention whether or not the 
polyelectrolyte liquid crystal is feasible. First of all, we 
can state that because the isotropic-nematic phase tran- 
sition for rods is first order, the polyelectrolyte nematic 
must also be stable, provided h is small enough. In ad- 
dition, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan explicit calculation shows this to be true for those 
values of h for which the perturbation theory to order h 
remains meaningful (h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 0.15). 

V. Relation between Electrostatic Potential and 
Polyelectrolyte Parameters 

The interaction w between two skewed, uniformly 
charged, rodlike polyions is in general a tedious problem 
to solve. Fortunately, we need solely the Mayer function 
1 - exp(-w/kBT) in our calculations instead of w. Hence, 
if we replace w by some function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu with u = w for w and 
u S 1 but w # u for w and u > 1, the errors incurred will 
be exponentially small. This is precisely the motivation 
of Brenner and Parsegian" to replace the charges on the 
cylindrical surfaces by effective line charges at  the center 
lines of the polyelectrolytes in such a way that the outer 
double layers match. Thus, a line charge of effective 
density veff (i.e., number of charges per unit length) and 
scaled potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@,(KF)  is associated with every polyelec- 
trolyte which exerts the scaled potential @(Kr) at a distance 
r from its center line 

- cf, - cf, = 2UeffQKO(KF) ( K F  k ~ / K D  -k 1) (43) 
4 

kBT 

Since only the outer parts of the double layers are im- 
portant, the line potential @l is conveniently calculated 
within the Debye-Huckel approximation. The superpo- 
sition of Debye-Huckel potentials from an infinite line 
gives rise to the zero-order modified Bessel function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKO. 
In eq 43 we have introduced the quantities elementary 
charge e, Bjerrum length Q = e2/ekBT, the permittivity of 
the solvent t, and the Debye radius K-', with K~ = 8aQn, 
and n, the 1-1 electrolyte concentration. 

The electrostatic interaction between cylinders is now 
modeled by that between two equivalent line charges 
which, again, need only be done within the Debye-Huckel 
approximation. For long cylinders this calculation has 
been carried out by several authors,"J8 although most 
straightforwardly by Fixman and Sk~ln ick '~  

- -  
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that one has to integrate the exponent in eq 44 from x = 
D to a, which yields 

B2,el(sin $) = 2L2 sin $Jm(l - e-w/kBT) dx = 

(44) 

as can be seen from eq 1. Here, x is the shortest distance 
between the lines and 4 is the angle between them. In a 
calculation of the electrostatic excluded volume we stress 

In A' + y - In (sin 4) + 2L2 sin 4 
K 

with 

A ' = Ae-KD (47) 

This expression which holds for A' 2 2 has been used in 
eq 2. We note that eq 45 is physically plausible for line 
charges: when two line charges start interacting ( x  = 
O(K-')), the interaction interface between them has an area 
of order K - ~  sin-' cp so that the number of interacting 
charges is ( K - ~ u ) ~  sin-'$. Hence, we get eq 44 because the 
interaction between two charges scales as (e2/ e0K-'kBT). 

Next, let us apply this procedure to weakly charged 
cylindrical polyelectrolytes. In the Debye-Huckel ap- 
proximation we have the well-known formulazs 

where u is the number of charges per unit length viewed 
along the cylinder, a is the cylinder radius equal to l12D, 
and K1 is the first-order modified Bessel function. The 
derivative of (PDH at the polyion surface is connected to 
the surface density a, = u/2aD via Gauss's law. Equations 
43 and 48 imply ueff = u(KaK,(Ka))-' and we immediately 
obtain A'  from eq 45 and 47 

A ~ H  = ~TU~QK-'~-'(KU) (49) 

with g(z) = z2K,2(z)e22, g(0) = 1, and g(z) - ' / p r z  (2 2 2). 
If the cylinders are relatively thick, this equation reduces 
to 

From a physical point of view, eq 50 is also sound: once 
two thick cylinders start interacting, the interaction in- 
terface has an area scaling like l2  sin-' $ N DK-' sin-' $, 
where l2  N DK-' follows from simple geometrical argu- 
ments. There are a12 sin-' $ charges on one surface, each 
of which interact with C K - ~  on the other. Accordingly, the 
total scaled electrostatic energy is (aK-2)(u1z sin-' $) (e2 /  
t0K-'kgT), Le., of the same order of magnitude as eq 50. 
Onsager originally used the Derjaguin appro~imat ion,~~ 
which gives the result in eq 50 provided one divides his 
potential by a factor of 4 (see ref 18). Onsager suggested 
that multiplying eq 50 by D / ( D  + K-') should give the 
correct result for thick double layers (eq 45) as it does, in 
fact, apart from~the numerical factor. In summary, com- 
bination of the Brenner-Par~egianl~ and Fixman-Skol- 
nicklg procedures leads to an approximate but realistic 
expression for A ' valid for all KD. 

For highly charged cylinders (uQ k 1) we know the 
Poisson-Boltzman equation is reasonably accurate.30 
Because of the nonlinear screening the counterions buffer 
the high surface charge to a large extent so that the po- 
tential is quite a deal lower than naively expected from 
eq 48. Thus, it is expedient to write 

@ p p ~  - rKO(KF) (Kr > 1/ZKD + 1) (51) 
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Table VI 
Effect of the Electrostatic Interaction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon the 

Isotropic-Anisotropic Phase Transition for a Thin Weakly 
Charged Polyelectrolyte in a 1-1 Salt SoIution 

M d t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKU A' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 h (*/4)L2Dc( (r/4)L2Dc,' 

A. a = 9.62 A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu = 0.05 electron charge/A _ .  
0.001 0.1 9.5 15 0.31 0.26 0.34 
0.004 0.2 4.1 5.5 0.39 0.68 0.91 
0.010 0.3 2.4 2.8 0.44 1.20 1.65 

0.001 0.1 38 22 0.22 0.17 0.22 
0.004 0.2 17 8.9 0.25 0.34 0.52 
0.010 0.3 9.8 5.1 0.27 0.66 0.86 

B. a = 9.62 A, Y = 0.1 electron charge/A 

because I? depends rather weakly on K ,  D, and v. In effect, 
lower and upper bounds have been devised for 1'31-34 

where E is a conveniently chosen adjustable parameter. We 
can now rewrite A' as follows: 

(53) 

Because we just need the logarithm of A$B we have found 
the analytical approximations of Philip and Wooding31 for 
the potential precise enough. 

When is the effect of twist largest? The K dependence 
of A' from eq 45,49,50, and 53 can be described in some 
region of K values by 

A' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN K - ~  (1 5 w 5 2) (54) 

Equations 6,13, and 54 can be used to show that h has a 
maximum when K - ~  = D / w ;  i.e., the Debye radius should 
be of the order of the diameter of the polyelectrolyte for 
the twisting effect to be most significant. Since eq 6 is 
valid only for A' > 2 (see eq 46) we have a practical upper 
bound on h equal to about 0.5. When we let A' be smaller 
than 2 in the integral of eq 46, we start including terms 
that cause negligible or no twist. This renders the analysis 
useless from our point of view. 

We now consider the effect of the electrostatic interac- 
tion on the isotropic-anisotropic phase transition for some 
representative cases. First we consider the case of thin 
weakly charged (vQ < 1) polyelectrolytes in 1-1 salt solu- 
tions varying in concentration from 0.001 to 0.01 M. From 
the results presented in Table VI it is clear that both the 
charge density of the polyelectrolyte and the concentration 
of the salt solution have a pronounced effect on the phase 
transition concentrations. If we had neglected the twisting 
effect, the concentrations would have been 20-40% lower. 
The results presented in Table VI may be relevant for 
weakly charged rodlike polysaccharides. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As a second case we consider thick highly charged (vQ 
> 1) polyelectrolytes. The choice of parameters in Table 
VI1 was guided by the values of TMV.@ For this case we 
have used the approximate analytic solution to the Pois- 
son-Boltzmann equation of Philip and Wooding.31 Note 
that an increase of the charge density by a factor 2 changes 
the electrostatic interaction very little (owing to the non- 
linear screening effect of the counterions). Increase of the 
salt concentration, on the other hand, has as in the case 
of thin weakly charged polyelectrolytes a marked effect 
on the phase transition concentrations. 

After we submitted this work, a paper35 on nematic 
polymers appeared containing a short section describing 
numerical results on the isotropic-nematic transition for 

Table VI1 
Effect of the Electrostatic Interaction on the 

Isotropic-Anisotropic Phase Transition for a Thick Highly 
Charged Polyelectrolyte in a 1-1 Salt Solution 

MBdt Ka r A' 6 h (r/4)L2Dc: (*/4)L2DC,' 

0.001 1.0 7.31 153 2.90 0.13 0.93 1.18 
0.004 2.0 19.7 75.2 1.27 0.11 1.55 1.97 
0.010 3.0 50.6 44.8 0.76 0.09 2.02 2.57 

A. a = 96.2 A, u = 0.5 electron charge/A 

B. a = 96.2 A, v = 1 electron charge/A 
0.001 1.0 9.04 234 3.11 0.12 0.88 1.12 
0.004 2.0 28.4 145 1.44 0.10 1.47 1.88 
0.010 3.0 76.6 103 0.90 0.09 1.85 2.37 

charged rods (a preprint had been sent to us but without 
this specific section). Lee and Meyer use Onsager's ex- 
pression for the potential, which is a factor of 4 too large 
and valid only within the limit of the polyion diameter 
being much greater than the Debye radius. Furthermore, 
they use the surface potential as an independent variable, 
which, incidentally, is very dependent on the ionic strength. 
Polyelectrolyte chemists regard the linear charge density 
as a fundamental quantity virtually independent of ionic 
strength. Parenthetically, we note that even for spherical 
colloids the status of surface and { potentials is very un- 
clear at present. These considerations aside, if we tem- 
porarily replace our A'by Onsager's A in eq 6, calculate 
h from eq 13, and obtain ci, c,, and order parameter S from 
Table I11 by interpolation, we find complete agreement 
with ref 35. 

A referee has queried our insistent use of the scaled 
parameters ci, c,, and h. Equations 14, 25, and 26 show 
that there is one and only one parameter h that causes 
deviations from that of the purely hard-rod nematic. Thus, 
all possible numerical results are compiled in one table, 
namely Table 111, instead of a whole host of tables. Two 
very different polyelectrolytes could have the same twisting 
parameter h so that the deviations of their nematic be- 
havior from that of the hard-rod fluid can be identically 
described provided we insist on using our scaled densities 
ci and c,. In Tables VI and VI1 we have outlined typical 
values of the concentrations scaled in the usual way. 
Because the effects of twist and increase in effective di- 
ameter are now intertwined, these figures are not very 
enlightening. Comparison of the two tables tells us 
nothing. Scaling the concentrations with respect to the 
effective diameter would point out the similarity imme- 
diately. 

VI. Concluding Remarks 

In this paper we have shown that within the framework 
of the Onsager treatment the effect of electrostatic in- 
teractions between rodlike polyelectrolytes on the iso- 
tropic-anisotropic phase transition can be characterized 
by two parameters. One of these parameters characterizes 
the increase of the effective diameter whereas the second 
parameter characterizes the twisting effect caused by the 
electrostatic interactions. In previous treatments the latter 
contribution had not been taken into account. By both 
numerical and analytical calculations we have shown that 
the twisting effect is important. 

It is well to remember that our quantitative predictions 
are subject to several limitations. Even a slight flexibility 
may well increase the concentration at the t r a n s i t i ~ n . ~ ~ , ~ ~  
Polydispersity could also muddle the interpretation of 
experimental r e s ~ l t s . ~ ~ , ~ ~  One of us (Th.0.) will deal with 
these problems in a review to appear shortly. Furthermore, 
because the effect of twist is largest when the Debye radius 
is of the order of the polyion diameter, discrete charge 
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effects may possibly not be entirely neglected. Nonethe- 
less, we insist that deviations from the usual lyotropic 
polymer behavior due to the effect of twist should show 
UP. 

As a final comment we remark that there is an urgent 
need for quantitative experimental data on the isotropic- 
anisotropic phase transition concentrations as function of 
charge density and salt strengths. So far nothing of this 
kind is available in the literature. 
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ABSTRACT: Dielectric constant and loss have been measured over the frequency range 1 Hz to 100 kHz 
over a wide temperature range for a series of poly(ethy1ene terephthalate) (PET) specimens spanning the 
Crystallinity range from essentially amorphous to 62%. The higher crystallinities were achieved via crystallization 
under pressure. Previous work zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas indicated that the p subglass process does not extrapolate to zero relaxation 
strength at  100% crystallinity. Taking advantage of higher crystallinities (and the knowledge that the crystalline 
density on which some previous crystallinity scales have been based was not completely reliable) we demonstrate 
here that both the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaB glass-rubber relaxation and the p process extrapolate to zero strength a t  a density 
corresponding to 100% crystallinity. This indicates amorphous-phase origin for both processes. The effect 
of crystallinity on the relaxation parameters for these amorphous-phase processes is discussed. Interpretation 
of the relaxation strengths in terms of the Onsager-Kirkwood dipolar correlation factor shows that immobilization 
of amorphous chain segments by connections to the crystals can be detected not only by perturbation of relaxation 
times but by availability of configurations as well. Specific volumes of the specimens were measured as a 
function of temperature, and the correlation between the dielectric relaxation results and thermal expansion 
changes through the relaxation regions is discussed. 

Introduction 

Poly(ethy1ene terephthalate) (PET) has served as an 
important model for studying relaxation processes in 
semicrystalline polymers.’” The circumstance that it can 
be quenched into the completely amorphous state as well 
as isothermally crystallized has allowed direct measure- 
ment of the effect of crystallinity presence on relaxations. 
PET shows two relaxation processes, one designated aa and 
the other zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. The former is the glass transition (disap- 
pearance of long-range segmental motion with lowering 
temperature) in the completely amorphous material or in 
the amorphous fraction in semicrystalline specimens. The 
cia relaxation is quite sensitive to the presence of the 
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crystalline fraction in that it is dramatically broader in the 
frequency domain and shifted to higher temperature iso- 
chronally in crystalline samples. The @ relaxation, oc- 
curring at lower temperatures isochronally than the aa 
process, has been thought to take place largely in the 
amorphous phase also and therefore is a “subglass” process. 
The @ relaxation is insensitive to morphology, having 
virtually the same characteristics (other than strength or 
intensity) in completely amorphous materials as in sem- 
icrystalline ones. This is consonant with the molecular 
motions associated with it being of shorter range character 
than those for the CY, process. However, the assignment 
of the @ relaxation as a pure l y  amorphous one has been 
compromised by extrapolation of relaxation strength vs. 
density to 100% crystallinity. On extrapolation of their 
@-process strength data Ishida et a1.2 concluded that the 
process did not disappear at  100% Crystallinity. They zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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