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Abstract

Exosomes, extracellular vesicles with diameters ranging from 30 to 150 nm, are widely present in various body

fluids. Recently, microRNAs (miRNAs) have been identified in exosomes, the biogenesis, release, and uptake of

which may involve the endosomal sorting complex required for transport (ESCRT complex) and relevant proteins.

After release, exosomes are taken up by neighboring or distant cells, and the miRNAs contained within modulate

such processes as interfering with tumor immunity and the microenvironment, possibly facilitating tumor growth,

invasion, metastasis, angiogenesis and drug resistance. Therefore, exosomal miRNAs have a significant function in

regulating cancer progression. Here, we briefly review recent findings regarding tumor-derived exosomes, including

RNA sorting and delivering mechanism. We then describe the intercommunication occurring between different

cells via exosomal miRNAs in tumor microenvironmnt, with impacts on tumor proliferation, vascularization,

metastasis and other biological characteristics. Finally, we highlight the potential role of these molecules as

biomarkers in cancer diagnosis and prognosis and tumor resistance to therapeutics.
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Background

In recent years, researchers and clinicians have mostly

focused on the identification of cancer-specific targets

and the development of targeted therapies that may effi-

ciently kill cancer cells. Although considerable success

has been achieved with regard to identifying effective

small cancer-specific targets and a series of monoclonal

antibodies [1]. However, obvious drawbacks exist. For

example, cancers are characterized by extensive hetero-

geneity and a variety of subtypes, which complicates the

identification of unique targets and the eradication of all

tumor cells, due to clonal evolution of malignant cells.

Another unresolved problem is how to increase the effi-

ciency and accuracy of cancer-specific target molecules

when delivered. In depth research of extracellular vesi-

cles, especially exosome (30–100 nm), raised the intri-

guing possibility that exosomal cargo may be a good way

to protect target molecules integrity and to enhance the

accuracy of delivery [2, 3]. Cancer cells secrete at least

10-fold more exosomes than do normal cells, and

tumor-derived exosomes (TDEs) can facilitate cell-cell

communication through the transport of growth factors,

chemokines, microRNAs, and other small molecules [4,

5]. Moreover, profiling studies have revealed that exo-

somes of different cellular origin contain a unique ex-

pression profile of mRNAs and miRNAs, which may

also differ from the signatures of their parent cells [6].

What’s more, accumulating evidence suggests that

tumor microenvironment highly contributes to meta-

bolic rewiring of cancer cells via extracellular microvesi-

cles, this fosters complete nutrient exploitation and

favors OXPHOS of lipids and glutamine at the expense

of glycolysis, thereby changing the microenvironment

from a normal state to a tumor-favorable state that al-

lows for tumor growth, invasion, and drug resistance [7].

miRNA-carrying exosomes released from immune cells,

mesenchymal cells and cancer cells in the tumor envir-

onment can shuttle from donor cells to recipient cells

[8, 9]. In addition, cancer-derived miRNA-exosomes

contribute to the recruitment and reprogramming of

constituents associated with tumor environment [10].
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Therefore, exosomal miRNAs are likely to be applied as

promising non-invasive biomarkers and potential target-

able factors in cancer diagnosis and treatment.

The biogenesis, release, and uptake of exosomes and

exosomal miRNAs

Exosomes are nano-vesicles present in the circulation

that are involved in cell-to-cell communication and

regulation of different biological processes. miRNAs are

part of their cargo and are potential biomarkers [11]. As

exosomes carry proteins, mRNAs and miRNAs that can

be transferred from donor to recipient cells via target

cell membrane fusion, these vesicles have recently been

recognized as important mediators of interactions be-

tween different cells [2]. In tumor microenvironment,

the process described above is indispensable for the

transfer of cancer-promoting cellular contents to sur-

rounding cells, thereby accelerating cancer progression

[12]. During this process, the transfer of exosomal

microRNAs to recipient cells to regulate target gene ex-

pression is particularly attractive, and knowledge of the

biogenesis, release, and uptake of exosomes and exoso-

mal miRNAs is helpful for both understanding the bio-

logical mechanism of cancer progression and further

exploring therapeutic approaches [13].

Accumulating evidence supports that the biogenesis,

uptake and material cargo sorting of exosomes involve the

endosomal sorting complex required for transport

(ESCRT complex) and relevant proteins [14]. The ESCRT

complex can select the “cargo” protein labeled by ubiqui-

tin, direct it to multivesicular bodies(MVBs), and then

separate fromthe peripheral membrane in a highly

conserved process that is homologous to the process of

cytokinesis and virus budding [15]. Study of late endo-

some components, such as Alix, tumor susceptibility gene

101 (TSG101) and tetraspanins, promotesanunderstand-

ing of exosomal origin [16].

Interestingly, it has recently been reported that miRNAs

in a precursor state (pre-miRNA) associated with the pro-

cessing complex (e.g., Dicer, Ago2 and TRBP) can be

found inside breast cancer-derived exosomes, where they

are processed into mature miRNAs, establishing a new

method by which miRNAs are integrated into exosomes.

In this scenario, the formation and activation of exosomal

miRNAs needs to be stressed [17]. Canonically, the bio-

genesis of miRNAs begins in the nucleus where DNA con-

taining miRNAs is transcribed by RNA polymerase II to

generate primary miRNAs (pri-miRNAs) (Fig. 1).These

pri-miRNAs are first transcribed as parts of longer mole-

cules, up to several kilobases in length, which are proc-

essed in the nucleus into hairpin RNAs of 70–100 nt by

the double-stranded RNA-specific ribonuclease, Drosha

[18]. Hairpin pre-miRNAs are then transported by expor-

tin 5 to the cytoplasm, where they undergo further

processing by a double-stranded-specific ribonuclease,

called Dicer. After maturation, double-stranded miRNAs

converted into single-stranded miRNAs, and mature miR-

NAs are sorted into exosomes via different modes. In the

miRISC-related pathway, a representative mode, single-

stranded miRNAs are incorporated into RNA-induced si-

lencing complex (RISC) along with argonaute (AGO2)

and GW182, and primarily bind to specific messenger

RNAs (mRNAs) at specific sequence motifs, predomin-

antly within the 3′ untranslated region (3′UTR); these

motifs are significantly, though not completely, comple-

mentary to the miRNA. The mRNA/miRNA duplex then

inhibits translation by blocking initiation or enhancing

degradation of the mRNA [19]. Finally, the MVBs fuse

with the cell membrane and release the intraluminal

endosomal vesicles into the extracellular space, which

then become exosomes. There are some studies indicate

that some molecules act as a regulatory network and is re-

sponsible for the formation and secretion of exosomes in

parent cells. For instance, Rab27a and Rab27b were found

to function in multivesicular endosomes (MVEs) docking

at the plasma membrane. The size of MVEs was strongly

influenced by Rab27a and Rab27b silencing. With knock-

down of Rab27 or its effectors SYTL4 and EXPH5 inhibit-

ing secretion of exosomes in HeLa cells [20, 21]. In

addition, a set of proteins encoded by genes that are not

transcriptional targets of p53 were found to exit the cell

via exosomes and exosome production by cells was found

to be regulated by the p53 response. Its downstream ef-

fector TSAP6 was shown to enhance exosome production

in cells undergoing a p53 response to stress. Thus, the p53

pathway regulates the production of exosomes into the

medium [22]. Moverover, syndecan-syntenin interact dir-

ectly with the ALIX protein via Leu-Tyr-Pro-X(n)-Leu

motif to support the intraluminal budding of endosomal

membranes, which is an important step in exosome for-

mation [23, 24].

Rab27a and Rab27b have been reported to be associated

with exosome secretion, with knockdown of Rab27 or its

effectors SYTL4 and EXPH5 inhibiting secretion of exo-

somes in HeLa cells. In addition, both the tumor repressor

protein p53 and its downstream effector TSAP6 enhance

exosome production. Moreover, syndecan-syntenin interact

directly with the ALIX protein via Leu-Tyr-Pro-X(n)-Leu

motif to support the intraluminal budding of endosomal

membranes, which is an important step in exosome forma-

tion. All of these studies indicate that a set of molecules act

as a regulatory network and is responsible for the formation

and secretion of exosomes in parent cells.

Experimental methodology of isolating exosomal miRNAs

For implementation of the use of new biomarkers into

clinical practice, the first step is to standardize exosomal

measurement and to evaluate their stability. However,
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there is not a gold standard for exosome isolation. Thus

far, ultracentrifugation was the popular methodology

applied for their isolation because it was reproducible

and could be provided optimal amounts of exosomes.

The different centrifugal force and duration to isolate

exosomes are easy to control, based on their density and

size differences from other components in a sample,

consisting of serum isolation with 100,000 g to

120,000 g, urine exosome isolation with 17,000 g, and

milk exosome isolation with 12,000 g to 35,000 g. While

the disadvantages prevent its effectiveness, including

excessive pressure suffered by exosomes during this

process, lack of specificity during the precipitation, ex-

cessive time, the equipment required for isolation, and

difficulties in exactly reproducing the isolation in differ-

ent places. Another isolation method commonly used is

size exclusion chromatography. It allows a better degree

of purity and is less harmful to exosomes. Nevertheless,

the high final dilution of the exosome sample makes it

difficult to use them in downstream applications that

require a high exosome concentration, such as the evalu-

ation of their miRNA profile. Finally, during recent

years, there has been an increase in the number of com-

mercial kits developed for exosome isolation. Most of

them are based on precipitation. Although they are not

completely specific and precipitate some impurities,

their rapidity and reproducibility even in different labs

make them useful for future diagnosis, primarily in

miRNA-based tests. Other recent publishment pointed

out the importance of freezing plasma before exosome

isolation, RNA isolation and qPCR for miRNAs rather

than freezing exosomes before miRNA analysis, by com-

paring the miRNA levels obtained from exosomes iso-

lated from fresh plasma with that from frozen one. And

it was necessary to determine the inter- and intra-indi-

vidual variability of healthy subjects, which could help to

optimize sample size in future studies with circulating

exosomes. After isolating exosomes, some researchers have

developed methods for exploiting differences between

tumor-associated and non-tumor exosomes surface com-

position. For instance, detecting cancerous exosomes from

SKOV-3 ovarian tumor cells in real time by the technique

of multi-parametric surface plasmon resonance (MP-SPR)

to measure LXY30 binding, without a priori labeling.

Fig. 1 The sorting mechanism of exosomal miRNA MiRNA genes are transcribed into primary miRNAs (pri-miRNA) by Pol-II. Then with the

catalytic action of DGCR8 and Drosha complex, pri-RNA are transmitted into pre-miRNA, which are exported out of the nucleus by exportin5

complex. In the cytoplasm, the pre-miRNAs are digested by the Dicer complex into double-stranded miRNAs, which turn to be single-stranded

ones, mature miRNAs, in the next step by Helicase. Mature miRNAs are sorted into exosomes via four potential modes: a the miRISC-related

pathway; b nSMase2-dependent pathway; c miRNA motif and sumoylated hnRNPs-dependent pathway; d 3’miRNA sequence-dependent

pathway. e Knockdown of Rab27 or their effectors, SYTL4 and EXPH5, could inhibit secretion of exosomes in HeLa cells. f Both the tumor

repressor protein p53 and its downstream effector TSAP6 could enhance exosome production
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As for the experimental skill of exosomal miRNAs

examination and protection, he current commonly av-

enue is quantitative reverse transcription polymerase

chain reaction (qRT-PCR), however, this method re-

quires highly trained experience and have the potential

to generate false positive signals. Later, some groups de-

veloped PCR-free methods for exosomal miRNAs quan-

titation based on ratiometric electrochemistry, localized

surface plasmon resonance (LSPR), and surface-en-

hanced Raman scattering (SERS), respectively, while the

expensive instrument and complex operation have ham-

pered their extensive application. At present, fluorescent

methods have been given attention, because of their in-

trinsic advantages, including simple instrumentation, as

well as high sensitivity and capacity to high-throughput

screening.To date, several attempts have been reported

using fluorescent methods to detect exosomal miRNAs

with various degrees of success, as evidenced by the

cationic lipoplex nanoparticles containing a molecular

beacon assay, fluorescent dye-labeled molecular beacons

strategies, fluorescence signal amplifiable biochip assay,

and others. However, these methods employed solely re-

sponsive signal and were based on measuring the absolute

change of the fluorescent intensity, which was readily per-

turbed by numerous experimental conditions, including

thermodynamic fluctuations, nuclease degradation, and dye

photobleaching. To utilize exosomal miRNAs as a diagnosis

biomarker, a fluorescent system with antidisturbance

should be developed, due to the complex biosystem. Sur-

prisingly, because of the self-referencing capability, ratio-

metric fluorescent measurement is able to cancel out

environmental fluctuations by calculating the emission inten-

sity ratio at two different wavelengths. Recently, the practical

applications of ratiometric fluorescent bioprobes has been

improved. For instance, a ratiometric fluorescent bioprobe

based on DNA-labeled carbon dots (DNA-CDs) and

5,7-dinitro-2-sulfo-acridone (DSA) coupling with the

target-catalyzing signal amplification for the detection of exo-

somal miRNA-21. There was high fluorescence resonance

energy transfer (FRET) efficiency between carbon dots (CDs)

and DSA when the bioprobe was assembled.

After gain the exosomal miRNAs, some researches

claim that a new concept for miRNA editing measure-

ment would be necessary, which considered not only the

absolute editing level of miRNA but the miRNAs modi-

fication assessed via reads per million reads mapped to

miRNAs (RPM). For example, by analyzing small-RNA

sequencing data from exosome samples of NSCLC

patients at different stages, researchers found that edi-

ting(ED) miR-411–5p downregulated, while wild-type

(WT) showed no significant difference in expression.

Further study showed that miR-411–5p edited in pos-

ition 5 was differentially expressed between NSCLC and

normal tissue samples, indicating that the machinery

that governs the export of miRNAs to extracellular space

in tumor conditions may discriminate ED miRNAs dif-

ferently. Thus, they thought post-transcriptional modifi-

cations in miRNAs within both tissues and circulation

could both serve as potential novel biomarkers and pro-

vide additional insights into the pathogenesis of cancers.

Exosomal miRNA in Cancer

The malignant phenotypes of tumors are not only deter-

mined by cancer cells themselves but also depend on the

surrounding tumor microenvironments [25]. Studies on

the relationship between exosomal miRNAs and cancer

begin to reveal a general picture of their ubiquitous in-

volvement in cellular pathways from life to death, from

metabolism to communication. These molecules have an

undeniable role in cancer both as tumor suppressors

and promoters modulating cell proliferation and migra-

tion, the epithelial-mesenchymal transition (EMT), and

tumor proliferation, angiogenesis and metastasis [5].

Moreover, exosomal microRNAs can even affect the

environment surrounding the tumor, influencing the

extracellular matrix (ECM) as well as immune system

activation and recruitment. Clearly, the influence of

exosomal miRNA on cancer is somewhat similar to that

of miRNA [23] (Fig. 2).

miRNAs, ECM, and Cancer-associated fibroblasts (CAFs)

miRNAs and ECM

The tumor microenvironment is defined as the variety

of normal cells, blood vessels, signaling molecules, and

ECM that surround tumor cells [19]. The cellular com-

ponents of the tumor microenvironment include endo-

thelial cells, pericytes, fibroblasts, and immune cells [26].

Both tumor environmental cues and cell-intrinsic alter-

ations contribute to these epigenetic changes, inducing

adaptations by cancer cells that allow successful invasion

of the stroma, entry and survival in lymphatic or blood

vessels, spread to and colonization of distant/different

organs, as well as resistance to cytotoxic drugs [27].

Cancer-associated fibroblasts(CAFs) are vital constitu-

ents of the tumor microenvironment, and their interac-

tions with cancer cells play a major role in mediating

their formation and activation [28, 29].

CAFs isolated from cancer patients have a morphology

and function that differs from that of normal fibroblasts

(NFs). CAFs have been shown to promote the invasion

and growth of tumor cells [30]. CAFs produce growth

factors (e.g., vascular endothelial growth factor (VEGF))

and cytokines (e.g., TGFβ, IL-6, IL-10) that activate the

adjacent ECM, contributing to cancer cell growth. Add-

itionally, CAFs are the primary source of an altered

ECM, containing fibronectin and collagen, and also pro-

mote tumor growth [31]. CAF-secreted factors include

proinflammatory cytokines, typically IL-1β and IL-8
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typically, which are associated with pro-tumorigenic ef-

fects. SDF-1α, a prominent chemokinesecreted by CAFs,

promotes proliferation, by signaling through chemokine

(CXC) receptor 4 (CXCR4) [32]. NFs have been shown

to inhibit tumor growth, unlike CAFs, and it has re-

cently been reported that exosomal miRNAs might con-

vert NFs into CAFs for tumor survival. Nonetheless,

how this communication promotes activation of NFs

into CAFs remains poorly understood.

Recent studies have demonstrated that pancreatic can-

cer cells secrete exosomal miR-155 to activate NFs. This

phenomenon might be related to miR-155-mediated

downregulation of its target TP53INP1 [33]. Moreover,

previous studies have shown that highly metastatic hepa-

tocellular carcinoma (HCC) cells secrete exosomal

miR-1247-3p targeting B4GALT3, leading to activation

of β1-integrin-NF-kB signaling in fibroblasts. Activated

CAFs further promote cancer progression by secreting

proinflammatory cytokines, including IL-6 and IL-8 [34].

In addition, the relationship between exosomal miRNAs

and CAFs activation is unlikely to be unidirectional. A

CAF-like phenotype inducible by tumor cells through

exosome-mediated delivery of miR-9 was reported in

triple-negative breast cancer. Interestingly, miR-9 is also

released by NFs and transferred to tumor cells [30]. All

of these studies indicate that exosomal miRNA and their

targets act as a regulatory network responsible for trans-

formation of the tumor microenvironment.

Exosomal miRNAs and tumor immunity

Emerging evidences suggests that tumor-derived exo-

somes participate in tumor immune escape by delivering

immunosuppressive molecules and factors [35]. Exoso-

mal miRNAs are carriers of information that is able to

reprogram functions of immunologically active factor

and immune target cells, such as dendritic cells (DCs),

natural killer (NK) cells, and T lymphocytes et al. [36].

It has been shown that proinflammatory conditions

might promote tumorigenesis [37]. DCs are crucial regu-

lators of the immune system that initiate immunity or

immunological tolerance depending on their state of

activation [38].When activatedupon exposure to danger

signals from pathogens or damaged tissue, DCs trigger

the activity of pattern recognition receptors, such as

Toll-like receptors (TLRs) [39]. Upon TLR stimulation,

DCs upregulate costimulatory molecules and proinflam-

matory cytokines to stimulate T lymphocytes and initiate

immune responses [40]. Non-small cell lung cancer

(NSCLC) secretes an abundance of exosomes containing

miR-21 and miR-29a, which can bind to TLRs to induce

protumoral inflammation, leading to tumor growth and

metastasis [41]. Overexpression of miR-203 in pancreatic

Fig. 2 Exosomal miRNA in Cancer. a The first general mechanism is that cancer cells export exosomal miRNA to parent surrounding cancer cells.

b The second general mechanism is that primary tumor cells can communicate with other cells via exosomal miRNAs in the tumor

microenvironment. c The third general mechanism is that exosomes derived from normal cells alter the behavior of tumor cells. d The forth

general mechanism is that exosomes derived from cells infected with virus to influencr normal cells oncology and themselves
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adenocarcinoma has a similar effect on TLR4 as miR-21

and miR-29a [42]. Moreover, pancreatic cancer-derived

exosomes transfer miRNAs toDCs and inhibit Regula-

tory factor X-associated protein(RFXAP) expression via

miR-212-3p, inducing MHC II downregulation and im-

mune tolerance of DCs [36].

Exosomal miRNAs also play a role in the biology of NK

cells and T lymphocytes. NKs are a sub-population of T cells

with a role as tumor cell killer, which can produce a series of

antitumor cytokines, including IL-4, IFN-γ, FasL, IL-13, and

perforin [43]. Importantly, their efficiency is abrogated by

exposure to TGF-β. Meanwhile, TGF-β-inducible miR-183

silences tumor-associated natural killer cells by targeting and

repressing DNAX activating protein [44]. Moreover,

hypoxia-inducible miR-210 regulates the susceptibility of

tumor cells to lysis by cytotoxic T cells. Hypoxic tumor-de-

rived microvesicles negatively regulate NK cell function by a

mechanism, involving TGF-β and miR-23a transfer [45].

Besides, the process, exosomic miRNAs acting on NKs

immune activity and then inducing tumor resistance to

immunology, involves in many-sided, many-targeted,

many-factored effect. Here we focus on some emblemat-

ical miRNAs from TDE shown in Table 1.

Exosomal miRNA and tumor proliferation

Malignant cells have the ability to transfer genetic infor-

mation to other cells in the tumor microenvironment

through exosomes. Some of the exosomic miRNAs

transported between donors and recipients are shown in

Table 2, indicating that exosomal miRNAs contribute to

cancer cell proliferation, angiogenesis, metastasis, drug

resistance and tumor inhibition.

Proliferation is an important aspect of cancer development

and progression that is manifested by altered expression

and/or activity of cell cycle-related proteins. Constitutive ac-

tivation of many signal transduction pathways also stimulates

cell growth [46]. miR-584-derived exosomes from HCC cells

target TGF-β-activated kinase-1 (TAK1) and associated

signaling, leading to TAK1 downregulation. TAK1 is an

essential inhibitor of hepatocarcinogenesis and has a direct

effect on cancer progression through repression of the tel-

omerase reverse transcriptase gene. That is, miR-584 has an

indirect promoting effect on tumor proliferation [47]. Some

other findings suggest that miR-125a from TDEs as a result

of diaphanous-related formin-3 (DIAPH3) loss or growth

factor stimulation may condition the tumor microenviron-

ment through multiple mechanisms, including the prolifera-

tion of cancer cells and suppression of tumor-infiltrating

immune cells [48]. Still another research showed that

miR-1246 packaged in exosomes from 2Gy-irradiated

BEP2D cells could act as a transfer messenger and contribute

to DNA damage by directly repressing the DNA ligase 4

(LIG4) gene, which inhibited the proliferation of nonirradi-

ated cells [49].

The stages of tumor proliferation do not have obvious

boundaries, and each stage of development does not

exist independently. Tumor proliferation is often a con-

tributing factor to the further development of tumor

angiogenesis and metastasis.

Exosomal miRNA and tumor angiogenesis

Tumor angiogenesis comprises several steps: enzymatic

degradation of the vessel’s basement membrane, endo-

thelial cells proliferation, migration, sprouting, branch-

ing, and tube formation. In tumor microenvironment,

exosomes released by different cell types have been

shown to function as positive mediators during this

process [50], including mesenchymal stem cells, stromal

cell, endothelial cells [51].Considerable attention is now

focused on the role of miRNAs secreted by TDE acting

on the process of vascularization.

Hypoxia is one of the main factors involved in tumor

angiogenesis and can affect the activity of various sub-

stances and promote expression of exosomal miRNAs.

Previous studies have demonstrated that increases in tissue

inhibitor of metalloproteinases-1 (TIMP-1) upregulates

miR-210 by inducing pro-tumorigenic PI3K/AKT/HIF-1

signaling. Subsequent downregulation of miR-210-targeted

Table 1 miRNAs involved in the line of communication cancer-immune

Immuno Exosomal miRNA Involved molecule Involved other molecules Function Ref.

DCs miR-203 TLR4 TNF-α, IL-12 pathway DCs dysfunction in pancreatic
cancer

[42]

miR-212-3p RFXAP / Immune tolerance of DCs in
pancreatic cancer

[36]

Lymphocytes miR-183 DAP12 TGFβ NK [94]

miR-210 NKG2D TGFβ1 NK [45]

miR-23 CD107a / NK [95]

miR-20a MICA/MICB NKG2D NK [96]

miR-10b MICB / NK [97]

miR-92a / FasL, INF-ϒ NKT [98]

miR-214 PTEN IL-10 T cell [99]
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proteins results in increased pro-angiogenic properties

of exosomes released by TIMP-1-overexpressing cells

and thus contributes to a new mode of action by

which TIMP-1 can support lung cancer progression

[52]. In addition to miR-210, researchers have found

that miR-21 in exosomes leads to STAT3 activation,

which increases VEGF levels in recipient cells and

leads to angiogenesis and malignant transformation of

human bronchial epithelial (HBE) cells [53].

Exosomal miRNA and tumor metastasis

The metastatic process involves manipulation of the cel-

lular microenvironment to optimize conditions for de-

position and growth both locally and at a distance [54].

Intercellular communication can occur through various

signaling molecules. Many groups have confirmed that

tumor-derived exosomes are involved in the different

steps of the metastatic cascade. For example, EMT is a

complex molecular and cellular process involved in tis-

sue remodeling that has been extensively studied as a fa-

cilitator of tumor progression. The miR-200 family

inhibits EMT and cancer cell migration by directly tar-

geting the E-cadherin transcriptional repressors ZEB1

and ZEB2 [55].Based on the researches, the mechanism

by which miRNAs packaged by TDEs influence tumor

metastasis needs to be further explored [56].

Studies have reported four general mechanisms of exoso-

mal miRNA delivery during tumor development in the

microenvironment [57]. First, less invasive tumor cells can

take up miRNAs delivered from invasive tumor cells via

TDEs, which may prompt worsening of a primary tumor.

For example, metastatic breast cancer likely promoted cell

invasion via release of exosomal miR-10b by the primary

tumor into the culture environment of surrounding normal

cells. This role of miRNAs packaged by TDEs acting on

neighboring cells to transmit a message (produced by a

donor cell and taken up by a recipient cell) resembles a para-

crine mechanism of intercellular communication [56] (Fig.

2-a).With respect to the second mechanism, primary tumor

cells can communicate with other cells via exosomal miR-

NAs in the tumor microenvironment. For example, by

downregulating tight junctions and destroys the barrier func-

tion of endothelial monolayers, cancer-secreted miR-

105expressed and secreted by metastatic breast cancer cells

induces vascular permeability and promotes metastasis [58].

miRNAs have been reported to enter the circulatory system

and travel to distant organs to deliver their message by tar-

geting their recipient cells, emphasizing the potential of miR-

NAs to act as signals involved in preparing a distant site for

tumor proliferation [59] (Fig. 2-b). A third mode of commu-

nication involves exosomes derived from normal cells or

routine biological process that can alter the behavior of

tumor cells. For example, after metastasis to the brain, but

not to other organs, human and mouse tumor cells regulated

by microRNAs from brain astrocytes both lost PTEN expres-

sion [50]. Another example is the exosomal level of

miR-122-5p was increased upon hepatoma cell damage

treated by apoptotic agent and then increased cell mobility

by SDC1 downregulation [60].The last mode focus on some

tumor caused by viral infections. The cells infected by virus

released aberrant quality and quantity of exosomal miRNA,

leading more health cells and themselves to precancerous

conditions. For example, in the Burkitt Lymphoma Mutu

Cell Lines, Epstein-Barr virus (EBV) infection in type III la-

tency modulates the biogenesis of exosomes and expression

profile of exosomal miRNAs, such as miR-877 [61], which

may contribute to the induction of EBV-associated tumors

by modulating cell and virus functions [62].Some other stud-

ies showed that Merkel cell polyoma virus seems to be the

major causal factor for Merkel cell carcinoma (MCC). By

comparing MCPyV positive cells with negative ones,

miR-181d as a tumor suppressor was downexpressed in

MCPyV-positive cells [63]. (Fig. 2-c).

Organ-specific metastasis is a multi-step and compli-

cated process that includes tumor-host crosstalk among

cells as well as communication between cells. Moreover,

the crucial role of the tumor environment, including sig-

naling and key molecules required for tumor metastasis,

cannot be ignored.

Exosomal miRNA and clinical implications

Exosomal miRNA as a predictor of tumor response to

treatment

Primary acquired resistance to chemotherapy, radiother-

apy and targeted therapies remains a major stumbling

block in cancer treatment [64, 65]. The key signaling

pathway components in drug response, involving drug

targets, transporters, and cell cycle- and apoptosis-re-

lated components, include several functional proteins

that can be affected by miRNA expression [66].

Exosomes can be regarded as vehicles for loading miR-

NAs, targeting and combining fundamental genetic mol-

ecules in the pathways mediating chemotherapy,

radiotherapy and targeted therapies.

Recent studies have reported that treatment of pros-

tate cancer with paclitaxel (PTX) often fails due to the

development of chemo-resistance caused by downregu-

lation of the tumor suppressor gene miR-34a. This

miRNA has been suggested to be an intracellular and

exosomal predictive biomarker for response to docetaxel

with clinical relevance to prostate cancer progression by

regulating the anti-apoptotic gene BCL-2 [67]. Other re-

searchers have reported that tamoxifen-sensitive breast

cancer cells can acquire drug resistance after internaliz-

ing exosomes derived from tamoxifen-resistant breast

cancer cells. The underlying mechanism involves inhib-

ition of P27 and ERα expression in tamoxifen-sensitive

cells by miR-221/222 carried within the transferred
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exosomes [68]. Furthermore, the research on exosomal

miR-21 as biomarker of treatment outcome in non-small

cell lung cancer (NSCLC) has also been developed. It was

revealed that the high level of miR-21 related to the ac-

quired resistance to the treatment consisting of epidermal

growth factor receptor (EGFR) and tyrosine kinase inhibi-

tors (TKIs) [69]. The radio sensitivity mediated by PI3K/

Akt pathway represents also an aspect controlled by

miR-21, and the inhibition of miR-21 improved the sensi-

tivity to radiotherapy [70], which would be advantages of

miR-21 as a useful predictor of the therapeutic response,

and constructive, worse outcome [71].

Therefore, some exosomal miRNAs can provide infor-

mation about the identity of the cell type from which

they are derived, the target, and the cellular state, in-

cluding therapy resistance. Accordingly, it is possible to

monitor and regulate tumor resistance, and achieve per-

sonalized therapy.

Exosomal miRNAs as fascinating possibility for tumor

biomarker

The cargo of exosomes is specific for the parental cells

and the conditions in which they produce them, which

implied that circulating miRNAs in exosomes had the

potential toserve as prognostic and predictive bio-

markers [72]. This review focuses on the biological char-

acteristics of exosomal miRNAs as cancer surrogate

biomarkers. Different miRNAs from tumor-related (TR)

exosomes have been detected as biomarkers in the

plasma of tumor patients.

As the potential role of tumor diagnosis, the results of

a meta-analysis suggested that miR-21-containing circu-

lating exosomes, which can also be detected in feces, in

plasma may be a reliable and non-invasive biomarker for

colorectal cancer diagnosis [73]. Moreover, recent stud-

ies have claimed that circulating exosomal miRNA-373

is upregulated in receptor-negative breast cancer

patients [74]. Additionally, miR-1290 and miR-375 up-

regulation might indicate poor overall survival in

castration-resistant prostate cancer [75], and exosomal

miR-19a cluster expression level in serumarecorrelated

with recurrence in colorectal cancer [76].

In addition to tumor markers, exosomal miRNAs can

also act as tumor development inhibitors, with a fascinat-

ing possibility for tumor therapy. The correlation between

miRNAs from TDEs and immunology is ubiquitous, fur-

ther demonstrating differences between tumor pheno-

types. Thus, secreted miRNAs may be considered a type

of immune cell effector. For example, transfer of miR-142

and miR-223 influences post-transcriptional regulation of

proteins in HCC, including decreased expression of re-

porter proteins and endogenously expressed stathmin-1

and insulin-like growth factor-1 receptor. This ultimately

inhibits proliferation of these cancerous cells, suggesting

that miR-142 and miR-223 may act as inhibitors of tumor

treatment [77]. Furthermore, exosome-derived miR-29c

induces apoptosis in bladder cancer cells by downregulat-

ing BCL-2 and MCL-1 [78], and some exosomal miRNAs,

such as miR-127 and miR-197, can elicit dormancy in

tumor metastasis and proliferation, decreasing prolifera-

tion and eliciting dormancy in bone marrow metastasis of

breast cancer. All of these molecules may inhibit tumor

treatment [79]. To utilize exosomal miRNAs as a diagno-

sis biomarker, a fluorescent system with antidisturbance

should be developed, due to the complex biosystem. Sur-

prisingly, because of the self-referencing capability, ratio-

metric fluorescent measurement is able to cancel out

environmental fluctuations by calculating the emission in-

tensity ratio at two different wavelengths [80]. Recently,

the practical applications of ratiometric fluorescent biop-

robes has been improved. For instance, a ratiometric

fluorescent bioprobe based on DNA-labeled carbon dots

(DNA-CDs) and 5,7-dinitro-2-sulfo-acridone (DSA) coup-

ling with the target-catalyzing signal amplification for the

detection of exosomal miRNA-21. There was high fluores-

cence resonance energy transfer (FRET) efficiency be-

tween carbon dots (CDs) and DSA when the bioprobe

was assembled [81].

To date,there is increasing evidence for the roles of

TDEs. Considering that compared with total circulating

RNAs, exosomes typically target specific cells, detection

of exosomal miRNAs in clinical examination appears

reasonable, which might assist physicians with predicting

cancer prognosis [82].

Exosomal miRNA delivery system: Opportunities and

challenges

In previous researches, miRNAs encased in TDEs are more

likely to escape attack by immune systemand able to cross

the blood-brain barrier. Moreover, exosomes are likely to

protect their cargo from clearance or damage by the com-

plement fixation or macrophages due to their double-lay-

ered membrane and nanoscale size, thus prolong their

circulation half-life and enhancing their biological activity

[83]. Exosomes can deliver miRNAs to target recipient cells

with a distinctcomposition of proteins and lipids on their

surface. In addition, exosome membrane is rich in sphingo-

myelin, ceramide, and cholesterol, which help to distinguish

exosomes from the cell membrane and facilitates their up-

take by recipient cells. As a consequence, exosomes always

succeed, even though they sometimestake a longer path to

reach their target [84].

Differential experimental skills have been employed in

an attempt to purify reticulocyte exosomes from tissue

culture medium, and new methods for exosome purifica-

tion were developed to reduce the cell media requir-

ed,thus enhancing maneuverability and improving

efficiency [85]. In addition, the abovementioned studies
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have found that Dicer and Ago2, the key components of

miRNA processing, are functionally present in exo-

somes, suggesting that miRNA might not be the only

cargo carried by EVs [18]. Another challenge is how to

load the desired cargo. For example, miRNA can be effi-

ciently encapsulated into exosomes by manipulating

exosome-producing cells to overexpress cargo miRNA.

By usinga cell-specific protein present in the membrane

of the exosomes,these encapsulated miRNAs were deliv-

ered to EGFR-expressing breast cancer cells. However,

researchers were unable to encapsulate miRNA into

HEK-293-derived exosomes using electroporation [86].

In addition to technological issues, exosomes have the

potential to spread numerous pathogens. Many patho-

genic factors, including viral proteins and fragments of

viral genomes, can be incorporated into exosomes de-

rived from virus-infected cells, and exosome-mediated

delivery of these factors has been shown to affect the im-

mune responses to infection and to modulate recipient

cells responses. For example, HIV-1 achieves cell entry

via exosome-mediated transfer of chemokine receptor 5

to recipient cells [87]. There are still some limitationsre-

garding encapsulated miRNAs in the exosomal miRNA

delivery system. As cell-based delivery vehicles, exo-

somes sufficiently deliver their functional message to re-

cipient cells without negative side effects; thus,

exosomes are attracting attention in molecular medicine

as potential modulators of disease-mediated processes.

Nevertheless, we cannot ignore the problems of miRNA

in itself, some have shown that imported miRNA results

in little cellular toxicity and has substantial effects on

miRNA regulation in recipient cells, for example, exoso-

mal transfer of miR-155 inhibitors and mimics to macro-

phages [88].

Currently, a growing number of evidence reveals that exo-

somal miRNAs were highly disease-related not only with

tumor but other diseases, and both sides will improve prom-

inently by interoperability of knowledge. For example,

miR-21-5p, miR-29a-3p and miR-126-3p are involved in

pathways related to diabetic kidney disease (DKD) pathogen-

esis, such as apoptosis, fibrosis, and extracellular matrix ac-

cumulation. They seem to be dysregulated in patients with

different stages of DKD, constituting potential biomarkers of

this disease [89]. At the same time, miR-21 and miR-29a act

in NSCLC tumor growth and metastasis [41], and miR-126

promotes the Hematological malignancies metastasis [90].

Some other studys showed that high-glucose(HG) exosomes

contained high levels of miR-28, miR-31a, and miR-

130acompared to exosomes derived from non-HG-stimu-

lated Schwann cells, which might promote development of

diabetic peripheral neuropathy. Schwann cells are the most

abundant myelinated cells [91]. Herein, a potential point on

whether the high release of these exosomal miRNA would

influence tumor development need to be explored. Some

other study held that the transport of miRNAs, within or in

association with exosomes, may provide a distant and poten-

tially more bioactive pool of circulating miRNAs compared

to those that are riboprotein bound. Currently, however,

there is no evidence to suggest functional differences be-

tween exosomal miRNAs and free ones, nor is it known

whether exosomal and free miRNAs are differentially regu-

lated in response to stimulation. Future studies need to clas-

sify whether miRNA packaging into exosomes and exosomal

uptake is a selective/stimulus dependent process [92].

Thus, applying exosomal miRNAs to clinical treatment

is a challenging but intriguing endeavor that requires

further exploration by researchers and clinicians.

Conclusion

To successfully develop advanced therapeutic options for the

treatment of cancer, exosomal miRNAs should not be disre-

garded. Based on the specific function of miRNA delivered

by TDE, we will be able to counteract pro-tumorigenic and

pro-metastatic signals that contribute to the growth, spread,

and drug resistance of tumor cells by potentially engineering

the miRNA and protein cargo of exosomes or by interfering

with their trafficking.However, further study is required to

cause tumor cells to forsake “heresy” and return to the

“truth”.Therefore, future efforts should focus on identifying

the right correct of TDE-mediated immune escape and

TDE-mediated tumor resistance to avoid the disadvantages

of exosomal miRNAs [93]. Moreover, an effective selective

mechanism for exosomal miRNA delivery system and tech-

nologies for miRNA mimic-importing TDEs can also be

expected.
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