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We analyse the e�ect of temperature and wind velocity on the natural frequencies and modal damping ratios of the Faculty
of Engineering Tower at the Università Politecnica delle Marche, a 10-story reinforced concrete frame building, permanently
monitored with low-noise accelerometers. �e data recorded over the 	rst 5 months of monitoring demonstrate that temperature
variations and wind intensity have a clear e�ect on the 	rst three natural frequencies and the corresponding damping ratios.
Temperature is positively correlated to the 	rst and second frequencies, corresponding to shear displacement modes and negatively
correlated to the third frequency, corresponding to a torsional mode. All frequencies are positively correlated to wind velocity
and changes in damping ratios are inversely correlated to any change in frequency. A mechanical explanation of these phenomena
is o�ered, based on a critical review of literature case studies. �ese results suggest that using changes in modal parameters for
damage detection always requires accurate knowledge of the correlation between modal parameters and environmental quantities
(temperature, humidity, and wind velocity), an information which is only available through long-term continuous monitoring of
the structural response.

1. Introduction

Vibration-based Structural Health Monitoring (SHM) refers
to a family of methods pretending to gain information on
the damage state of a structure through measurement and
analysis of its vibration response. �e key idea behind these
methods is based on the assumption that a damage alters
locally the sti�ness, the mass, or the energy dissipation
mechanisms of a structural member, which in turn a�ect
the overall structural dynamic behaviour. While in principle
this rationale is �awless, its practical application has some
limits [1]. First, even the most severe damage may have a
limited e�ect on the global dynamic response of the structure
(in other words, the global response may be insensitive to
local damage). Second, di�erent damage states may similarly
a�ect the global response, thus inferring the damage based on
the observed response is logically an indeterminate problem,
unless we make proper assumptions a priori. �ird, while it
is generally true that a structural damage produces changes

in the dynamic response, it is not true that any change in
the dynamic response is the result of a damage: notably,
environmental conditions may produce variations of modal
parameters in the same order of those induced by damage and
o�en much bigger.

Vibration-based structural damage detection of civil
structures dates back to the early 1980s, as documented
by extensive technical literature reviews [2–4]. �ese early
studies include development of methods for optimal sensor
placement, selection of the most sensitive parameters to
damage, and the de	nition of techniques to separate changes
in the dynamic properties caused by damage from those
due to environmental and operational conditions [3]. Inter-
estingly, all these issues are still of strong interest among
researchers, as evident in numerous recent works; see for
instance [5–7]. Particularly, the use of changes in natural
frequency as suitable damage indicators is still a matter
of lively discussion. On one side, frequencies, contrary to
mode shapes or damping ratios, are easily identi	ed with
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a good accuracy even from ambient vibration tests (AVT).
�e recent improvement and di�usion of e�ective automated
operational modal analysis (OMA) techniques [8–13] have
further contributed to elect frequencies as privileged damage
detection parameter. On the other hand, natural frequencies
are o�en not especially sensitive to local damage, while
they are strongly a�ected by environmental and operational
conditions, such as temperature, humidity [5, 14], and, par-
ticularly in the case of tall structures, wind intensity [15].

Separating the e�ect of damage from the e�ect of the
environment requires the use of statistical models, such
as the multiple data regression (MDR) and the Principal
Component Analysis (PCA) [16–19], and other suitable
compensation techniques [16, 20, 21]. Among the various
environmental factors, temperature is especially important:
numerous case studies reported in the literature show that
natural temperature variations could produce changes in the
modal propertiesmuch bigger than those induced by a typical
structural damage [22] or the normal operational loads [23].
While it is generally understood that temperature a�ects the
natural frequencies of a structure, this relationship is appar-
ently dependent on the particular structure and can be either
direct (i.e., frequencies grow with temperature) or inverse
(i.e., frequencies decrease with temperature) [24]. Literature
cases include bridges, buildings, and heritage structures.

With reference to bridges, Cornwell et al. [25] studied
the variability of modal frequencies with temperature of
a single span of a bridge concluding that, for the tested
structure, modal frequencies can vary signi	cantly (up to
6%) as a consequence of the temperature daily changes. �e
authors correlated the frequency changes to the temperature
di�erential across the deck. Cross et al. [26] discussed the
e�ects of temperature on the natural frequencies of the Tamar
Suspension Bridge in southwest England, concluding that
seasonal e�ects, rather than daily, can be of signi	cance.
Analysing the Seohea Grand cable-stayed bridge in South
Korea, Kim et al. [27] proposed a systematic procedure
to account for environmental conditions changes in the
observed structural response, including the elimination of
e�ects due to temperature changes. �ey found that tem-
perature increments lead to a reduction in the fundamental
frequency of the bridge. Jung et al. [28] presented a correla-
tion analysis between the temperature and the fundamental
natural frequency of a suspension bridge, showing that the
relationship between temperature and natural frequencies
is inversely proportional. Zolghadri et al. [29] published a
report addressing results of their studies, focused on the
e�ects of temperature on vibrational characteristics of three
continuously monitored bridges and a lab specimen. Bridges
include a pre-cast I-girder concrete bridge located in Perry,
Utah, a concrete box-girder bridge in Sacramento, California,
and a steel plate girder bridge in Salt Lake City, Utah, while
the lab specimen is a 72-inch long steel plate instrumented
with sensors and subjected to temperature changes.While the
dynamic properties of the lab specimen showed a very slightly
dependence on temperature, real monitored bridges showed
clear increasing or decreasing trends of the natural frequen-
cies, depending on modes, with the temperature increase.
Jin et al. [30] proposed a new damage detection method,

using arti	cial neural network and an extended Kalman 	lter,
for damage identi	cation in a composite steel girder bridge
under severe temperature changes, also considering freezing
e�ects. �ey found that the natural frequencies decrease
when temperature increases, and vice versa.

�e e�ect of the environmental conditions on the natural
frequencies is also typically observed in buildings. With
reference to amonitored 17-story steel frame building, Nayeri
et al. [31] observed a strong correlation between the modal
frequency variations and the temperature variations in a 24
h period. Yuen and Kuok [32] examined the fundamen-
tal frequencies of a 22-story reinforced concrete building
obtained from a one-yearmonitoring, 	nding that, contrarily
to their numerical estimations, the 	rst three frequencies
increased with an increase in ambient temperature. Faravelli
et al. [33] analysed the daily �uctuations of frequencies of the
Guangzhou New TV Tower (600m high) in China observing
that also ambient temperature variations of few degree Cel-
sius may induce variations in the structural frequencies, up
to 0.5%. Mikael et al. [34] focused on the long-term variation
of frequency and damping ratios in several buildings and
reported contrasting behaviours, including direct and inverse
correlation with temperature variations. More recently, Wu
et al. [35] presented results of the continuous dynamic
monitoring of an o�ce building using ambient vibration
measurements in conjunction with a recently developed
stochastic subspace identi	cation methodology. �e results
are examined to recognize e�ects of environmental con-
ditions: they found that 	rst fundamental frequencies are
directly related to the wind speed and indirectly related to
the air temperature. Furthermore, the authors identi	ed clear
relationships between the root mean square of acceleration
and the modal parameters.

Vibration-based SHM has been extensively applied to
cultural heritage buildings (e.g., [36–40]). However, a limited
number of works focus on the e�ects of environmental vari-
ations on the fundamental frequencies of historic masonry
towers. Among the others, Saisi et al. [41] monitored the
Gabbia Tower in Mantua and observed an almost linear
increase of the fundamental frequencies with the temperature
increment. �ey attributed this phenomenon to the thermal
expansion of materials, which produces an overall closing of
super	cial cracks, minor masonry discontinuities, or mortar
gaps. Ramos et al. [39] observed a similar phenomenon in
masonry structures and highlighted the signi	cant contribu-
tion of humidity. Ubertini et al. [14] investigated the e�ects
of changes in the environmental conditions on the natural
frequencies of a monumental masonry bell Tower demon-
strating that temperature, rather than humidity, can a�ect
the measured frequencies. �e authors found an increase
in frequencies of the bending modes with temperature,
consistently withmechanism suggested by Saisi et al. [41]. On
the other side, they observed a decrement in the frequency of
the 	rst torsional mode, and they attributed this behaviour
to the slackening induced by temperature of the tie elements
and of the 	bre reinforcements.

In summary, there is abundancy of evidence in the techni-
cal literature that environmental conditions, and particularly
temperature, a�ect the natural frequencies of civil structures,
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Figure 1: View of the Tower: (a) from North-West; (b) from South (c) aerial view from Bing Maps.

including bridges, building, and heritage structures. �e
correlation between environmental quantity (temperature,
humidity, or wind intensity) and frequency can be either
direct or inverse, depending on the particular structure
and vibration mode, and the way that the two correlate
is not easily predictable. Similarly, there is no unanimous
agreement on the mechanisms whereby the environmental
conditions produce the observed frequency changes.

In this paper, we wish to o�er our contribution to the
discussion of this subject, by analysing in detail the e�ect
of temperature variations and wind intensity on the modal
parameters of a 10-story reinforced concrete building. �e
case study is the Tower of the Faculty of Engineering at the
Università Politecnica delle Marche (UnivPM), in Ancona,
Italy. �e Tower has been chosen as case study within a
research project funded by the UnivPM addressing on the
development of low-cost wireless sensors for the continuous
dynamic monitoring of buildings (with applications to the
SHM	eld). To this purpose, a permanentmonitoring system,
based on traditional wired low-noise accelerometers, has
been installed to record the dynamic properties of the Tower
and their changes with respect to the wind intensity and
temperature variations.�ese data are used as a benchmark to
evaluate in the future the e�ectiveness of the developing low-
cost sensors network. �is paper illustrates the results of the
monitoring over a 	rst operational period of about 5 months.
A�er a brief description of the structure, the preliminary
AVTs performed to characterise the dynamics of the building
and to design the continuous dynamic monitoring system
are addressed. �e monitoring system is then described and
the results of measurements are presented and discussed,
adopting a multiple data regression to interpret e�ects of
ambient parameters variations on modal properties.

2. The UnivPM Faculty of Engineering Tower

�e Tower of the Faculty of Engineering at the Università
Politecnica delleMarche (UnivPM) is a 10-story buildingwith
interstory height of 5 m. Each �oor level is conventionally
labelled with the letter q followed by their altitude in meters
with respect to the sea level, from q150 to q200 (Figures
1(a) and 1(b)). �e Tower was designed and constructed

between 1980 and 1983. �e structure has a square plan
and is constituted by r.c. spatial frames. Depending on
the �oor, plan dimensions vary between 18.9 and 19.2 in
both directions. �e building is �anked by a small r.c. wall
structure, separated by a structural joint, hosting the stairway,
and elevators (Figure 1(b)).�e Tower position in the campus

is shown in Figure 1(c). Up to the 5th �oor, the Tower is
adjacent to other r.c. buildings, characterised by a similar
structural scheme and separated by expansion joints. �e
internal partitions are allmade of light panels while perimeter
walls are built with prefabricated r.c. panels anchored to the
frame beams but disconnected from the columns. Between
panels of adjacent �oors, aluminium window frames are
located (Figures 1(a) and 1(b)). Floor slabs are prefabricated
predal panels as well as the roof that is of �at type.

R.c. frames are made of 9 columns, equally spaced of 9 m
in the two principal directions (Figure 2(a)). Columns have
a square cross section with an indentation (5x20 cm) in the
central part and dimensions progressively reduced with the
building height (Figure 2(c)). It is worth noting that columns
of upper �oors are divided into 4 square subcolumns having
cross sections of dimension 35x35 cm, connected to each
other atmid-height with a small r.c. link. Beams have overall a
wide of 90 cm and a height of 65 cm.�e structure is founded
on piles; in particular, 2x2 pile groups with piles of diameter
1 or 1.2 m, depending on the column, are located beneath
each column, excepting one edge column, founded on a 3-
pile foundation (Figure 2(b)).

During construction, 240 concrete samples were taken
and tested at the Materials and Structures Testing Laboratory
of UnivPM. Results of experimental tests revealed that the
mean cubic strength of concrete is Rck,p = 28.14 MPa for
foundation piles, Rck,f = 43.91 MPa for the �oors (i.e., for
beams), and Rck,c = 41.62 MPa for the columns. As for
reinforcements, rebars FeB44k (corresponding to modern
B450C) were used.

3. Preliminary AVTs and System Identification

AVTs have been performed with the aim of evaluating the
modal parameters of the structure, namely, natural frequen-
cies,modal shapes, anddamping ratios. To this purpose, three
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Figure 2: (a) Typical �oor plan, (b) foundation layout, and (c) columns cross sections.
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Figure 3: Con	gurations of AVTs.

piezoelectric monoaxial accelerometers PCB model 393B31
have beenplaced at each �oor to record both translational and
rotational components of displacements. Sensors have been
connected through coaxial cables to acquisition cards (24-bit
NI 9234 acquisition cards and one chassis NI cDAQ-9178)
coupled to a laptop and equipped with dedicated so�ware.
�e position of the sensors on a typical �oor is shown in
Figure 2(a). Due to the limited number of accelerometers
available for the experiment, the measurements have been
carried out with three separate sensor con	gurations, each
covering four �oors, and always including �oor 8 (q195) as
a reference, as shown in Figure 3. �e tests were performed
in August 2017.

�e fundamental frequency of the structure was prelim-
inary estimated to be around 1 Hz and therefore recordings
with a duration of 1800 seconds (30 minutes) were made,
dividing each time histories into 90 samples of 20 seconds.
�e analogic signal is initially recorded at a sampling fre-
quency of 2048Hz; then, the recorded data are processedwith
standard signal processing techniques: 	rst a correction of the
spurious trends of the signals is performed by using a third-
degree polynomial function; then, all the frequency compo-
nents in the analogic signal above the Nyquist frequency are
removed through a low-pass 	lter with cut-o� frequency of
20 Hz to eliminate the contribution of high frequencies and
avoid aliasing phenomena; 	nally, signals were downsampled
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Figure 4: First three global mode shapes of the Tower from AVTs: (a) axonometric view; (b) lateral views; (c) plan view.

at 51.2 Hz to limit the amount of data to be managed. �e
covariance-driven stochastic subspace identi	cation (SSI-
cov) technique [42] was used to identify the dynamic prop-
erties of the Tower from the recordings. As stated above,
tests were made at di�erent times, according to 3 di�erent
sensors con	gurations; in operational modal analysis of large
structures this o�en occurs, making necessary to process data
from multiple nonsimultaneously recorded measurement
setups. �e Post Separate Estimation Re-scaling (PoSER)

approach [43] is used to process data from nonsimultaneous
acquisitions. �e 	rst three global mode shapes are shown in
Figure 4 and the related eigenfrequencies and damping ratios
are reported in Table 1.

Results of ambient vibration tests are interpreted through
a Finite Element Model (FEM) of the Tower, developed by
means of the SAP2000 code [44]. Both beams and columns
aremodelledwith elastic frame elements, while shell elements
are used to simulate the �oor slabs. �e hypothesis of 	xed
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Table 1: Numerical and experimental 	rst three eigenfrequencies and damping ratios.

Mode
AVTs 3D FEM Error

Frequency [Hz] Damping ratio [%] Frequency [Hz] [%]

1st 1.07 2.55 1.15 7.5

2nd 1.21 1.62 1.17 3.3

3rd 1.51 1.86 1.51 0.0

base is assumed, supported by the deep foundations. To better
reproduce the building response subjected to small vibra-
tions, nonstructural members (i.e., prefabricated perimeter
panels) are included in the model through shell elements
(Figure 5(a)). �e mechanical properties of the structural
concrete are based on the experimental results, conducted in
the framework of a recent seismic vulnerability assessment of
the building. In particular, 2 cylindrical specimens of diame-
ter d=93mmandheight h=93mmhave been extracted from
2 columns of the Tower (at q175 and q195, respectively) and 20
pull-out tests were performed on columns (2 tests per �oor).
Specimens were subjected to compressive tests and results
used to calibrate a regression formula to interpret results of
pull-out tests. �e mechanical characterisation of concrete
leads to a mean Young’s modulus Ecm = 32493 MPa, obtained
from concrete compressive strength according to [45]. �e
static value of Young’s modulus has been incremented of
about 20%, according to suggestions of Lydon et al. [46]. �e
Tower is separated fromadjacent buildings by e�cient expan-
sion structural joints; however, continuous nonstructural
components may a�ect sensibly the Tower dynamics and
the interpretation of AVTs through the numerical 3D FEM
requires adjacent buildings to be modelled. In detail, the r.c.
wall structure hosting the stairway and interacting with the
Tower for the whole length is included in the model (Figures
5(a) and 5(b)) and connected to the Tower by elastic links,
while interactionswith lower buildings are taken into account
through concentrated compliant restraints (Figure 5(c)). �e
comparison between the 	rst three numerical (red lines) and
experimentalmode shapes (blue lines) are reported in Figures
6(a) and 6(b), adopting both an axonometric projection and
a plan view of the last �oor.

�e Tower interaction with the adjacent stairway deter-
mine a coupling of the horizontal and torsional modes;
numerical results refer to a calibrated model, obtained by
updating sti�nesses of elastic links simulating interactions
with the stairway, determined by nonstructural components.
On the contrary, interactions with lower buildings are of less
signi	cance and results shown in Figure 6, which demon-
strate a good agreement betweennumerical and experimental
mode shapes, refer to a model disregarding their contribu-
tions. �e 	rst three natural frequencies obtained with the
numerical model are reported in Table 1; di�erences between
numerical and experimental data are of about 7% and 3% for
the 	rst and second frequency, respectively, while the third
frequency is almost perfectly reproduced.

Comparison between numerical and experimental mode
shapes is also presented through the Modal Assurance Cri-
terion (MAC) in Figure 6(c). According to this criterion, a

MAC equal to 1 identi	es the perfect matching of the exper-
imental and numerical mode shapes while a MAC equal to 0
denotes the orthogonality of the twomodes. It is worth noting
that the developed model is able to well reproduce the exper-
imental data, in terms of both frequencies and mode shapes.

4. The Continuous Dynamic
Monitoring System

According to the cantilever-type behaviour of the system,
a simple dynamic monitoring system has been developed,
starting on results of AVTs that provides expected frequencies
and damping ratios of the 	rst modes. In particular, 3 sensors
have been installed at the last �oor of the Tower (q195),
according to layout of Figure 2(a). �e system is completely
wired and consists of three accelerometers PCBmodel 393B31
(Figures 7(a) and 7(b)), one data acquisition unit (DAQ),
and one PC (Figure 7(c)). �e computer can be accessed
remotely, in order to download the recorded data and check
for any malfunctions. 30-minute samples are acquired twice
a day, with registrations beginning at 01:00 and at 13:00
o’clock each day. In addition, 12 samples within 24 hours are
acquired one day per month, in order to detect eventual daily
wander of modal properties. Values of the air temperature
are recorded by a thermometer positioned on the Tower
and protected from the solar exposure. �e mean internal
temperature is regulated by a centralised conditioning system
and very moderate daily changes have been observed, during
one week long monitoring through a portable thermometer.
Mean temperatures of 19∘C and 25∘C have been observed
during the summer and winter periods, respectively. �e
wind velocity is obtained by two weather stations very close
to the Engineering Faculty, the Brecce Bianche, and the Q2
weather stations. Position of the two stations with respect
to the Engineering faculty of the Università Politecnica delle
Marche are shown in Figure 7(d). �e continuous dynamic
monitoring systemwas installed on the Tower in August 2017
and it is still fully operative.

�e acquisition so�ware has been ad hoc developed in
Labview, a system-design platform and development envi-
ronment for a visual programming language from National
Instruments [47]. �e analogic signal is sampled at 2048 Hz
and resampled at 51.2 Hz before the storage. To avoid aliasing,
all the frequency components in the analogic signal that are
above the Nyquist frequency are removed through a low-pass
	lter and then eventual o�set is eliminated. An automated
procedure was developed within the acquisition algorithm
to extract the desired modal parameters exploiting the SSI-
based toolkit proposed by Hu et al. [48]. �e procedure
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allows handling the daily vibration measurements and the
acquisitions of the air temperature and the wind velocity;
the latter is obtained through the weathers stations websites.
Furthermore, the algorithm assures the data storage on
a dedicated server for future in-depth analysis. Figure 8
compares results obtained from the developed automated
procedure and a robust consolidated algorithm, based on the
SSI approach [42], over a period of 1 month (i.e., 60 samples).

In particular, fundamental frequencies and damping ratios of
the 	rst three vibration modes automatically obtained (dots)
are compared with the relevant values resulting from the SSI
analysis (continuous lines) performed on the stored data.
For each mode, Figure 8 also shows residuals �� (� = �, �)
between the two approaches and the standard deviation ��
of the residuals distribution. Residuals relevant to natural
frequencies are very low (the error of the automatic extracted
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values are below 0.5% for the majority of samples and all
modes) while residuals of modal damping ratios are sensibly
higher, with a mean error of about 30%.

Figures 9(a) and 9(b) show the Singular-Value Decom-
position (SVD) of a typical record for the setup of the
monitoring system and the stabilization diagram of a typical
acquisition, respectively. �e SVD plot clearly highlights the
	rst fundamental frequencies of the system while higher
modes are less evident, according to the sensors position.

5. Monitoring Outcomes

�is section shows results of the Tower monitoring from
August 11, 2017, to December 17, 2017. Data from a total
of 207 30-minute acquisitions are statistically reelaborated.
Figure 10 shows the evolution of the air temperature (T) and
wind velocity (w) during the monitoring period. It can be
observed that some data in September and October 2017 are
missing, due to a temporal shout-down of the acquisition
so�ware handling the environmental parameters (grey 	lled
areas). Furthermore, a technical inconvenient also occurred
in November 2017, also causing the loss of the vibrational
measurements (grey 	lled area). �e acquisition so�ware
has been enhanced according to the encountered problems
to avoid future measurements breaks. Available environ-
mental data show an evident seasonal and daily variation
of temperatures. On the contrary, wind velocities are less
governed by seasonal �uctuations, even if the higher values
have been registered in relatively cold months (October and
December). With reference to wind, daily �uctuations are
more pronounced, probably due to the land and sea breezes,
typical of coastal areas. �e automated identi	cation of the
modal frequencies and damping ratios from the dataset
resulted in the frequency and damping histories reported in
Figure 10. At a 	rst glance, dependency of modal parameters
to the wind intensity is evident with the all fundamental
frequencies reducing signi	cantly in occasion of registered
high wind velocities (grey dashed lines).

Figure 11 shows similar quantities obtained from the daily
monitoring of selected days (one per month). Wander in
frequencies, even if of minor amplitude, is also visible in the
daily frequencies trends shown in Figure 11. In particular, a
signi	cant increase of the 	rst frequency can be observed

with the temperature increment on 11 August (h 12:00) at
almost constant wind velocities. Overall higher frequencies
are observed on 12 October with respect to 11 August and
12 September, consistently with the lower values of the
wind velocities. Moreover, by assuming that 12 October and
17 November are characterised by the same mean wind
velocities, overall higher values of frequencies are observed
on October, in correspondence of higher registered temper-
atures. Finally, an overall increase of the third frequency is
observed from August to November, namely, for decreasing
air temperatures.

By assuming a normal distribution of the dynamic para-
meters, statistics of modal parameters are reported in Table 2,
which includes the mean values and the standard deviation
of fundamental frequencies and modal damping ratios, as
well as the relevant Coe�cient of Variation (COV). It can be
observed that standard deviation values of natural frequen-
cies are very low; on the contrary, standard deviation of
damping ratios are sensibly higher; thus, damping ratios
are much more dispersed than frequencies, as con	rmed by
COVs.

Figure 10 shows a sensitive variation of the fundamental
frequencies with respect to environmental conditions. In
order to better address the phenomenon, each frequency and
damping ratio is plotted with respect to the relevant value of
temperature and wind velocity.

Figures 12(a) and 12(b) show variations of the identi	ed
fundamental frequencies and damping ratios with respect
to air temperature and wind velocity, respectively. �e best
	tting lines, in the least square sense, are shown with black
lines. As can be observed from Figure 12(a), although highly
scattered, results demonstrate a positive interaction of the
	rst and second frequencies with the temperature while a
negative pronounced interaction is observed for the third
frequency. Damping ratios are characterised by opposite
trends; overall, a decrement of the damping ratio is observed
for an increment of the vibration frequency, consistently
with the “apparent” sti�ness increase and the reduction of
the dissipative contributions (e.g., material damping e�ects,
frictions between structural and nonstructural elements,
and small nonlinear e�ects). Concerning dependency of
modal parameter on wind velocity, it can be observed from
Figure 12(b) that all frequencies decrease by increasing the
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Figure 10: Evolution of the air temperature and wind velocity during the monitoring period and histories of identi	ed fundamental
frequencies.

Table 2: Statistics of eigenfrequencies and damping ratios.

Mode
Frequencies Damping ratios [%]

Mean [Hz] Standard deviation [Hz] COV [%] Mean [Hz] Standard deviation [Hz] COV

1st 1.0518 0.0159 1.51 1.9625 0.5994 30.54

2nd 1.1931 0.0136 1.14 1.6256 0.4296 26.43

3rd 1.4667 0.0258 1.76 1.6105 0.4822 29.94

wind speed. �is can be justi	ed by the increase of the
external actions that leads the structure to develop higher
small nonlinear e�ects or frictions between elements.

�is hypothesis can be supported by the observation
that a decrease in the frequency is always associated with
an increase in the value of the damping ratio, as can be
observed from Figure 13.�e relationship between frequency
and damping ratio shown in Figure 13, as well as previous
considerations concerning trend of frequencies and damping
ratios with respect to the wind velocities, can be better inter-
preted by observing the variation of the modal parameters

with respect to the root mean square (RMS) of the recorded
(Figure 14) acceleration signals opportunely 	ltered with a
band-pass 	lter (in the range 0.5 – 3.0 Hz) in order to
eliminate contributions not related to the investigatedmodes.
It can be observed that by increasing the amplitude of the
acceleration a reduction of the fundamental frequencies and
an increase of the relevant damping ratios are observed. Data
are interpolated with power functions and the relevant coef-
	cient of determination is reported in the graph; although
few data are characterised by acceleration higher that 45 �g,
the regression model, which quite well 	ts the experimental
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Figure 11: Daily evolution of the air temperature and wind velocity for selected days and histories of identi	ed fundamental frequencies.

results, reveals that phenomena inducing the frequencies
decrease and damping ratio increase tend to saturate.

�is is consistent with the hypothesized nature of these
phenomena that, as previously stated, may be due to small
frictions developing between structural and nonstructural
elements.

Although clear trends of frequencies and damping ratios
can be observed due to changes of temperature and wind
velocity, it should be remarked that weather phenomena
occur simultaneously and e�ects on themodal parameters are
strictly correlated. From a more rigorous point of view, the
MDR technique is used to 	nd linear correlations between
frequencies and the two independent environmental vari-
ables (air temperature and wind velocity). From a formal
point of view, and with only reference to frequencies, the
regression model is described by

F̂ = AX (1)

where

F̂ = [�̂1 �̂2 �̂3]� (2a)

X = [1 � ]� (2b)

are the vectors of estimates of the 	rst three fundamental
frequencies �̂1, �̂2, and �̂3 and the vector of the independent
environmental variables, respectively. Furthermore, A is a
3x3 full matrix of coe�cients weighting contributions of

environmental parameters for all the fundamental frequen-
cies. Coe�cients are determined according to a least square
scheme that can be formulated according to

min
A

� (A) = 1
2

�
∑
�=1
(AX − F)2� (3)

where g is the objective function depending on the unknown
parameters A and N is the number of the couple of data

(F,X)� . F, similar to F̂, is the vector collecting the identi	ed
	rst three fundamental frequencies. It is worth noting that
since only two environmental parameters are considered,
the regression models (1) correspond to planes. Matrix A,
obtained from the linear least square optimization, assumes
the following form:

A=[[
[

10520 6.2997 −15.787
11978 2.3042 −12.083
15014 −16.143 −11.645

]]
]
10−4 (4)

Components of matrix A reveal positive and negative inter-
actions of frequencies with ambient parameters. It is worth
noting that, with reference to the 	rst two frequencies,
coe�cients of temperature are sensibly lower than those of
wind velocity while for the third frequency coe�cient of
temperature is higher. �is implies that frequency variations
of the 	rst and second mode are more related to variations of
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Figure 12: Variation of frequencies and damping ratios: (a) variations with respect to temperature and (b) variations with respect to wind
velocity.
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Figure 13: Correlation between frequencies and damping ratios.

the wind velocity than to variations of ambient temperatures
while for the third mode frequency variations are almost
equally in�uenced by both ambient parameters.

Figure 15 shows results of the MDR analysis performed
with reference to the 	rst three fundamental vibration fre-
quencies. In detail, regression planes are reported and the
relevant R-squared coe�cients are included to provide an
idea of the 	tting goodness.

In addition, components of the residual vector (AX-F) are
plotted for all the samples. Trends of frequencieswith temper-
ature and wind velocities previously highlighted disregarding

the combined e�ects of the environmental parameters are
con	rmed by the MDR.

�e 	rst and second frequencies show a positive inter-
action with temperature and a negative interaction with the
wind velocity while the third frequency shows a negative
interaction with both temperature and wind velocity. As
previously observed, the increase of all fundamental fre-
quencies with the increase of the wind velocity may be due
to the development of small nonlinear e�ects or frictions
between structural and nonstructural elements, activated by
the increasing wind velocity and amplitude of oscillations.
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On the other hand, the contribution of temperature on the
fundamental frequencies is more di�cult to interpret; trends
agree with what observed in the literature concerning the
behaviour of a masonry structures [14, 41]; although the
structural typology of the presented case study is completely
di�erent, considerations concerning the thermal expansion
in the material, which may determine an overall closing
of microcracks, can hold, leading to an overall increase of
the 	rst two fundamental frequencies. Furthermore, thermal
expansion, acting on both structural and nonstructural ele-
ments, may be responsible for an increase of the coupling
between the two components of the building, making the
structure overall sti�er.

6. Conclusions

We discussed the e�ect of temperature variations and wind
intensity on the fundamental frequencies and modal damp-
ing ratios of the UnivPM Faculty of Engineering Tower, a
10-story r.c. framed building, permanently monitored with
low-noise accelerometers. �e analysis of the data recorded
over the 	rst 5 months of operation of the monitoring system
demonstrates that temperature variations and wind intensity
have a clear e�ect on the 	rst three natural frequencies and
the corresponding modal damping ratios. In detail,

(i) with respect to temperature, we observed a posi-
tive correlation of the 	rst and second frequencies,
corresponding to lateral displacement modes, and
a sharp negative correlation of the third frequency,
corresponding to a torsional mode. �e sign of the
correlation trends, positive for the 	rst two frequen-
cies and negative for the third, is curiously analogous
to those reportedly observed in masonry towers;

(ii) for masonry towers, the increase of the fundamental
frequencies is explained with the sti�ening of the
structure produced by microcracks reclosure in the
mortar layers, as a result of thermal expansion.
To explain the observed behaviour of the UnivPM

building, we can suppose that a similar phenomenon
occurs for microcracks in concrete. An alternative
explanation, or contributory cause, is that ther-
mal expansion enhances the degree of connection
between structural and nonstructural prefabricated
elements, eventually increasing the global sti�ness;

(iii) with respect to wind, all frequencies decrease by
increasing the wind speed.�is can be justi	ed by the
increase of the external actions that leads the structure
to develop higher small nonlinear e�ects or frictions
between structural and nonstructural elements;

(iv) the frequencies associated with bending modes
appears more sensitive to the wind velocity rather
than to the air temperature, while the frequency of
the torsional mode is equally dependent on both
environmental factors;

(v) the damping ratios generally decrease by increasing
the vibration frequency.

�e results presented in this paper demonstrate, once again,
thatmodal parameters are strongly a�ected by environmental
and operational conditions. It is clear that using changes
in modal parameters for damage detection always requires
proper compensation from the environmental e�ects.�is in
turn requires accurate knowledge of the correlation between
modal parameters and environmental quantities (tempera-
ture, humidity, and wind velocity), an information which is
available only a�er long-term continuous monitoring of the
structural behaviour.
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[8] F. Magalhães, A. Cunha, and E. Caetano, “Vibration based
structural health monitoring of an arch bridge: from automated
OMA to damage detection,” Mechanical Systems and Signal
Processing, vol. 28, pp. 212–228, 2012.
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