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Abstract

Fall armyworm (FAW), Spodoptera frugiperda, is a migratory polyphagous pest that causes major damage to economically 

important cultivated grasses, such as corn. Native to the neotropics in America but recently reported as an invasive pest in 

Africa and Asia, FAW imposes a serious threat to food security and sustainable crop productivity due to lack of effective 

management. In this study, the introduction of entomopathogenic fungi as endophytes was explored as an alternative more 

sustainable management strategy against FAW in corn. The study determined (1) the effect of isolates and inoculation meth-

ods on the ability of entomopathogenic fungi to colonize corn plants, and (2) the effect of colonized plants on S. frugiperda 

survival, development, reproduction, and food preference. Although all tested isolates (twelve of Beauveria bassiana and 

one each of Metarhizium anisopliae and Metarhizium robertsii) colonized inoculated plants, there was a highly significant 

interaction between isolates and inoculation methods. Highest plant colonization was obtained by Beauveria bassiana isolate 

(LPSc 1098) using foliar spray. Endophytic B. bassiana caused significant reductions in larval and pupal survival, length of 

different developmental stages, total S. frugiperda lifespan, and leaf area consumed by third instar larvae. Plant colonization 

also significantly reduced female longevity, fecundity, and fertility. This is the first report for the negative effects of endophytic 

B. bassiana on S. frugiperda growth, reproduction, and food preference. Our results highlight the promising potential of 

incorporating entomopathogenic fungi as endophytes in integrated pest management practices to protect corn against FAW 

if their efficacy is also confirmed under field conditions.

Keywords Beauveria bassiana · Fungal endophytes · Integrated pest management (IPM) · Invasive pest · Metarhizium 

anisopliae · Metarhizium robertsii

Key message

• All isolates were recovered as endophytes from inocu-

lated plants, but colonization varied significantly among 

fungal isolates, inoculation methods, and plant tissues.

• Highest plant colonization was obtained by B. bassiana 

(LPSc 1098) using foliar spray.

• B. bassiana colonization significantly reduced larval and 

pupal survival, length of different developmental stages, 

female reproductive parameters, and leaf consumption 

by third-instar larvae.

• These results provide the first report for the adverse 

effects of endophytic B. bassiana on S. frugiperda 

growth, reproduction, and food preference.
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Introduction

Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctui-

dae), commonly known as the fall armyworm (FAW), is 

a migratory polyphagous pestnative to the neotropics of 

the Americas. It has been reported to attack 353 host plant 

species from 76 plant families, but the greatest damage 

is commonly recorded on cultivated grasses, particularly 

corn and sorghum (Montezano et al. 2018). The ability to 

form large populations, the great voracity and displace-

ment of larvae, and the high dispersion rate of adults make 

S. frugiperda one of the most important noctuid pests of 

corn in North and South America and result in huge eco-

nomic losses (Castro et al. 2009). More recently, S. fru-

giperda has been reported as an invasive pest in many 

parts of Africa and Asia and is likely to become endemic 

due to the ideal climate conditions and abundance of suit-

able host plants which enable several pest generations 

in a single season (FAO 2019). It is estimated that FAW 

can cause crop losses of up to $US13 billion per annum 

across Africa in cereals such as corn, rice, and sorghum 

(Abrahams et al. 2017). The pest thus imposes a serious 

threat to food security and sustainable crop productivity, 

especially in light of the absence of effective management 

strategies. Current control measures largely focus on heavy 

and indiscriminate application of broad-spectrum insec-

ticides, which not only negatively affects human health 

and the environment, but also often results in inconsist-

ent FAW control (Stokstad 2017; Harrison et al. 2019). 

Subsequently, an alternative more sustainable management 

strategy against FAW is urgently needed.

Entomopathogenic fungi have been long recognized and 

developed as important biological control agents (de Faria 

and Wraight 2007). Found infecting and killing various 

groups of arthropods in a diverse array of geographic, cli-

matic, and agro-ecological zones, these fungi offer a promis-

ing alternative to conventional chemical control (Lacey et al. 

2015). Yet, their worldwide commercial adoption for effec-

tive pest biocontrol is still hindered by limited field efficacy 

due to high susceptibility to ultraviolet light, low moisture, 

and difficulties in reaching cryptic stages of the target pests. 

The ability of different genera of entomopathogenic fungi to 

colonize a variety of host plants as endophytes provides an 

exciting opportunity to improve their efficacy (Vega 2018). 

It also allows for a multifaceted application of these fungi 

for dual biocontrol of insect and pathogen pests as well as 

plant growth promotion (Jaber and Ownley 2018) in combi-

nation with other groups of biocontrol agents (e.g., parasi-

toids and predators, Akutse et al. 2014; Jaber and Araj 2018; 

González-Mas et al. 2019) and environmentally safe control 

measures (e.g., botanicals, Jaber et al. 2018) in Integrated 

Pest Management (IPM) programs.

Previous studies have demonstrated the endophytic 

ability of Beauveria bassiana and Metarhizium brunneum 

(Ascomycota: Hypocreales) to control Spodoptera littoralis 

on colonized alfalfa, tomato, melon, and wheat (Resquín-

Romero et al. 2016; Sánchez-Rodríguez et al. 2018) and of 

B. bassiana against Spodoptera exigua on colonized tomato 

(Shrivastava et al. 2015), but not against S. frugiperda feed-

ing on colonized corn plants. A scientific note has previ-

ously reported the pathogenicity of B. bassiana against 

third instar larvae of S. frugiperda exposed to the fungus 

before and after its establishment as an endophyte in corn, 

but not when fed with endophytically colonized plants or 

plant parts (Ramirez‐Rodriguez and Sánchez‐Peña 2016). 

This study was therefore conducted to (1) examine the effect 

of fungal isolates and inoculation methods on the ability 

of entomopathogenic fungi (B. bassiana, Metarhizium 

anisopliae, and Metarhizium robertsii) to endophytically and 

systemically colonize different tissues (root, stem, and leaf) 

of corn plants and (2) determine the effect of endophytic 

plant colonization on the survival, development, reproduc-

tion, and food preference of S. frugiperda.

Materials and methods

Study organisms

Corn seeds of the hybrid DK747 (DEKALB-Monsanto) 

were surface-sterilized by soaking in a solution of 70% etha-

nol for 2 min, followed by sodium hypochlorite (commercial 

bleach 55 g CIL−1) for 2 min, and finally rinsed twice in 

sterile distilled water. Prior to sowing, seeds were soaked in 

sterile distilled water for 24 h at 4 °C. Seeds were planted in 

330 cm3 plastic containers with a mixture of soil, perlite, and 

vermiculite at a ratio of (1:1:1). The planting substrate was 

autoclaved thrice for 45 min at 121 °C with a 24h interval 

between each autoclaving process and allowed to cool before 

use. All plants were maintained under controlled conditions 

in a greenhouse at 25 °C, 75% Relative Humidity (RH), 

and 12:12h light/dark photoperiod. Plants were watered as 

needed but not fertilized during the course of experiments.

Twelve isolates of B. bassiana sensu stricto: LPSc 1060, 

LPSc 1061, LPSc 1062, LPSc 1063, LPSc 1066, LPSc 1067, 

LPSc 1080, LPSc 1082, LPSc 1083, LPSc 1086, LPSc 1098, 

LPSc 1156 (GenBank accession numbers MG712618, 

MG712619, MG712620, MG712624, MG712621, 

KF500409, MG712623, KJ7722495, MG712625, 

MG712626, KT163259, MG712627, respectively), an 

isolate of M. anisopliae LPSc 907 (GenBank accession 

number KT163258), and an isolate of M. robertsii LPSc 

963 (GenBank accession number KJ772494) were used in 

this study. All fungal isolates were obtained from the Cul-

ture Collection of “InstitutoSpegazzini” (LPSc), La Plata, 
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Buenos Aires, Argentina. These isolates were selected due 

to their pathogenicity against several insect pests (Pelizza 

et al. 2012a, b). Fungal isolates were maintained on Potato 

Dextrose Agar (PDA) plates at 25 °C in darkness.

Eggs of S. frugiperda were provided by AgIdea (www.

agide a.com.ar), Pergamino city, Buenos Aires, Argentina. 

The insect pest was reared in a bioterium under controlled 

conditions (25 ± 2 °C, 70–75% RH and 14:10 h light/dark 

photoperiod) using a bean-based artificial diet prepared as 

described in Murúa et al. (2003) and replaced every two 

days. Pupae were sexed and maintained in containers lined 

with moistened filter paper until adult emergence. Emerged 

adults were used to start the next generation for insect bioas-

says as described below.

Plant inoculation with entomopathogenic fungi

Conidia were harvested by scraping the surface of 10-day-

old cultures with a sterile scalpel after flooding plates with 

sterile distilled water containing Tween 80 (0.01% v/v, 

Merck®). The conidia were then filtered through several 

layers of sterile cheese cloth into sterile test tubes containing 

sterile distilled water with 0.01% Tween 80. The conidial 

suspension for each fungal isolate was adjusted to 1 × 108 

conidia mL−1 using a Neubauer hemocytometer according to 

Gurulingappa et al. (2010). Conidial viability was assessed 

for each fungal isolate prior to plant inoculation by carrying 

out a germination test, as described by Lane et al. (1988), 

and only suspensions with ≥ 95% germination were used.

Three inoculation methods (foliar spray, root dipping, and 

seed immersion) were tested as described in Russo et al. 

(2015). For foliar spray and root dipping, surfaced-steri-

lized corn seeds were sown in plastic pots filled with ster-

ile mixture of the planting substrate as mentioned above. A 

glass hand sprayer (30-ml capacity) was used to spray each 

three-week-old seedling with an average of 3 ml conidial 

suspension of each fungal isolate (leaf surfaces received a 

deposition rate equivalent to 5 × 105 conidia cm−2). Control 

plants were sprayed with 3 ml of sterile 0.01% Tween 80 

solution. The spray was mainly directed to the leaves, but 

may have incidentally coated the stems as well. The top of 

each pot was covered with aluminum foil while spraying 

to avoid conidial runoff to the soil. For root dipping, three-

week-old seedlings were removed from pots and rinsed three 

times with sterile distilled water. Prior to plant inoculation, 

the root ends were cut and individually placed in test tubes 

with 2 ml conidial suspension of each fungal isolate for 24 h. 

Roots of control plants were dipped in sterile 0.01% Tween 

80 solution for 24 h. Treatment and control plants were then 

replanted in respective pots.

For seed immersion, surface-sterilized seeds were 

immersed in 10 ml conidial suspension of each fungal isolate 

for 24 h. Seeds were then dried on sterile paper towels in a 

sterile laminar flow cabinet for 30 min before being sown in 

330 cm3 plastic containers filled with sterile mixture of the 

planting substrate as described above. Control seeds were 

immersed in sterile 0.01% Tween 80 solution for 24 h before 

sowing. One plant per plastic container was used.

The experiment was run as a complete randomized design 

with a factorial arrangement. Two main factors, fungal iso-

late and inoculation method, were included. The first factor 

had 15 levels (twelve B. bassiana isolates, M. anisopliae, 

M. robertsii and the control). The second factor had three 

levels: foliar spray, root dipping, and seed immersion. A total 

of 45 treatment combinations (fungal isolate × inoculation 

method) were used. Each treatment combination had a total 

of 40 plant replicates, ten of which were destructively sam-

pled for assessment of endophytic colonization per sampling 

day (i.e., 7, 14, 21, and 28 days after inoculation).

Assessment of endophytic colonization of corn 
by entomopathogenic fungi

Endophytic colonization with the tested fungal entomopath-

ogens was evaluated at 7, 14, 21, and 28 days after inocula-

tion by destructively sampling root, stem, and leaf tissues of 

plants. For each treatment combination, ten plant replicates 

were sampled per each sampling day. Plants (after thorough 

washing with running tap water) were surface-sterilized by 

successive immersion in 70% ethanol for 2 min, followed 

by sodium hypochlorite (commercial bleach 55 g CIL−1) 

for 2 min, and finally rinsed twice in sterile distilled water. 

Imprints of surface-sterilized plant material were made and 

the final rinse water was plated onto PDA media and incu-

bated at 25 °C for 10 days to determine the efficiency of 

the surface-sterilization procedure in eliminating epiphytic 

microorganisms (Schulz et al. 1998). Plant material was 

dried on sterile paper towels in a laminar flow cabinet. Each 

surface-sterilized plant tissue was cut with a sterile scalpel 

into 1 cm2 pieces. An average of six pieces were sampled 

from each tissue and then evenly plated onto Petri dishes 

containing 20 ml of PDA with 0.1% stock antibiotics. The 

antibiotic stock consisted of 0.02 g of each of three antibi-

otics (tetracycline, streptomycin, and penicillin; Vega et al. 

2008). All Petri dishes were incubated at 25 °C in the dark 

and examined every ten days to record fungal outgrowth. 

Fungal outgrowth from plated plant samples was identi-

fied as B. bassiana, M. anisopliae, or M. robertsii based on 

differential growth on semi-selective media, colony mor-

phology, and microscopic examination of conidia (Humber 

1997). Data were expressed as percent colonization fre-

quency = (number of plant pieces showing fungal outgrowth/

total number of plated plant pieces) × 100 (Petrini and Fisher 

1987). A total of 120 plant replicates and 2160 plant pieces 

were examined for each inoculated fungal isolate, with a 

http://www.agidea.com.ar
http://www.agidea.com.ar
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total of 1680 plant replicates and 30,240 plated plant pieces 

for all tested isolates.

Effect of endophytic colonization of corn on S. 
frugiperda development and reproduction

Two groups of 50 eggs, obtained from a laboratory colony of 

S. frugiperda, were used for this bioassay. Eggs were exam-

ined daily until hatching. First-instar neonate larvae (hatch-

ing within 24 h) were randomly and individually placed 

in Petri dishes lined with moistened filter paper to favor 

feeding and avoid cannibalism. Corn plants that showed 

the highest rate of systemic endophytic colonization by the 

most successful (effective) inoculation method were used 

for this bioassay. Half of the neonate larvae were offered 

excised leaves (5 × 2 cm) from inoculated plants in which 

endophytic colonization by the fungal isolate was confirmed 

seven days after inoculation, whereas the other half received 

leaves from non-inoculated (control) plants. Leaves were 

replenished daily and filter papers were replaced with new 

ones as necessary.

The following parameters were recorded: (1) length 

of different developmental stages (egg, larval, pupal, and 

adult), (2) number of individuals at age x (nx), (3) mortality 

(proportion of individuals of the original cohort that died at 

age x, dx), and (4) adult sex ratio. The larvae were checked 

daily for mortality and moulting until pupation. The pres-

ence of cephalic capsules was observed to verify if larvae 

had moulted to the next developmental stage. Pupae were 

sexed according to Angulo and Weigert (1975) and trans-

ferred as couples (1 male:1 female) to 500 cm3 containers 

to allow adult emergence. Paired adults were transferred to 

copulation cages with folded paper to allow egg laying and 

handling of egg masses. A small piece of cotton soaked in a 

10% sugar solution was placed on the upper part of cages as 

a food source. Egg collection and diet replacement for adults 

were carried out daily until female adult death.

During the reproductive stage, the following parameters 

were recorded: (1) duration of the oviposition period, (2) 

age-specific survival rate from birth to death (the number 

of days lived at age x, lx), (3) age-specific fecundity (the 

number of eggs produced daily by individuals at age x as 

mx, Chi 1988) but modified to include only viable (hatched) 

eggs instead of all (hatched and unhatched) eggs accord-

ing to Muo et al. (2015), and (4) fertility (the number of 

eggs hatched/the number of eggs laid × 100, Schneider et al. 

2009). Other population parameters, such as the net repro-

ductive rate (R0), the intrinsic rate of increase (r), and the 

finite rate of increase (λ), were also calculated using the 

TWOSEX-MSChart computer program (Chi 2008). This 

program includes a routine for the estimation of standard 

error of population parameters using the Jackknife tech-

nique. Cadavers were surface sterilized as mentioned before 

then incubated in moist sterile chambers at 25 °C in the dark 

and inspected daily by microscopic examination to observe 

mycosis which confirms death due to the fungal entomopath-

ogenic isolate inoculated into plants as endophyte. The entire 

bioassay was repeated once over time.

Effect of endophytic colonization of corn on S. 
frugiperda food preference

Corn plants previously inoculated with the fungal isolate 

showing the highest plant colonization rate through the 

most effective inoculation method were used for this bioas-

say as described above. Fragments of corn leaves (6 × 3 cm) 

obtained from inoculated or non-inoculated (control) plants 

were simultaneously offered to larvae. The presence or 

absence of the fungus as endophyte within inoculated and 

non-inoculated plants was confirmed prior to use.

Food preference was determined by the “free-choice 

method” (Ling et al. 2008; Napal et al. 2009). Leaf frag-

ments from inoculated and non-inoculated (control) plants 

were scanned to determine initial leaf area. Two equally 

spaced leaf fragments (inoculated and control) were placed 

on a wet filter paper in each Petri dish (90 mm diameter) 

and a third instar larva (L3) was introduced to the center of 

the dish (Magrini et al. 2015). The larva was left for 24 h, 

and leaf fragments were scanned again to evaluate consump-

tion. Leaf area consumed was calculated as the difference 

between the initial leaf area and the remaining leaf area after 

larval feeding (Milanovic et al. 2014) using ImageJ (Bailer 

2006). Three repetitions of 30 individuals (replicates) each 

were made on different dates.

Statistical analyses

Data were tested for normality and homogeneity of the vari-

ance prior to statistical analyses. Percentage values of plant 

colonization frequency were angular transformed to stabilize 

the variance. Differences in percent colonization frequency 

were analyzed using three-way Analysis of Covariance 

(ANCOVA), with fungal isolate, inoculation method and 

plant tissue as main factors, and time as a covariate. Sig-

nificant differences among treatment means (P < 0.05) were 

compared with Tukey´s test. The mortality and reproduc-

tive parameters of each S. frugiperda cohort were analyzed 

according to Chi (1988) using TWOSEX-MSChart (Chi 

2008). Student´s t test (P < 0.05) was used to compare the 

length of each developmental stage (egg, larval, pupal, and 

adult), the food preference, and the population parameters of 

S. frugiperda reared on colonized and non-colonized (con-

trol) leaves. A two-way ANOVA (with treatment and sex as 

main factors) was used to analyze adult longevity (the total 

number of days lived as adults from emergence to death), 

followed by Tukey´s test for separation of treatment means. 



Journal of Pest Science 

1 3

All analyses were performed using InfoStat version 2004 

(InfoStat 2004).

Results

Effect of fungal isolate and inoculation 
method on the endophytic colonization of corn 
by entomopathogenic fungi

Endophytic colonization of corn plants by the tested 

entomopathogenic fungi was determined using re-isolation 

of respective fungal isolates following surface-sterilization 

of plant tissues. No fungal growth was observed on final 

rinse water or plant imprint plates. This indicates the efficacy 

of surface sterilization in eliminating epiphytic microorgan-

isms and confirms that the fungi growing out of surface-

sterilized plant material were endophytic microorganisms 

originating from within plant tissues. None of the inocu-

lated fungal isolates were recovered from control plants, 

whereas all tested isolates were successfully recovered as 

endophytes from inoculated plants (Fig. 1). However, there 

was a highly significant interaction between fungal isolates 

and inoculation methods (P < 0.0001; Table 1), as not all 

of the three tested inoculation methods were effective in 

establishing all tested fungal isolates as endophytes. For 

example, seed immersion was not successful in introducing 

LPSc 1067, LPSc 907, or LPSc 963 into plants, while foliar 

spray resulted in the highest rate of plant colonization for 

all tested isolates except LPSc 907 and LPSc 963 (Fig. 1). 

Highest rate of plant colonization was also consistently 

observed 7 days after inoculation, irrespective of fungal 

isolate and inoculation method. Percentage colonization of 

plants varied significantly among isolates and plant tissues 

(root, stem, and leaf) within each sampling date (7, 14, 21, 

and 28 days after inoculation) and decreased significantly 

Fig. 1  Effect of fungal isolates and inoculation methods on mean (± SE) colonization (%) of different plant tissues (root, stem, and leaf) of corn 
by entomopathogenic fungi as endophytes at a 7, b 14, c 21, and d 28 days after inoculation (Tukey’s test after three-way ANCOVA)
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over time (Fig. 1, Table 1). Yet at all sampling dates, LPSc 

1098 was the best systemic plant colonizer, particularly 

when inoculated into plants through foliar spray (Tukey’s 

test: P < 0.05, Fig. 1). This B. bassiana isolates colonized 

100% of leaves, 80% of stems, and 60% of roots seven days 

after foliar spray (Fig. 1a). This isolate was therefore intro-

duced into corn plants in further bioassays using the foliar 

inoculation method in order to examine the effect of plant 

colonization with entomopathogenic fungi as endophytes 

against S. frugiperda.

Effect of endophytic colonization of corn on S. 
frugiperda development and reproduction

Mortality and length of different developmental stages of S. 

frugiperda reared on B. bassiana (LPSc 1098) colonized and 

non-colonized corn leaves are shown in Table 2. All eggs 

of the original cohorts hatched and six larval stages were 

recognized. Highest mortality (dx) was observed during the 

second larval stage followed by pupal stage of insects feed-

ing on endophytically colonized leaves compared to control. 

Overall, a significantly higher number (nx = 85) of individu-

als fed on leaves from non-colonized (control) plants reached 

the adult stage compared to 65 of those fed on leaves from 

colonized plants (Table 2). Dead individuals were surface-

sterilized and incubated in a dark moist chamber to induce 

mycosis. Mycosis was recorded in 65% of dead insects fed 

on colonized leaves, and the fungus growing on the surface 

of incubated cadavers was identified as the inoculated fungal 

isolate by microscopic examination.

Feeding on leaves of colonized plants significantly 

decreased mean length of second (L2, P < 0.0001), third 

(L3, P = 0.0038), fourth (L4, P = 0.0073), and sixth (L6, 

P = 0.0075) larval instars, in addition to pupal (P < 0.0001) 

and adult (P < 0.0001) stages, but not first (L1, P = 0.57) 

and fifth (L5, P = 0.20) larval instars. Spodoptera frugiperda 

lifespan was significantly shorter on average for insects 

reared on B. bassiana (LPSc 1098) colonized corn leaves 

(35.18 ± 15.05 days) compared to those reared non-colonized 

(40.85 ± 9.28 days) leaves (P = 0.0013; Table 2). Moreover, 

there was a significant interaction between treatment and 

sex for adult longevity (P = 0.0002), which was significantly 

reduced for females but not males reared on endophytically 

colonized leaves compared to control (Fig. 2).

Plant colonization with B. bassiana (LPSc 1098) sig-

nificantly reduced S. frugiperda fecundity and oviposition 

period (P < 0.0001). Mean duration of oviposition period 

Table 1  Three-way ANCOVA for the effects of fungal isolate, inoc-
ulation method, and/or plant organ on colonization (%) of corn by 
entomopathogenic fungi as endophytes at 7, 14, 21, and 28 days after 
inoculation

F d.f P Coef

Isolate 53.54 13  < 0.0001

Inoculation 811.65 2  < 0.0001

Organ 22.49 2  < 0.0001

Isolate × Inoculation 65.89 26  < 0.0001

Isolate × Organ 3.91 26  < 0.0001

Inoculation × Organ 375.95 4  < 0.0001

Inoculation × Isolate × Organ 5.20 52  < 0.0001

Time 3588 1  < 0.0001  − 0.03

Table 2  Mean (± SE) of 
mortality and length of different 
developmental stages of 
Spodoptera frugiperda fed on 
leaves of Beauveria bassiana 
(LPSc 1098) colonized (treated) 
and non-colonized (control) 
corn plants

a nx = number of individuals at age x
b lx = age-specific survival rate from birth to death (the number of days lived at age x)
c dx = mortality (proportion of individuals of the original cohort that dies at age x)
d Means with different letters across treatments differ significantly at P < 0.05 (Student´s t test)
e Values obtained from the pooled data sets of two experimental repetitions

Stage Treated Control

Length nx
a lx

b dx
c Length nx lx dx

Eggs 2.7 ± 0.46ad 100e 1 0 2.79 ± 0.40ª 100 1 0

1st larval (L1) 3.43 ± 0.51a 100 1 6 3.41 ± 0.81ª 100 1 3

2nd larval (L2) 3.21 ± 1.06b 94 0.94 15 3.96 ± 0.65ª 97 0.96 4

3rd larval (L3) 3.35 ± 1.69b 79 0.79 2 3.81 ± 0.87ª 93 0.93 3

4th larval (L4) 3.65 ± 1.91b 77 0.77 2 4.32 ± 1.37ª 90 0.9 1

5th larval (L5) 3.69 ± 1.96a 75 0.75 0 3.7 ± 1.27ª 89 0.89 0

6th larval (L6) 3.0 ± 1.16b 75 0.75 0 3.62 ± 1.97ª 89 0.89 0

Total larval 20.95 ± 8.2b 75 0.75 0 22.2 ± 4.5ª 89 0.89 0

Pupal 6.45 ± 1.34b 75 0.75 10 8.66 ± 2.80ª 89 0.89 3

Adult 5.08 ± 3.56b 65 0.65 0 7.2 ± 2.74ª 85 0.85 0

Total lifespan 35.18 ± 15.0b 40.85 ± 9.28ª

Sex ratio F:M 1:1.3 1:1.2
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was 2.2 ± 0.89 and 2.95 ± 0.51 days for females fed on B. 

bassiana (LPSc 1098) colonized and non-colonized leaves, 

respectively. Females deposited an average of 495.7 eggs 

with a range of 343–865 eggs when fed on colonized leaves 

(Fig.  3b), whereas females fed on non-colonized (con-

trol) leaves deposited an average 848 eggs with a range of 

500–1100 eggs (Fig. 3a). Endophytic B. bassiana (LPSc 

1098) also caused a highly significant decrease in mean 

fertility (P < 0.0001) of S. frugiperda reared on colonized 

(43% ± 0.41; Fig. 3b) compared to non-colonized leaves 

(93% ± 0.04; Fig. 3a).

Age-specific survival rate (lx) and age-specific fecun-

dity (mx) of S. frugiperda are shown in Fig. 4a and b. Age-

specific survival curve of S. frugiperda reared on leaves of 

colonized plants, but not on those of non-colonized controls, 

decreased noticeably at days 7 and 27 (Fig. 4a). The curve 

of age-specific fecundity showed that reproduction began 

after day 37, peaked to reach a maximum population growth 

rate on day 39, and ended on day 47 for insects reared on 

non-colonized leaves (Fig. 4b). On the other hand, the age-

specific fecundity curve indicated a delay and a reduction in 

reproduction of insects reared on colonized leaves. For those 

insects, reproduction began after day 39, peaked on day 43, 

and ended on day 45 as shown in Fig. 4a.

Finally, significant differences (Student’s test: P < 0.05, 

Table 3) were also found between S. frugiperda population 

parameters calculated using the TWOSEX-MSChart. Endo-

phytic colonization of plants with B. bassiana (LPSc 1098) 

significantly reduced S. frugiperda net reproductive rate (R0) 

which was 107.5 offspring per individual in insects reared 

on colonized plants compared to 311.6 offspring per indi-

vidual in those reared on non-colonized controls. Similarly, 

significantly lower values of the intrinsic rate of increase 

(r = 0.11/day) and the finite rate of increase (λ = 1.12/day) 

were obtained for insects fed on colonized plants (Table 3) 

than for those fed on control plants (r = 0.14/day and 

λ = 1.15/day).

Effect of endophytic colonization of corn on S. 
frugiperda food preference

Highly significant differences (P < 0.0001, Fig. 5) were 

found in leaf area  (mm2) consumed by third instar larvae 

offered B. bassiana (LPSc 1098) colonized and non-colo-

nized (control) leaves in a free-choice feeding experiment, 

indicating that the presence of B. bassiana (LPSc 1098) as 

an endophyte markedly reduced food preference and conse-

quently consumption of corn plants by S. frugiperda (Fig. 5).

Discussion

All tested isolates of the fungal entomopathogens B. bassi-

ana, M. anisopliae, and M. robertsii were able to colonize 

corn plants when inoculated by foliar spray, root dipping, or 

seed immersion, but percent plant colonization varied sig-

nificantly among fungal isolates, inoculation methods, and 

plant tissues. Highest colonization rate of different plant tis-

sues was obtained by B. bassiana isolate (LPSc 1098) using 

Fig. 2  Adult longevity of Spodoptera frugiperda males and females 
fed on leaves of Beauveria bassiana (LPSc 1098) colonized (treated) 
and non-colonized (control) corn plants. Bars indicate mean (± SE). 
Bars with different letters differ significantly at P < 0.05 (Tukey’s test 
after two-way ANOVA)

Fig. 3  Fecundity and fertility of Spodoptera frugiperda females fed 
on a leaves of Beauveria bassiana (LPSc 1098) colonized (treated) 
and b non-colonized (control) corn plants. Bars indicate mean (± SE)
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foliar spray. When sprayed into plant foliage, this isolate 

systemically colonized 100, 80, and 60% of leaves, stems, 

and roots of plants, respectively, seven days after inocula-

tion. Although there was a significant decline in plant colo-

nization over time, regardless of fungal isolate or inoculation 

method, more than 90 and 50% of leaf and stem tissues, 

Fig. 4  Age-specific survival rate 
(lx) and age-specific fecundity 
(mx) of Spodoptera frugiperda 
fed on a leaves of Beauveria 

bassiana (LPSc 1098) colonized 
(treated) and b non-colonized 
(control) corn plants

Table 3  Mean (± SE) of population parameters of Spodoptera fru-

giperda fed on leaves of Beauveria bassiana (LPSc 1098) colonized 
(treated) and non-colonized (control) corn plants

Means (± SE) obtained by the Jackknife method embedded in the 
TWOSEX-MSChart (Chi 2008). Means followed by different letters 
within the same row differ significantly at P < 0.05 (Student´s t test)

Parameter Treated Control T P

Net reproductive rate 
(R0)

107.50 ± 30.5b 311.60 ± 57.5a 3.14 0.0024

Intrinsic rate of 
increase (r)

0.11 ± 0.01b 0.14 ± 0.01a 3.62 0.005

Finite rate of increase 
(λ)

1.12 ± 0.01b 1.15 ± 0.01a 3.46 0.008

Fig. 5  Total area consumed  (mm2) by Spodoptera frugiperda third 
instar larvae freely offered Beauveria bassiana (LPSc 1098) colo-
nized (treated) and non-colonized (control) leaves. Bars indicate 
mean (± SE). Mean values were obtained from the pooled data sets 
of three experimental repetitions. Bars with different letters differ sig-
nificantly at P < 0.05 (Student´s t test)
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respectively, remained colonized by B. bassiana (LPSc 

1098) across all sampling dates at 7, 14, 21, and 28 days 

after foliar inoculation. Using light and electron microscopy, 

it has been previously shown how B. bassiana is able to pen-

etrate the leaf surface and move within the xylem vascular 

elements throughout the corn plant from foliar inoculation 

sites (Wagner and Lewis 2000). Multipartite interactions 

with other bacterial and fungal endophytes naturally colo-

nizing plant hosts might explain the inability of some of 

the tested fungal isolates to extensively colonize plant tis-

sues or persist for long periods of time (Schulz et al. 2015). 

Our study further demonstrates that foliar spray was the best 

inoculation method for all tested B. bassiana isolates, but not 

the two Metarhizium isolates (LPSc 907 and LPSc 963), to 

enter and systemically colonize different plant tissues. This 

is not surprising given that Metarhizium species have been 

often reported to be almost exclusively restricted to plant 

roots, whereas Beauveria species are found throughout the 

plant with a higher prevalence in aboveground plant tissues 

(Behie et al. 2015). Indeed, our findings are in agreement 

with several previous studies (reviewed in Jaber and Ownley 

2018 and Vega 2018) showing that the extent and persistence 

of plant colonization with fungal entomopathogens may well 

be influenced by fungal species and strain, host plant species 

and tissues, and inoculation method, among other factors. 

When applied as endophytes though, an extensive and per-

sistent plant colonization by these entomopathogens would 

certainly constitute the basis for the degree of plant protec-

tion they confer against insect pests.

Our results, on the other hand, provide the first report 

for the negative effects of the presence of an entomopatho-

genic fungus, B. bassiana, as an endophyte on the survival, 

development, and reproduction of S. frugiperda feeding on 

leaves of colonized corn plants. Endophytic B. bassiana 

(LPSc 1098) caused significant reductions in 2nd instar 

larval and pupal survival, length of different developmen-

tal stages, and total S. frugiperda lifespan as exhibited by 

individuals reared on colonized compared to non-colonized 

leaves. Plant colonization also significantly reduced female 

longevity, fecundity and oviposition period duration, in addi-

tion to fertility. Due to the negative effects of endophytic B. 

bassiana (LPSc 1098), there was a noticeable decrease in 

age-specific survival rate as well as a delay and a decrease 

in age-specific fecundity rate of S. frugiperda when fed 

with leaves obtained from colonized plants. S. frugiperda 

individuals fed on colonized plants also had significantly 

lower net reproductive rate, intrinsic rate of increase, and 

finite rate of increase compared to individuals fed on non-

colonized control plants. Mechanisms underlying endophytic 

entomopathogenic fungi-mediated adverse effects against 

herbivores are often attributed to production of secondary 

metabolites, induction of plant defenses, and mycosis (Vidal 

and Jaber 2015; Jaber and Ownley 2018; Vega 2018). In 

the present study, mycosis was evidenced by fungal growth 

emerging from surface-sterilized cadavers of insects fed with 

colonized leaves after being placed in dark moist chambers. 

A number of previous studies have similarly reported insect 

mycosis following feeding on B. bassiana-endophytically 

colonized plants by other chewing lepidopteran pests such as 

Helicoverpa zea, Helicoverpa armigera, and Tuta absoluta 

(Powell et al. 2007, 2009; Vidal and Jaber 2015; Klieber 

and Reineke 2016). Alternatively, Shrivastava et al. (2015) 

reported that the antiherbivore properties of endophytic B. 

bassiana against the beet armyworm S. exigua might be 

partly due to higher levels of terpenoids which were induced 

in colonized tomato plants. Although not tested in our study, 

the possibility that plant colonization with B. bassiana may 

have also led to enhanced levels of corn terpenoid defense 

compounds against S. frugiperda cannot be excluded. 

The negative effects of fungal entomopathogens when 

introduced as endophytes against insect pests could also be 

a result of antibiosis and feeding deterrence by fungal sec-

ondary metabolites produced in planta as has been widely 

proposed by several studies (reviewed in Jaber and Own-

ley 2018). However, only a very few of these studies have 

actually detected such metabolites in plants colonized by 

entomopathogenic fungi (Jaber and Ownley 2018; Vega 

2018). For example, Resquín-Romero et al. (2016) detected 

traces of destruxin A in M. brunneum-colonized tomato 

leaves and also within S. littoralis larvae fed discs obtained 

from those leaves. In our study, the significant detrimental 

effect of corn colonization with B. bassiana on S. frugiperda 

food preference, as indicated by the marked reduction in 

leaf area consumed by third instar larvae when offered a 

choice to feed on colonized or control leaves, could pos-

sibly be caused by antifeedant or deterrent properties of 

in planta-produced B. bassiana metabolites (reviewed in 

Ownley et al. 2010). Cherry et al. (2004) proposed a similar 

explanation for the reduced tunneling and feeding damage 

observed by the corn stem-borer, Sesamia calamistis, on B. 

bassiana-colonized corn plants, whereas Bing and Lewis 

(1991) attributed reduced tunneling by another corn stem-

borer, Ostrinia nubilalis, to the systemic and persistent B. 

bassiana colonization of plants. In the latter study, the fun-

gal isolate (ARSEF 3113) was recovered from most internal 

plant tissues and provided the greatest level of O. nubilalis 

suppression until harvest only when inoculated into corn 

via foliar application (Bing and Lewis 1991). Such a pos-

sibility of applying small amounts of fungal inoculum and 

obtaining a systemic season-long protection against insect 

pests makes endophytism a cost-effective delivery route for 

entomopathogenic fungal biocontrol agents. However, in 

order to ensure prolific and persistent levels of plant coloni-

zation, particular attention should be paid to selecting fungal 

isolates and inoculation methods most adapted to introduc-

ing these entomopathogens as endophytes into specific host 
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plants (Jaber and Ownley 2018). Notably, when the same 

fifteen fungal isolates and three inoculation methods tested 

here were investigated in soybean by Russo et al. (2018a), B. 

bassiana (LPSc 1098) was the most successful plant colo-

nizer using foliar spray as well. The study further demon-

strated that foliar inoculation with B. bassiana (LPSc 1098) 

promoted the growth and increased the yield of soybean 

plants under filed conditions (Russo et al. 2018a). The same 

B. bassiana isolate was also shown to negatively affect the 

survival, development, and reproductive parameters of the 

soybean pest Helicoverpa gelotopoeon following endophytic 

establishment by foliar spray (Russo et al. 2018b). Similar to 

the results obtained in the present study, endophytic coloni-

zation of soybean plants by B. bassiana (LPSc 1098) caused 

significant reduction in leaf area consumed by this pest. 

This fungal isolate was originally isolated from Triatoma 

infestans Klug (Hemiptera: Reduviidae) in Chaco Province, 

Argentina and is particularly characterized by high sporula-

tion rate and biocidal capacity, which are major determi-

nants of fungal virulence against insect pests (Pelizza et al. 

2012a, b, 2018). Such superior endophytic fungal isolates 

with high virulence against one or more pests in addition to 

growth promotion potential could possibly be developed as 

biocontrol agents against multiple pests as well as biofertilz-

ers for wider application in IPM programs and sustainable 

agriculture (Jaber and Ownley 2018).

Previous studies reported on the pathogenicity of B. 

bassiana isolates against S. frugiperda eggs and early lar-

val instars when topically applied to immature stages of 

the insect (Ramirez‐Rodriguez and Sánchez‐Peña 2016; 

Akutse et al. 2019). The present study demonstrates, for 

the first time, the adverse effects of B. bassiana (LPSc 

1098) introduced into corn plants as an endophyte on sev-

eral growth and reproductive parameters in addition to the 

survival and food preference of S. frugiperda when fed on 

colonized plant tissues. Although these effects were only 

investigated in greenhouse trials, our results highlight the 

promising potential of incorporating entomopathogenic 

fungi as endophytes in IPM practices to protect corn plants 

against this invasive pest if their efficacy is confirmed 

under field conditions as well. 
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