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Effect of Endothelin 1 Genotype on Blood Pressure Is
Dependent on Physical Activity or Fitness Levels

Tuomo Rankinen, Timothy Church, Treva Rice, Nathan Markward, Arthur S. Leon, Dabeeru C. Rao,
James S. Skinner, Steven N. Blair, Claude Bouchard

Abstract—Contributions of the DNA sequence variation at the endothelin 1 locus to the risk of hypertension and to
endurance training–induced changes in blood pressure were investigated in the Aerobics Center Longitudinal Study and
the Health, Risk Factors, Exercise Training and Genetics Family Study cohorts. We identified 586 normotensive control
subjects and 607 incident hypertensive case subjects from the Aerobics Center Longitudinal Study cohort (all whites)
who were normotensive and healthy at their first clinic visit. The case subjects were diagnosed with hypertension during
an average follow-up of 9.5 years, whereas the control subjects remained normotensive. The allele and genotype
frequencies of 5 endothelin 1 haplotype tagging single nucleotide polymorphisms did not differ significantly between
the case and control subjects. However, we observed a significant (P�0.0025) interaction between the endothelin 1
rs5370 (G/T; Lys198Asn) genotype and cardiorespiratory fitness level on the risk of hypertension: among low-fit
subjects, the rs5370 minor allele (T; 198Asn) was associated with higher risk of hypertension (odds ratio: 1.95; 95% CI:
1.36 to 2.81; P�0.0003), whereas the risk did not differ among genotypes in high-fit subjects. In the white Health, Risk
Factors, Exercise Training and Genetics subjects (N�480), the rs5370 T allele was associated with blunted systolic
blood pressure (P�0.0046) and pulse pressure (P�0.0016) responses to a 20-week endurance training program. The
Lys198Asn variant of the endothelin 1 locus is associated with blood pressure phenotypes in whites. However, the
expression of the genotype effect is modulated by physical activity or cardiorespiratory fitness level. Our study provides
an illustrative example of how physical activity and fitness level modifies the associations between a candidate gene and
outcome phenotype. (Hypertension. 2007;50:1120-1125.)

Key Words: genotype � exercise training � cardiorespiratory fitness � gene-environment interaction
� HERITAGE Family Study � HYPGENE Study

Regular physical activity and a moderate-to-good level of
cardiorespiratory fitness are key components in the

prevention of hypertension and in the reduction of the
comorbidities associated with hypertension. Although it is
generally accepted that regular physical activity can lower
blood pressure, there is great heterogeneity in terms of the
magnitude of reduction across controlled exercise training
studies.1–3 In addition, there is considerable interindividual
variation in the blood pressure responsiveness to endurance
training within studies, and data from twin and family studies
have shown that there is a significant genetic component
affecting the variability in training responses.4,5

Endothelin 1 (EDN1) is a potent vasoconstrictor and,
consequently, a key regulator of blood pressure. The endo-
thelin family consists of 3 polypeptides encoded by separate
genes located on chromosomes 6p24.1 (EDN1), 1p34 (endo-

thelin 2), and 20q13.2 to 13.3 (endothelin 3). Although
structurally and functionally similar, the expression patterns
of the 3 endothelins vary considerably. EDN1 is expressed in
several tissues, including endothelial cells and cardiomyo-
cytes, whereas the expression of endothelin 2 and endothelin
3 seems to be focused on the gastrointestinal tract and on
neuronal cells, respectively.6,7 Only EDN1 is expressed
constitutively on vascular endothelium and thereby affects
vasomotor tone.8 DNA sequence variations in the EDN1 gene
locus have been reported to be associated with blood pressure
levels and hypertension in some populations.9–11 An interest-
ing finding of previous studies exploring the relationships
among hemodynamic traits and the EDN1 genotype is the
seemingly more pronounced association in overweight or
obese individuals.9–12

Increased shear stress because of enhanced blood flow has
been proposed as a major mechanism for the blood pressure–
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lowering effect of exercise training.13–15 Although high shear
stress has been shown to inhibit EDN1 expression in endo-
thelial cells,6 there are few data available on the interactions
among the EDN1 locus DNA sequence variation, exercise
training, and cardiorespiratory fitness on blood pressure
phenotypes. The purpose of the present study was to inves-
tigate these interactions in 2 large cohorts: endurance
training-induced changes in blood pressure were targeted in
the HEalth, RIsk factors, exercise Training And GEnetics
(HERITAGE) Family Study and the risk of hypertension was
focused on in the Genetics, Fitness, Obesity and Risk of
Hypertension (HYPGENE) Study.

Methods
Subjects
The HERITAGE Family Study cohort consists of 493 white
subjects (240 males and 253 females) from 99 nuclear families
and 270 black subjects (90 males and 180 females) from 114
family units. The study design and inclusion criteria have been
described previously.16 To be eligible, the individuals were
required to be sedentary but in good health, ie, free of diabetes,
cardiovascular diseases, or other chronic diseases that would
prevent their participation in a 20-week endurance exercise
training program. The study protocol had been approved by each
of the institutional review boards of the HERITAGE Family
Study research consortium. Written informed consent was ob-
tained from each participant.

The HYPGENE cohort is based on the Aerobics Center Longitu-
dinal Study database.17 All of the HYPGENE subjects included in
this report are whites. All of the eligible Aerobics Center Longitu-
dinal Study subjects for the HYPGENE Study were healthy with
resting blood pressure �140/90 mm Hg at their first clinic visit and
were required to have �2 clinic visits with a minimum of 1 year
apart. Case subjects developed hypertension during the follow-up,
defined as physician-diagnosed hypertension with medication to
lower blood pressure, or resting systolic blood pressure (SBP) of
�140 mm Hg, and/or resting diastolic blood pressure (DBP) of
�90 mm Hg on a follow-up clinic visit. Control subjects remained
normotensive and otherwise healthy throughout the follow-up pe-
riod. The HYPGENE Study protocol has been approved annually by
the institutional review boards of the Pennington Biomedical Re-
search Center and the Cooper Institute. Written informed consent
was obtained from each participant.

Exercise Training Program
The exercise intensity of the 20-week training program of the
HERITAGE Family Study was standardized for each participant
based on the heart rate (HR)-oxygen consumption (VO) relationship
measured at baseline.18 During the first 2 weeks, the subjects trained
at an HR corresponding with 55% of the baseline maximal oxygen
consumption2 for 30 minutes per session. Duration and intensity of
the training sessions were gradually increased to 50 minutes and the
HR associated with 75% of the baseline maximal oxygen consump-
tion, respectively, which were then sustained for the last 6 weeks.
Training frequency was 3 times per week, and all of the training was
performed on cycle ergometers in the laboratory. Trained exercise
specialists supervised all of the exercise sessions.

Phenotype Measurements
In the HERITAGE Family Study, both resting and exercise blood
pressures were measured using Colin STBP-780 automated units,
and the recordings were confirmed by technicians wearing head-
phones.19 Submaximal exercise blood pressure (SBP50 and DBP50)
was measured during 2 cycle ergometer tests, both before and after
training in a relative steady state after 8 to 12 minutes at a constant
power output (50 W). Pulse pressure (PP; resting PP and submaximal
PP [PP50]) was calculated as a difference between SBP and DBP

(SBP�DBP). HR (resting HR and submaximal HR [HR50]) was
recorded by electrocardiography.

In the HYPGENE Study, cardiorespiratory fitness was assessed by
a maximal exercise test following a modified Balke protocol.17,20

Time-to-completion on the treadmill was used to estimate maximal
metabolic equivalents (METs) using the following formula:
METs�[1.44�(minutes on treadmill)�14.99]/3.5.21 Resting blood
pressure was auscultated as the first and fifth Korotkoff sounds
according to a standard sphygmomanometer protocol.22 Stature and
body mass were measured using standardized protocols, and body
mass index (BMI) was calculated by dividing body mass (kilograms)
by stature squared (meters squared) in both studies.

Genotyping
The EDN1 single nucleotide polymorphisms (SNPs) were selected
from the National Institute of Environmental Health Sciences SNP
resequencing database using the SNP spectral decomposition meth-
od.23 Five haplotype tagging SNPs (rs2070699, rs5369 [Glu106Glu],
rs5370 [Lys198Asn], rs4714383, and rs9296345) were selected for
genotyping. These tagging SNPs explained �86% of the total DNA
sequence variation in the National Institute of Environmental Health
Sciences resequencing data set.

Genotyping of the EDN1 SNPs was done by the primer extension
method with fluorescence polarization detection (PerkinElmer Inc).
Details for PCR conditions and primer sequences are available on
request. Haplotypes were constructed with Merlin software in the
HERITAGE Family Study24 and with Phase software (version 2.1) in
the HYPGENE Study.25,26

Statistical Analyses
In the HERITAGE Family Study, baseline blood pressure pheno-
types were adjusted for age, sex, and BMI, and blood pressure
training responses were adjusted for age, sex, baseline BMI, and
baseline value of the BP phenotype. The associations between EDN1
markers and blood pressure phenotypes were analyzed using vari-
ance components and the likelihood ratio test–based total association
model of the QTDT software package.27 The model uses a variance-
components framework to combine phenotypic means and the
additive genetic, residual genetic, and residual environmental vari-
ances from a variance-covariance matrix into a single likelihood
model.27 The identity-by-descent allele sharing estimates for the
QTDT analyses were generated with Merlin software.24

In the HYPGENE Study, logistic regression modeling was used to
test the contribution of the EDN1 SNPs, as well as the SNP-by-
fitness and SNP-by-BMI interactions to the risk of hypertension. The
common allele homozygotes were used as the reference group for
each SNP. All of the models included baseline age, sex, cardiore-
spiratory fitness, BMI, and follow-up time as covariates. In the
SNP-by-fitness and SNP-by-BMI interaction models, subjects were
categorized into low- and high-fitness groups based on sex-specific
medians of maximal METs (12.5 METs in men and 10.25 METs in
women) and low- and high-BMI groups based on sex-specific
medians of BMI (24.9 kg/m2 in men and 21.4 kg/m2 in women).

Because multiple SNPs were used for the association studies, we
applied a multiple testing correction proposed by Nyholt.23 Briefly,
the method uses spectral decomposition of matrices of pairwise
linkage disequilibriums (r) to estimate variance of eigenvalues. The
effective number of independent SNPs can be calculated based on
the ratio of observed eigenvalue variance and its maximum. The
effective number of SNPs can then be used to adjust the standard �
level (eg, 5%). In our study, the corrected threshold for statistical
significance was set to P�0.0127 for analyses with individual SNPs.

Results
Basic characteristics of the HERITAGE Family Study and
the HYPGENE Study subjects are presented in Tables 1 and
2, respectively. The allele and genotype frequencies and the
pairwise linkage disequilibria among the SNPs are summa-
rized in Table S1 (available at http://hyper.ahajournals.org).
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All 5 of the SNPs were in Hardy-Weinberg equilibrium both
in HERITAGE blacks and whites and in HYPGENE case and
control subjects (all whites).

HERITAGE Family Study
The haplotype construction revealed 14 and 15 haplotypes in
whites and blacks, respectively. In both races, 11 haplotypes
had frequency �1% (please see Table S2 for details).
Sedentary-state blood pressure phenotypes were not associ-
ated with the EDN1 haplotypes (data not shown). However,
exercise training–induced changes in SBP50 and PP50 in
whites and in HR50 in blacks showed significant global
associations with the haplotype (Table 3). In allele-specific
analyses, haplotypes 1, 3, 10, and 11 were associated with
PP50 and SBP50 training responses. Haplotype 1 was asso-
ciated with the greatest reductions in PP50 and SBP50,
whereas carriers of haplotypes 3, 10, and 11 showed blunted
training responses in whites. In single SNP analyses, markers
rs5370 and rs4714383 were significantly associated with
SBP50 and PP50 training responses (Figure 1 and Table S3).
A closer inspection of the haplotypes revealed that these 2
markers characterized the alleles that were associated with
SBP50 and PP50 training responses. The majority of the T
alleles of the rs5370 locus were contained in haplotypes 10
and 11, whereas haplotypes 1 and 3 covered most of the G
alleles. The only difference between haplotypes 1 and 3 was
the allele present at the rs4714383 locus. Thus, the rs4714383

T allele defined a phenotypically distinct (low SBP50 and
PP50 responses) subgroup among the rs5370 G/G homozy-
gotes (otherwise high responders; Figure 1). The haplotype of
rs5370 and rs4714383 explained 2.6% and 3.5% of the
variance in SBP50 and PP50 training responses, respectively,
whereas contribution of the individual SNPs ranged from
0.8% to 1.7%.

HYPGENE Study
There were no differences in the EDN1 SNP allele and
genotype frequencies between the case and control subjects.
However, 2 SNPs (rs2070699 and rs5370) showed significant
interactions with cardiorespiratory fitness on the risk of
hypertension (Table 4). Both SNPs were associated with the
hypertension risk only in subjects with a low cardiorespira-
tory fitness level (maximal METs below sex-specific me-
dian). The G/T heterozygotes and the T allele homozygotes in
the rs5370 locus showed 1.93 (95% CI: 1.32 to 2.81) and 2.17
(95% CI: 0.86 to 5.47) times greater risk of hypertension than
the G/G homozygotes, whereas the minor allele (A) of the
rs2070699 locus was associated with a lower hypertension
risk (Figure 2). Further analyses of haplotypes constructed
from rs5370 and rs2070699 revealed that the higher hyper-
tension risk associated with the rs5370 T allele was particu-
larly marked among the C/C homozygotes of the rs2070699
(Table S4). The haplotype analyses also revealed that the
lower risk among the rs2070699 A allele carriers seen in the
single SNP analysis reflects, in large part, the fact that all of
the T/T homozygotes and a large portion of the G/T heterozy-
gotes of the rs5370 were among the rs2070699 reference
group (C/C homozygotes). All of the associations were
independent of baseline BMI, and there was no evidence of
SNP-by-BMI interactions on the risk of hypertension
(Table 4).

Discussion
The novel finding of the present study is that the associations
between DNA sequence variation in the EDN1 locus and
blood pressure phenotypes are modulated by physical activity
or cardiorespiratory fitness levels. Both in the HERITAGE
Family Study and in the HYPGENE Study, the minor allele

Table 1. Basic Characteristics of the HERITAGE Family Study Subjects

Phenotype

Blacks Whites

Men Women Men Women

Age, y 34.6 (12.4) 33.2 (11.4) 36.6 (15.0) 35.0 (14.1)

BMI, kg/m2 27.3 (5.2) 28.2 (6.3) 26.7 (4.9) 25.0 (4.9)

Resting SBP, mm Hg 124.5 (10.1) 122.3 (13.1) 120.4 (10.8) 112.7 (9.9)

Resting DBP, mm Hg 72.9 (7.4) 72.6 (8.9) 68.5 (9.1) 63.9 (7.0)

Resting PP, mm Hg 51.6 (8.0) 49.7 (8.6) 51.9 (8.9) 48.8 (7.4)

Resting HR, bpm 62.8 (8.7) 69.5 (7.9) 62.1 (8.3) 66.9 (8.7)

SBP at 50 W, mm Hg 154.6 (18.3) 155.3 (21.8) 146.4 (18.2) 142.9 (21.1)

DBP at 50 W, mm Hg 80.1 (10.5) 79.0 (11.4) 72.4 (11.4) 70.1 (11.0)

PP at 50 W, mm Hg 74.5 (14.2) 76.3 (17.3) 74.0 (13.4) 72.8 (15.3)

HR at 50 W, bpm 108.9 (11.8) 135.2 (16.5) 106.4 (11.6) 128.1 (15.4)

Values are mean (SD).

Table 2. Baseline Characteristics of the HYPGENE Study
Subjects

Phenotype Case Subjects Control Subjects

No. of subjects 607 586

Sex, male/female, n 501/106 440/146

Age, mean (SD), y 43.3 (9.2) 42.6 (8.9)

BMI, mean (SD), kg/m2 25.1 (3.2) 24.1 (3.1)

Maximal METs, mean (SD) 11.7 (2.1) 12.3 (2.0)

Resting SBP, mean (SD), mm Hg 117.3 (8.7) 110.6 (9.3)

Resting DBP, mean (SD), mm Hg 77.6 (6.0) 73.8 (6.9)

Follow-up, mean (SD), y 8.7 (6.4) 10.2 (7.0)
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of the rs5370, which induces a lysine-to-asparagine substitu-
tion in codon 198 (Lys198Asn) of EDN1, was associated with
a less favorable blood pressure outcome. In HERITAGE, 20
weeks of endurance training in previously sedentary whites

lowered steady-state submaximal exercise SBP and PP less in
the rs5370 T allele carriers than in the common allele homozy-
gotes. Likewise, in the low-fit subjects of the HYPGENE
cohort, the T allele was associated with a 2-fold risk of
hypertension as compared with the G/G homozygotes,
whereas no genotype effect was observed in the high-fit
subjects. The same allele has been reported previously to be
associated with elevated resting DBP in obese Japanese
subjects,9 elevated resting and exercise SBP in overweight
whites,10 increased BP reactivity to a video game challenge,12

and with increased in vitro vascular reactivity.28 Therefore,
our novel discovery of a significant relationship between
rs5370 and SBP responsiveness to endurance training is
concordant with existing data on other hemodynamic pheno-
types, ie, the T allele is associated with a less favorable
hemodynamic profile.

The functional significance of rs5370 is not clear at this
time. Indeed, although the G-to-T transversion induces a
nonsynonymous amino acid change in codon 198 of the
prepro-EDN1 molecule, codon 198 is cleaved out from the
biologically active EDN1 peptides. As such, alternative
causal mechanisms, such as an effect on mRNA stability,
must be considered. In both of our studies, a 2-SNP haplotype
composed of rs5370 and an additional SNP (rs2070699 in
HYPGENE and rs4714383 in HERITAGE) seemed to further
fine tune the associations with blood pressure phenotype.
This pattern suggests that the rs5370 may tag another func-
tional SNP or a group of functional sequence variants. This
and related hypotheses need to be tested in future studies
using resequencing in a large group of informative subjects.

Table 3. Associations Between the EDN1 Haplotypes and Endurance Training–Induced Changes in Submaximal Exercise
(50 W) Blood Pressure Phenotypes in Whites and Blacks of the HERITAGE Family Study

Haplotype

Whites Blacks

�SBP �DBP �PP �HR �SBP �DBP �PP �HR

Global 0.0199 0.4066 0.0001 0.9315 0.8728 0.2724 0.4752 0.0357

1 0.0141 0.7773 0.0017 0.2207 0.9203 0.2161 0.2524 0.8415

2 0.7184 0.5023 0.5220 0.9203 � � � � � � � � � � � �

3 0.0605 0.1016 0.0015 0.6714 0.6547 0.8875 0.5271 0.2560

4 0.8065 1.0000 1.0000 0.4201 � � � � � � � � � � � �

5 0.0453 0.2017 0.1949 0.4096 � � � � � � � � � � � �

6 � � � � � � � � � � � � 0.1049 0.6033 0.1604 0.4310

7 0.5169 0.2616 0.9203 0.6714 0.9203 0.0469 0.1277 0.7518

8 0.6033 0.6101 0.7642 0.543 0.2943 0.3272 0.5485 0.0828

9 0.3897 0.3994 0.6547 0.5657 0.4237 0.7642 0.2987 1.000

10 0.0880 0.3247 0.0104 1.000 0.3510 0.9203 0.3078 0.4583

11 0.0164 0.5598 0.0168 0.4976 0.7083 0.4543 0.8231 0.0096

12 0.5656 0.0954 0.7290 0.2674 1.000 0.2269 0.3032 0.1003

13 � � � � � � � � � � � � 0.008 0.1573 0.0251 0.7518

14 0.2636 0.5598 0.1580 0.7083 1.000 0.5071 0.4930 0.5902

15 0.6629 0.3897 0.3102 0.3009 0.2694 0.1563 0.8065 0.1692

16 0.9203 0.3455 0.5376 0.8415 0.0547 0.6985 0.0954 0.5430

17 � � � � � � � � � � � � 0.0869 0.3272 0.2418 0.9203

18 � � � � � � � � � � � � 0.8625 0.8625 0.7184 0.6315

� � � indicates no data.

Figure 1. Associations between PP50 training response and
EDN1 rs5370 genotype (top) and rs5370 and rs4714383 haplo-
type (bottom) in the whites of the HERITAGE Family Study.
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The effect of increased laminar shear stress caused by
exercise on endothelial function is well documented.14,15,29,30

The majority of the research in this area has focused on the
activation of endothelial NO synthase gene expression and,
by extension, increased NO production. In addition to vaso-
dilatory substances, such as NO, the net peripheral resistance
and, consequently, BP are also influenced by compounds
promoting vasoconstriction, the most potent being the EDN1.
High shear stress has been shown to decrease EDN1 expres-
sion, but data on the effects of exercise on plasma and tissue
endothelin levels or on endothelin gene expression are scarce.
Two studies in small groups of young and elderly Japanese
subjects have reported significant reductions in plasma EDN1
levels after 2 to 3 months of endurance training.31,32 Also,
EDN1 mRNA levels in the heart were significantly lower in
exercise-trained (12 weeks) spontaneously hypertensive rats
than in sedentary control animals.33 However, in normoten-

sive Wistar-Kyoto rats, EDN1 expression in the heart either
tended to decrease or increase after exercise training.34–36

Thus, the overall effect of exercise training on plasma and
tissue levels of EDN1 has not yet been fully elucidated.

Lack of replication has been cited frequently as a major
problem in genetic studies of complex, multifactorial traits.
Inadequate statistical power and, therefore, inflated type 2
error rate are often credited for the low replication rates.
However, differences in behavioral and physiological char-
acteristics of the subjects across studies are other potential
explanations. Our study provides 2 excellent examples of
how physical activity and cardiorespiratory fitness levels
modify the associations between a candidate gene and out-
come phenotype in whites. Some previous studies have
reported previously that the association between the EDN1
polymorphisms and blood pressure is modified by body
weight, ie, the associations are observed only in overweight
or obese subjects.9–12 We did not observe evidence for such
modification, but it must be kept in mind that both of our
cohorts were normal weight on average and, as such, had
limited power to detect gene-obesity interactions. Also, there
are several possibilities as to why we did not observe the
same associations in blacks as we did in whites. It is
possible that the EDN1 locus has less contribution in blacks,
and the greater baseline blood pressure and BMI levels in
blacks may alter the physiological pathways contributing to
exercise training–induced blood pressure changes. It is also
possible that the tagging SNPs did not capture the same
degree of information of the overall haplotype structure in
blacks as they did in whites. Finally, if the EDN1 locus has
only a minor effect on blood pressure traits in blacks, it is
possible that our sample size is not large enough to detect
such a small effect size.

Perspectives
Our results suggest that DNA sequence variation in the EDN1
gene locus is associated with blood pressure phenotypes in
whites. However, the expression of the genotype effect is
modulated by physical activity or cardiorespiratory fitness
level. These data provide an illustrative example of how
physical activity and fitness level modify the associations
between a candidate gene and outcome phenotype. They also
emphasize the importance of incorporating key behavioral
and physiological traits in genetic association studies to better
understand how the interactions between DNA sequence
variants and nongenetic factors affect multifactorial pheno-
types, such as blood pressure.

Table 4. Associations Between the EDN1 SNPs and the Risk of Hypertension in the HYPGENE Study

SNP Map SNP Main Effect SNP-by-Fitness Interaction SNP-by-BMI Interaction

rs2070699 12 400 758 0.7720 0.0006 0.7766

rs5369 12 402 244 0.9720 0.9360 0.7777

rs5370 12 404 241 0.2240 0.0025 0.3720

rs4714383 12 405 468 0.6640 0.2090 0.8303

rs9296345 12 406 319 0.6003 0.9770 0.6377

P values from logistic regression models are given for the SNP main effects and the SNP-by-fitness and SNP-by-BMI interaction
terms (adjusted for baseline age, BMI, cardiorespiratory fitness, and follow-up time).

Figure 2. Genotype-by-fitness interactions on the risk of hyper-
tension with SNPs rs5370 (top) and rs2070699 (bottom) in the
HYPGENE Study.
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